- Research
- Open Access
- Published:
The trace of \(u\in W^{1,1}_{\mathrm{loc}}(\Omega )\bigcap L^{\infty}(\Omega )\) and its applications
Advances in Continuous and Discrete Models volume 2022, Article number: 38 (2022)
Abstract
This paper is concerned with the well-posedness problem of a doubly degenerate parabolic equation with variable exponents. By the parabolically regularized method, the existence of local solution is proved. Moreover, the trace of \(u\in W^{1,1}_{0}(\Omega )\) is generalized to \(u\in W^{1,1}_{\mathrm{loc}}(\Omega )\bigcap L^{\infty}(\Omega )\) in a rational way. Then, a partial boundary value condition matching up with the stability theorem is found.
1 Introduction
Many problems in physics, mechanics, and biology are described by degenerate parabolic equations. For example, the evolutionary equation
may model the diffusion of a substance in water, soil, or air, heat flow in a material, or diffusion of a population in a habitat. Since the media may not be homogenous, the equation is governed by a diffusion coefficient \(a(x)\). When at some points the medium is perfectly insulating, it is natural to assume \(a(x)=0\) at these points. In fact, certain composite material can block the heat at certain points, or a diffusion of a population may degenerate in some locations due to environmental heterogeneity and barriers [5, 7, 12]. In this paper, we consider a more complicate evolutionary equation
with
where \(\Omega \subset \mathbb{R}^{N}\) is a bounded domain and \(0< T<\infty \), \(Q_{T}=\Omega \times (0,T)\), \(p(x)>1\) is a \(C^{1}(\overline{\Omega})\) function, both \(g^{i}(x,t,v)\) and \(d(x,t,v)\) are continuous on \(\overline{Q}_{T}\times \mathbb{R}\), \(a(x)\in C(\overline{\Omega})\) is a nonnegative function. Since both \(a(x)\) and \(|v|^{\alpha (x)}\) may be degenerate, equation (2) is with double degeneracy. Let us take a quick look at some of the progress that has been made.
If \(a(x)=1\), \(\alpha (x)=\alpha \), and \(p(x)=p\) are positive constants, equation (2) becomes
which is called a polytropic filtration equation with a convection term and a source term. The well-posedness of this equation has been studied widely, one can refer to [6, 11, 14, 24] and the references therein. If \(a(x)\) is a nonnegative function satisfying
and \(\alpha (x)\equiv \alpha \) and \(p(x)=p\) are constants, \(d(x,t,u)=0\), then the stability of weak solutions to equation (2) was studied recently in [25, 26].
Also, equation (2) is a simple version of the following equation:
which comes from many applied problems such as the electrorheological fluid theory, the system and method for image depositing [1, 9, 13, 18, 20].
If \(0< a^{-}\leq a(x,t,v)\leq a^{+}<\infty \), \(f(x,t,v,\nabla v)=b(x,t)|u|^{\sigma (x,t)-2}\), the existence of local solutions and the blow-up phenomena of equation (7) were studied in [3]. If \(a(x,t,v)=|v|^{\alpha}+d_{0}\), \(d_{0}>0\), \(\alpha \geq 2\), \(p(x)\) is continuous with the logarithmic modulus of continuity, \(f(x,t,v,\nabla v)=f(x,t)\), then the existence and uniqueness of weak solutions were showed in [8]. However, when \(a(x,t,v)\geq 0\), the uniqueness of weak solution remains open till today. Only when \(a(x,t,v)=a(x)|v|^{\alpha (x)}\), some progress has been made by the author recently. Some details are given in what follows.
If \(0\leq \alpha (x)\in C_{0}^{1}(\Omega )\) and \(p\geq 2\), the well-posedness problem to the following equation:
was studied in [27, 30]. Very recently, when \(\alpha (x)\in C_{0}^{1}(\Omega )\) and \(p^{-}=\min_{x\in \overline{\Omega}}p(x)\geq 2\), the existence and uniqueness of weak solutions to the equation
were proved in [22]. Naturally, there are some other restrictions imposed on \(f(x,t,v,\nabla v)\) or \(f(x,t,v,|\nabla v|)\) in these papers, in particular, \(f(x,t,v,\nabla v)=f(x,t,v)>0\) when \(v<0\) in [28, 30], \(f(x,t,v,\nabla v)=\sum_{i=1}^{N} \frac{\partial b_{i}(x,t,v)}{\partial x_{i}}\) with \(\frac{\partial b_{i}(x,t,\cdot )}{\partial x_{i}}\leq 0\) in [27] and \(f(x,t,v,|\nabla v|)\leq 0\) in [22].
However, when \(\alpha (x)=0\), \(p(x)=p\), \(g^{i}(x,t,v)=0\), \(i=1,2,\ldots , N\), and \(d(x,t,v)=|v|^{q-1}v\) with \(q>p+1\), the solution of equation (2) may blow up in finite time. So, there is only a local weak solution to equation (2). In a word, compared with [22, 27, 28, 30], the main improvements of this paper lie in that the stability of weak solutions is proved when \(\alpha (x)\geq 0\) but without the assumption \(\alpha (x)\in C_{0}^{1}(\Omega )\). Such an improvement is due to the novelty of the classical trace of \(u\in in W^{1,1}_{0}(\Omega )\) being generalized to \(u\in W^{1,1}_{\mathrm{loc}}(\Omega )\bigcap L^{\infty}(\Omega )\).
The contents are arranged as follows. In the first section, we have given some background. In Sect. 2, the definition of weak solution is introduced and the main results are listed. In Sect. 3, Theorem 2 is proved. The stability theorems are proved in Sect. 4.
2 The definitions and the main results
To define the weak solution, we give a basic Banach space which can be found in [4]. For every fixed \(t\in [0, T)\), define the Banach space
and denote by \(V'_{t}(\Omega )\) its dual space. At the same time, define the Banach space
and denote by \(\mathbf{W}'(Q_{T})\) its dual space, and define the norm in \(\mathbf{W}'(Q_{T})\) by
Definition 1
A function \(v(x,t)\) is said to be a weak solution of equation (2) with the initial value (3) if
and for any function \(\varphi \in C_{0}^{1}({Q_{T}})\),
The initial value (3) is satisfied in the sense
for any \(\phi (x)\in C_{0}^{\infty}(\Omega )\).
This definition seems to have nothing to do with the boundary value condition (4) we will specify later. We first give the existence theorem here.
Theorem 2
Suppose that \(a(x)\in C^{1}(\overline{\Omega})\) satisfies (6), \(g^{i}(x,t, s)\) and \(d(x,t,s)\) are \(C^{1}\) functions on \(\overline{Q}_{T_{0}}\times \mathbb{R}\),
where \(\sigma >2\) and \(d_{0}>0\) are constants, \(g(x,t)\) is a \(C^{1}\) function on \(\overline{Q}_{T_{0}}\) and \(\|h(x,t)\|_{L^{1}(0,\theta;L^{\infty}(\Omega))}\leq c\) for some \(\theta>T_{0}\). If
then equation (2) with the initial value (3) has a solution \(v(x,t)\) on \(\Omega \times [0, T_{0}]\), where \(T_{0}\) is a positive constant depending on δ, \(d_{0}\), \(\|v_{0}\|_{L^{\infty}(\Omega )}\), \(\|h\|_{L^{1}(0,\theta ;L^{\infty}(\Omega ))}\).
Certainly, Theorem 2 only tells us the existence of the local solution. If \(\alpha (x)=0\), \(a(x)=1\), and \(p(x)=p\) is a constant, equation (2) becomes the well-known non-Newtonian fluid equation, when \(g^{i}(x,t,v)=0\) and \(|d(x,t,v)|\leq c|v|^{p-1}+\phi (x,t)\), \(\phi \in L^{r}(Q_{T})\) with \(r>\frac{N+p}{p}\), then the existence of global solution was proved in [31], and the same conclusion was obtained in [13] provided that \(p(x)>1\) is a continuous function. If \(g^{i}(x,t,v)=0\), \(d(x,t,v)=d(x,t)\in L^{\infty}(Q_{T})\), the existence of global solution was proved in [4]. Moreover, if \(g^{i}(x,t,v)=0\) and \(d(x,t,v)\) is a Lipschitz function with \(d(x,t,v)>0\) when \(v<0\), the existence of global solution was proved in [28, 30] recently. If there are not other restrictions on the growth order of \(d(x,t,v)\), the weak solutions to equation (2) may blow up, one can refer to [3, 10] for details.
Let \(\varphi (x)\in C^{1}(\overline{\Omega})\) with
and define
for small enough positive constant λ. For simplicity, we call the function \(\varphi (x)\), which satisfies (16), a weak characteristic function of Ω. Now, we can generalize the classical trace of \(v\in W_{0}^{1,1}(\Omega )\) to that of \(v\in W_{\mathrm{loc}}^{1,1}(\Omega )\bigcap L^{\infty}(\Omega )\) and specify the boundary value condition (4) as follows.
Definition 3
The boundary value condition (4) is true in a general sense of trace if and only if
where \(D_{\lambda}=\{x\in \Omega : \varphi (x)>\lambda \}\). Moreover, for any \(\Sigma _{1}\subset \partial \Omega \), we define that
where \(D_{\lambda}^{1}\subset D_{\lambda}\setminus D_{2\lambda}\) such that
Let
and \(\varphi (x)\in C^{1}(\overline{\Omega})\) be a weak characteristic function of Ω. Then the partial boundary value condition matching up with equation (2) can be imposed as
where
The main result of this paper is the following theorem.
Theorem 4
Let \(u(x,t)\) and \(v(x,t)\) be two solutions of equation (2) with the initial values \(u_{0}(x)\), \(v_{0}(x)\) respectively and with the same partial boundary value condition (20). If \(d(x,t,v)\) is a Lipschitz function, \(g^{i}(x,t,\cdot )\in C^{1}(\overline{Q}_{T})\), then
One can see that, since \(a(x)\) satisfies (6), \(\varphi (x)\) can be chosen as \(a(x)\), \(a(x)^{k}\), or \(e^{-\frac{1}{a(x)}}\) in Theorem 4. Naturally, the analytical expression \(\Sigma _{\varphi}\) in partial boundary value condition (20) depends on the choice of φ. We conjecture that the best partial boundary value condition matching up with equation (2) should be
where \(\Sigma _{1}=\bigcap \Sigma _{\varphi}\) and \(\varphi (x)\) is a weak characteristic function of Ω.
3 The proof of Theorem 2
Consider the initial-boundary value problem
where \(v_{\varepsilon 0} \in C^{\infty}_{0}(\Omega )\), \(\|v_{\varepsilon 0}\|_{L^{\infty}(\Omega )}\leq \|v_{0}\|_{L^{\infty}( \Omega )}\), \(a(x) \vert \nabla v_{\varepsilon 0} \vert ^{p(x)}\) is uniformly convergent to \(a(x)|\nabla v_{0}(x)|^{p(x)}\) in \({L^{1}}(\Omega )\).
Definition 5
A function \(v(x,t)\in \mathbf{W}(Q_{T})\bigcap L^{\infty}(0,T;L^{2}(\Omega ))\) is said to be a weak solution of problem (23)–(25) if
and for any function \(\varphi \in C_{0}^{1}({Q_{T}})\),
The initial value (24) is satisfied in the sense as (12).
Then, by a similar method as that in [3], we have the following theorem.
Theorem 6
If \(a(x)\in C^{1}(\overline{\Omega})\) satisfies (6), \(g^{i}(x,t,s)\) and \(d(x,t,s)\) satisfy (13)–(14), there is a weak solution \(v_{\varepsilon}\) of the initial boundary value problem (23)–(24) on \(\Omega \times [0, T^{*})\), where
Firstly, we quote the following lemmas.
Lemma 7
If \(u_{\varepsilon}\in L^{\infty}(0,T;L^{2}(\Omega ))\bigcap \mathbf{W}(Q_{T})\), \(\| u_{\varepsilon t}\|_{\mathbf{W}'(Q_{T})}\leq c\), \(\|\nabla (|u_{\varepsilon}|^{r-1}u_{\varepsilon})\|_{p,Q_{T}}\leq c\), then there is a subsequence of \(\{u_{\varepsilon}\}\) which is relatively compact in \(L^{s}(Q_{T})\) with \(s\in (1,\infty )\). Here, \(r\geq 1\), \(p>1\).
This lemma comes from [19, Sect. 8].
Lemma 8
Suppose that \(p(x)\in C(\overline{\Omega})\) is local Hölder continuous, and denote that
Then the following facts are true.
(i) The space \((L^{p(x)}(\Omega ), \|\cdot \|_{L^{p(x)}(\Omega )} )\), \((W^{1,p(x)}(\Omega ), \|\cdot \|_{W^{1,p(x)}(\Omega )} )\) and \(W^{1,p(x)}_{0}(\Omega )\) are reflexive Banach spaces.
(ii) \(p(x)\)-Hölder’s inequality. Let \(q(x)=\frac{p(x)}{p(x)-1}\). Then the conjugate space of \(L^{p(x)}(\Omega )\) is \(L^{q(x)}(\Omega )\). For any \(u \in L^{p(x)}(\Omega )\) and \(v \in L^{q(x)}(\Omega )\), there holds
(iii)
If \(\Vert u \Vert _{L^{p(x)}(\Omega )} = 1\), then \(\int _{ \Omega} \vert u \vert ^{p(x)} \,dx = 1\).
If \(\Vert u \Vert _{L^{p(x)}(\Omega )} > 1\), then \(\Vert u \Vert ^{p^{-}}_{L^{p(x)}( \Omega )}\leq \int _{\Omega} \vert u \vert ^{p(x)} \,dx\leq \Vert u \Vert ^{p^{+}}_{L^{p(x)}( \Omega )}\).
If \(\Vert u \Vert _{L^{p(x)}(\Omega )} < 1\), then \(\Vert u \Vert ^{p^{+}}_{L^{p(x)}( \Omega )}\leq \int _{\Omega} \vert u \vert ^{p(x)} \,dx\leq \Vert u \Vert ^{p^{-}}_{L^{p(x)}( \Omega )}\).
This lemma can be found in [9, 20] etc.
Secondly, we give the details of the proof of Theorem 2.
Proof of Theorem 2
According to Theorem 6, there is a weak solution \(v_{\varepsilon}\) of the initial boundary value problem (23)–(24), and
where \(T_{0}< T^{*}\) is a given positive constant, \(c(T_{0})\) is a constant that may depend on \(T_{0}\).
By multiplying (23) by \(v_{\varepsilon}\), one has
Since
and \(g(x,t)\in C(\overline{Q_{T_{0}}})\) satisfies (13), then one has
By that \(|d(x,t,s)|\leq d_{0}|s|^{\sigma -1}+h(x,t)\), \(\|h\|_{L^{1}(0,\theta ;L^{\infty}(\Omega ))}\leq c\), one has
Then formulas (28),(29), and (30) imply
accordingly, one has
Now, for any \(u\in C_{0}^{1}(Q_{T_{0}})\), \(\|u\|_{W(Q_{T_{0}})}=1\), one has
Since \(g^{i}(x,t, v_{\varepsilon})\) and \(d(x,t,v_{\varepsilon})\) satisfy (13)(14), by \(\|v_{\varepsilon}\|_{\infty , Q_{T_{0}}}\leq c(T_{0})\), using the Hölder inequality, one obtains
where \(q_{1}=\max_{x\in \overline{\Omega}}\frac{p(x)}{p(x)-1}\) or \(\min_{x\in \overline{\Omega}}\frac{p(x)}{p(x)-1}\) according to (iii) of Lemma 8, and
By the above discussion, one has
Since \(C_{0}^{1}(Q_{T_{0}})\) is dense on \(W(Q_{T_{0}})\), one has
and
If one denotes \(d(x)=\text{dist}(x,\partial \Omega )\) as the distance function from the boundary ∂Ω, sets
for small \(\lambda >0\), and defines \(\varphi \in C_{0}^{1}(\Omega )\), \(0\leq \varphi \leq 1\) such that
then, for any \(\varphi \in C_{0}^{1}(\Omega )\) satisfying (35), \(0\leq \varphi \leq 1\), one has
Once again, since \(a(x)>0\) when \(x\in \Omega \), by (32), one has
and so
If one denotes \(v_{1\varepsilon}=v_{\varepsilon}^{\frac{\alpha (x)}{p(x)}+1}\), then, from (36) and (38), Lemma 7 yields that \(\varphi v_{1\varepsilon}\rightarrow \varphi v_{1}\) a.e. in \(Q_{T}\). By the arbitrariness of φ, one has \(v_{1\varepsilon}=v_{\varepsilon}^{\frac{\alpha (x)}{p(x)}+1} \rightarrow v_{1}\) a.e. in \(Q_{T_{0}}\). By (12), \(v \in L^{\infty}(Q_{T_{0}})\) and
By the weak convergence theory, one has
Thus, \(v_{\varepsilon}\rightarrow v\) a.e. in \(Q_{T_{0}}\), and then
Moreover, since \(a(x)\in C^{1}(\overline{\Omega})\) and \(a(x)|_{x\in \Omega}>0\), one has
Now, similar as the techniques used in [22, 27, 28, 30], if one chooses \((v_{\varepsilon}^{\frac{\alpha (x)}{p(x)}+1}-v^{ \frac{\alpha (x)}{p(x)}+1} )\phi \) as the test function where \(\phi (x)\in C_{0}^{1}(\Omega )\), then there holds
Since
and using (14), it can be deduced that
By the arbitrariness of ϕ and \(|v_{\varepsilon}|^{\alpha (x)} \vert \nabla v_{\varepsilon} \vert ^{p(x)-2} \nabla v_{\varepsilon}\in L^{1} (0,{T_{0}}; L_{\mathrm{loc}}^{ \frac{p(x)}{p(x)-1}}(\Omega ) )\), one has
By this property, one can show that
The details are omitted here.
Thus, there are functions \(v(x,t)\) and \(\zeta _{i}\) satisfying
such that
Moreover, by the important property (44), it is not difficult to show that
for any given function \(\varphi \in C_{0}^{1} ({Q_{T_{0}}})\). Then v is a weak solution of equation (2) with the initial value (3). □
4 The stability
For small \(\eta >0\), let
Certainly, \(h_{\eta}(s)\in C(\mathbb{R})\) and
where \(H_{\eta}(s)=\int _{0}^{s}S_{\eta}(\tau )d\tau \). In this section, \(\lim_{\lambda \rightarrow 0}\) represents \(\limsup_{\lambda \rightarrow 0}\).
Proof of Theorem 4
Let \(\varphi (x,t)=S_{\eta}(u - v)\varphi _{\lambda}(x)\) in (26) and denote \(D_{\lambda}=\{x\in \Omega :\varphi (x)\geq \lambda \}\) for small enough λ. Then
The monotonicity of the \(p(x)\)-Laplacian operator yields
By the definition of \(\varphi _{\lambda}(x)\), there exists
By that
using the Lebesgue dominated convergence theorem, one has
where \(D_{1\lambda}=\{x\in D_{\lambda}: \alpha (x)\neq 0, u(x)\neq v(x)\}\), \(0<\xi \in (v,u)\), \(x\in D_{1\lambda}\) is the mean value.
Since
one has
as \(\eta \rightarrow 0\).
Similarly, one has
Moreover, for the sixth term on the left hand side of (47), by that
one has
and
Let (53) minus (54). Firstly, by the definition of \(\varphi _{\lambda}\),
using the Lebesgue dominated convergence theorem, one has
Secondly, by the partial boundary value condition (20)–(21), one has
Thus, it can be deduced that
Thirdly,
At last, by that \(d(x,t,s)\) is a Lipschitz function, we have
After letting \(\eta \rightarrow 0\) in (47), let \(\lambda \rightarrow 0\). By (49)–(59), we have
the well-known Gronwall inequality yields
□
5 Conclusion and a simple comment
It is well known that, in order to study the well-posedness problem of a polytropic filtration equation
one generally transfers it to the following type:
as [6, 21], where \(\beta =(p-1)(\alpha +p-1)^{-1}\), \(\delta =\beta ^{p-1}\). Then the methods and techniques used in the study of the well-posedness of non-Newtonian fluid equations may be valid. But, since equation (2) contains the nonlinear term \(|v|^{\alpha (x)}\) and the variable exponent \(p(x)\), to transfer equation (2) to another equation similar to equation (61) is impossible. At the same time, compared with our previous works [27, 28, 30], the key assumption \(\alpha (x)\in C_{0}(\Omega )\) in [27, 28, 30] has been weakened to \(\alpha (x)\in C(\Omega )\). Moreover, the classical trace of \(u\in W^{1,1}_{0}(\Omega )\) is generalized to \(u\in W^{1,1}_{\mathrm{loc}}(\Omega )\bigcap L^{\infty}(Q_{T})\), and basing on such a generalization, a reasonable partial boundary value condition is found to match up with equation (2). The methods used to prove the stability of the weak solutions also are valid to prove the corresponding stability theorems related to the degenerate parabolic equation appearing in [2, 22, 27, 28, 30].
At the end of the paper, we give a simple comment on the definition of the trace.
For a linear degenerate elliptic equation [15–17]
it is well known that an appropriate partial boundary condition is
Here, \(\{n_{s}\}\) is the unit inner normal vector of ∂Ω̃ and
It means that if the matrix \(((a^{rs}))\) is positive definite, then condition (62) is just the usual Dirichlet boundary condition. Thus, for a classical parabolic equation
when the matrix \(((a^{ij}))\) is positive definite, then we should impose the following initial-boundary condition:
Naturally, the solutions of equations (60) and (63) are the classical solutions, and conditions (61)(65) are true in the sense of continuity. However, for nonlinear degenerate parabolic equations, the solutions generally are in a weak sense, the boundary value condition cannot be true in the sense of continuity. Moreover, since \(C_{0}^{\infty}(\Omega )\) is dense in a Sobolev space \(W_{0}^{1,p}(\Omega )\), the trace of \(f(x)\in W_{0}^{1,p}(\Omega )\) on the boundary ∂Ω is defined as the limit of a sequence \(f_{\varepsilon}(x)\) as
If the weak solution of a nonlinear equation belongs to a Sobolev space \(W_{0}^{1,p}(\Omega )\), then the Dirichlet boundary value condition is true in the sense of (66). Actually, let \(\operatorname{BV}(\Omega )\) be the BV function space, i.e., \(\vert \frac{\partial f}{\partial x_{i}} \vert \) is a regular measure, and
Then the BV function space is the weakest space such that the trace of \(u\in \operatorname{BV}(\Omega )\) can be defined as (66) (when \(u=0\) on the boundary ∂Ω).
If a weak solution of a nonlinear equation does not belong to a Sobolev space \(W_{0}^{1,p}(\Omega )\), how to impose a suitable boundary condition has been an important and difficult problem for a long time. A typical example is evolutionary p-Laplacian equations of the form
where \(\alpha (x)\in C(\Omega )\), \(\alpha (x)> 0\) in Ω but may be equal to 0 on the boundary ∂Ω. The authors of [23] classified the boundary ∂Ω into three parts: the nondegenerate boundary \(\Sigma _{3}\),
the weakly degenerate boundary
and the strongly degenerate boundary
where \(B_{r}(x)=\{y: d(x,y)< r\}\). Denote by B the closure of the set \(C_{0}^{\infty}(Q_{T})\) with respect to the norm
In [23], the trace of \(u\in \mathbf{B}\), \(u(x,t)=0\) on the boundary is defined as
where \(\operatorname{ess}\sup \lim_{\lambda \rightarrow 0}f(\lambda )=\inf_{ \delta >0}\{\operatorname{ess}\sup \{f(\lambda ): |\lambda |<\delta \}\}\) is the super limit.
Meanwhile, by defining
and
they imposed a partial boundary value condition
where \(\vec{n}=\{n_{i}(x)\}\) is the inner normal vector of ∂Ω.
Along this way, the author of this paper has given another generalization of the trace to the functional space \(L^{\infty} (0,T;W_{\mathrm{loc}}^{1,p}(\Omega ) )\) in [29] recently. However, such a generalization of the trace is based on the convection term \(b_{i}(x)D_{i}u\). Once a nonlinear evolutionary equation is without a convection term, for example, if considering the equation
then the definition of (68) cannot be used. On the other hand, the general trace defined as Definition 3 is valid for equation (70) and any other equations appearing in this paper. So, we think the trace defined as Definition 3 is more natural and novel.
Availability of data and materials
There is not any data in the paper.
References
Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002)
Antontsev, S., Shmarev, S.: Anisotropic parabolic equations with variable nonlinearity. Publ. Mat. 53, 355–399 (2009)
Antontsev, S., Shmarev, S.: Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. 234, 2633–2643 (2010)
Antontsev, S., Shmarev, S.: Parabolic equations with double variable nonlinearities. Math. Comput. Simul. 81, 2018–2032 (2011)
Belmiloudi, A.: Nonlinear optimal control problems of degenerate parabolic equations with logistic time-varying delays of convolution type. Nonlinear Anal. 63, 1126–1152 (2005)
Chen, C., Wang, R.: Global existence and \(L^{\infty}\) estimates of solution for doubly degenerate parabolic equation. Acta Math. Sin., Ser A. 44, 1089–1098 (2001) (in Chinese)
Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 1: Physical Origins and Classical Methods. Springer, Berlin (1990)
Guo, B., Gao, W.: Study of weak solutions for parabolic equations with nonstandard growth conditions. J. Math. Anal. Appl. 374, 374–384 (2011)
Ho, K., Sim, I.: On degenerate \(p(x)\)-Laplacian equations involving critical growth with two parameters. Nonlinear Anal. 132, 95–114 (2016)
Jir̆í, B., Peter, G., Lukás̆, K., Peter, T.: Nonuniqueness and multi-bump solutions in parabolic problems with the p-Laplacian. J. Differ. Equ. 260, 991–1009 (2016)
Lee, K., Petrosyan, A., Vázquez, J.L.: Large time geometric properties of solutions of the evolution p-Laplacian equation. J. Differ. Equ. 229, 389–411 (2006)
Lenhart, S., Yong, J.M.: Optimal control for degenerate parabolic equations with logistic growth. Nonlinear Anal. 25, 681–698 (1995)
Lian, S., Gao, W., Yuan, H., Cao, C.: Existence of solutions to an initial Dirichlet problem of evolutional \(p(x)\)-Laplace equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29, 377–399 (2012)
Ohara, Y.: \(L^{\infty}\) estimates of solutions of some nonlinear degenerate parabolic equations. Nonlinear Anal. 18, 413–426 (1992)
Oleinik, O.A.: A problem of Fichera. Sov. Math. Dokl. 5, 1129–1133 (1964)
Oleinik, O.A.: On linear equations on the second order with a non-negative characteristic form. Math. Sbornik 69, 111–140 (1966)
Oleinik, O.A., Radkevic, E.V.: Second Order Differential Equations with Nonnegative Characteristic Form. Am. Math. Soc., Rhode Island, Plenum Press, New York (1973)
Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Math., vol. 1748. Springer, Berlin (2000)
Simon, J.: Compact sets in the space \(L^{p}(0,t; B)\). Anal. Math. Pura Appl. 146, 65–96 (1987)
Tersenov Alkis, S., Tersenov Aris, S.: Existence of Lipschitz continuous solutions to the Cauchy-Dirichlet problem for anisotropic parabolic equations. J. Funct. Anal. 272, 3965–3986 (2017)
Tsutsumi, M.: On solutions of some doubly nonlinear degenerate parabolic equations with absorption. J. Math. Anal. Appl. 132, 187–212 (1988)
Xu, W.: On a doubly degenerate parabolic equation with a nonlinear damping term. Bound. Value Probl. 2021, 17 (2021)
Yin, J., Wang, C.: Evolutionary weighted p-Laplacian with boundary degeneracy. J. Differ. Equ. 237, 421–445 (2007)
Yuan, J., Lian, Z., Cao, L., Gao, J., Xu, J.: Extinction and positivity for a doubly nonlinear degenerate parabolic equation. Acta Math. Sin. 23, 1751–1756 (2007)
Zhan, H.: Infiltration equation with degeneracy on the boundary. Acta Appl. Math. 153, 147–161 (2018)
Zhan, H.: The uniqueness of the solution to the diffusion equation with a damping term. Appl. Anal. 98, 1333–1346 (2019)
Zhan, H.: The partial boundary value condition for a polytropic filtration equation with variable exponents. Appl. Anal. 100, 1786–1805 (2021)
Zhan, H.: Positive solutions of a nonlinear parabolic equation with double variable exponents. Anal. Math. Phys. https://doi.org/10.1007/s13324-021-00630-0
Zhan, H., Feng, Z.: Optimal partial boundary condition for degenerate parabolic equations. J. Differ. Equ. 184, 156–182 (2021)
Zhan, H., Feng, Z.: Stability of non-Newtonian fluid and electrorheological fluid mixed-type equation. Appl. Anal. https://doi.org/10.1080/00036811.2021.1892082
Zhao, J.: Existence and nonexistence of solutions for \({u_{t}}=\operatorname{div}({|{\nabla u}|^{p-2}}\nabla u) + f(\nabla u,u,x,t)\). J. Math. Anal. Appl. 172, 130–146 (1993)
Acknowledgements
Thank you very much!
Funding
The paper is supported by the Natural Science Foundation of Fujian Province, China.
Author information
Authors and Affiliations
Contributions
I am the only author of the paper. The author read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhan, H. The trace of \(u\in W^{1,1}_{\mathrm{loc}}(\Omega )\bigcap L^{\infty}(\Omega )\) and its applications. Adv Cont Discr Mod 2022, 38 (2022). https://doi.org/10.1186/s13662-022-03710-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-022-03710-y
MSC
- 35K55
- 35K92
- 35K85
Keywords
- Doubly degenerate parabolic equation
- Partial boundary value condition
- Local solution
- Stability