Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids **48**(1), 175–209 (2000). https://doi.org/10.1016/S0022-5096(99)00029-0. ISSN 0022-5096

Article
MathSciNet
MATH
Google Scholar

Javili, A., Morasata, R., Oterkus, E., Oterkus, S.: Peridynamics review. Math. Mech. Solids **24**(11), 3714–3739 (2019)

Article
MathSciNet
MATH
Google Scholar

Coclite, G.M., Dipierro, S., Fanizza, G., Maddalena, F., Romano, M., Valdinoci, E.: Qualitative aspects in nonlocal dynamics. J. Peridyn. Nonlocal Model. (2021). https://doi.org/10.1007/s42102-021-00064-z

Article
Google Scholar

Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. **8**(1), 204–227 (2009)

Article
MathSciNet
MATH
Google Scholar

Butt, S.N., Timothy, J.J., Meschke, G.: Wave dispersion and propagation in state-based peridynamics. Comput. Mech. **60**(5), 725–738 (2017)

Article
MathSciNet
MATH
Google Scholar

Bažant, Z.P., Luo, W., Chau, V.T., Bessa, M.A.: Wave dispersion and basic concepts of peridynamics compared to classical nonlocal damage models. J. Appl. Mech. **83**(11), 111004 (2016)

Article
Google Scholar

Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. **162**(1), 229–244 (2010)

Article
MATH
Google Scholar

Agwai, A., Guven, I., Madenci, E.: Predicting crack propagation with peridynamics: a comparative study. Int. J. Fract. **171**(1), 65–78 (2011)

Article
MATH
Google Scholar

Ni, T., Zaccariotto, M., Zhu, Q.-Z., Galvanetto, U.: Static solution of crack propagation problems in peridynamics. Comput. Methods Appl. Mech. Eng. **346**, 126–151 (2019)

Article
MathSciNet
MATH
Google Scholar

Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. **117**(1), 21–50 (2014)

Article
MathSciNet
MATH
Google Scholar

Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. **162**(1), 219–227 (2010)

Article
MATH
Google Scholar

Behzadinasab, M., Vogler, T.J., Peterson, A.M., Rahman, R., Foster, J.T.: Peridynamics modeling of a shock wave perturbation decay experiment in granular materials with intra-granular fracture. J. Dyn. Behav. Mater. **4**(4), 529–542 (2018)

Article
Google Scholar

Askari, E., Bobaru, F., Lehoucq, R.B., Parks, M.L., Silling, S.A., Weckner, O.: Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser., **125**, 012078 (2008)

Article
Google Scholar

Madenci, E., Oterkus, E.: Peridynamic theory. In: Peridynamic Theory and Its Applications, Springer, Berlin, pp. 19–43 (2014)

Chapter
MATH
Google Scholar

Macek, R.W., Silling, S.A.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. **43**(15), 1169–1178 (2007)

Article
MathSciNet
Google Scholar

Sarego, G., Le, Q.V., Bobaru, F., Zaccariotto, M., Galvanetto, U.: Linearized state-based peridynamics for 2-d problems. Int. J. Numer. Methods Eng. **108**(10), 1174–1197 (2016)

Article
MathSciNet
Google Scholar

Zaccariotto, M., Luongo, F., Galvanetto, U., et al.: Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut. J. **119**(1216), 677–700 (2015)

Article
Google Scholar

Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. **88**(2), 151–184 (2007)

Article
MathSciNet
MATH
Google Scholar

Silling, S.A., Parks, M.L., Kamm, J.R., Weckner, O., Rassaian, M.: Modeling shockwaves and impact phenomena with Eulerian peridynamics. Int. J. Impact Eng. **107**, 47–57 (2017)

Article
Google Scholar

Behzadinasab, M., Foster, J.T.: A semi-Lagrangian constitutive correspondence framework for peridynamics. J. Mech. Phys. Solids **137**, 103862 (2020)

Article
MathSciNet
MATH
Google Scholar

Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., Zhu, Q.-Z., Schrefler, B.A.: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput. Methods Appl. Mech. Eng. **366**, 113101 (2020)

Article
MathSciNet
MATH
Google Scholar

Zhou, X.-P., Wang, Y.-T., Shou, Y.-D.: Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks. Int. J. Rock Mech. Min. Sci. **132**, 104383 (2020)

Article
Google Scholar

Song, X., Khalili, N.: A peridynamics model for strain localization analysis of geomaterials. Int. J. Numer. Anal. Methods Geomech. **43**(1), 77–96 (2019)

Article
Google Scholar

Panchadhara, R., Gordon, P.A., Parks, M.L.: Modeling propellant-based stimulation of a borehole with peridynamics. Int. J. Rock Mech. Min. Sci. **93**, 330–343 (2017)

Article
Google Scholar

Zhou, X.-P., Wang, Y.-T.: State-of-the-art review on the progressive failure characteristics of geomaterials in peridynamic theory. J. Eng. Mech. **147**(1), 03120001 (2021)

Google Scholar

Lejeune, E., Linder, C.: Modeling tumor growth with peridynamics. Biomech. Model. Mechanobiol. **16**(4), 1141–1157 (2017)

Article
Google Scholar

Taylor, M., Gözen, I., Patel, S., Jesorka, A., Bertoldi, K.: Peridynamic modeling of ruptures in biomembranes. PLoS ONE **11**(11), e0165947 (2016)

Article
Google Scholar

Bobaru, F., Duangpanya, M.: The peridynamic formulation for transient heat conduction. Int. J. Heat Mass Transf. **53**(19–20), 4047–4059 (2010)

Article
MATH
Google Scholar

Bobaru, F., Duangpanya, M.: A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities. J. Comput. Phys. **231**(7), 2764–2785 (2012)

Article
MathSciNet
MATH
Google Scholar

Oterkus, S., Madenci, E., Agwai, A.: Peridynamic thermal diffusion. J. Comput. Phys. **265**, 71–96 (2014)

Article
MathSciNet
MATH
Google Scholar

Foster, J.T.: Nonlocal and fractional order methods for near-wall turbulence, large-eddy simulation, and fluid-structure interaction. Technical report, University of Texas at Austin Austin United States (2019)

Zhao, J., Chen, Z., Mehrmashhadi, J., Bobaru, F.: Construction of a peridynamic model for transient advection-diffusion problems. Int. J. Heat Mass Transf. **126**, 1253–1266 (2018)

Article
Google Scholar

Buryachenko, V.A.: Generalized effective fields method in peridynamic micromechanics of random structure composites. Int. J. Solids Struct. **202**, 765–786 (2020)

Article
Google Scholar

Hu, Y.L., Madenci, E.: Peridynamics for fatigue life and residual strength prediction of composite laminates. Compos. Struct. **160**, 169–184 (2017)

Article
Google Scholar

Oterkus, E., Madenci, E.: Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct. **7**(1), 45–84 (2012)

Article
Google Scholar

Zhao, J., Jafarzadeh, S., Rahmani, M., Chen, Z., Kim, Y.-R., Bobaru, F.: A peridynamic model for galvanic corrosion and fracture. Electrochim. Acta **391**, 138968 (2021)

Article
Google Scholar

Wildman, R., Gazonas, G.: A dynamic electro-thermo-mechanical model of dielectric breakdown in solids using peridynamics. J. Mech. Mater. Struct. **10**(5), 613–630 (2015)

Article
MathSciNet
Google Scholar

Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvements and applications. Comput. Methods Appl. Mech. Eng. **139**(1–4), 375–408 (1996)

Article
MathSciNet
MATH
Google Scholar

Ren, X.-H., Yu, S.-Y., Wang, H.-J., Zhang, J.-X., Sun, Z.-H.: An improved form of SPH method and its numerical simulation study on the rock crack propagation containing fissures and holes. Arab. J. Sci. Eng. **46**(11), 11303–11317 (2021)

Article
Google Scholar

Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. **46**(1), 131–150 (1999)

Article
MathSciNet
MATH
Google Scholar

Rocha, A.V.M., Akhavan-Safar, A., Carbas, R., Marques, E.A.S., Goyal, R., El-zein, M., Da Silva, L.F.M.: Numerical analysis of mixed-mode fatigue crack growth of adhesive joints using CZM. Theor. Appl. Fract. Mech. **106**, 102493 (2020)

Article
Google Scholar

Shojaei, A., Hermann, A., Cyron, C.J., Seleson, P., Silling, S.A.: A hybrid meshfree discretization to improve the numerical performance of peridynamic models. Comput. Methods Appl. Mech. Eng. **391**, 114544 (2022)

Article
MathSciNet
MATH
Google Scholar

Lopez, L., Pellegrino, S.F.: A space-time discretization of a nonlinear peridynamic model on a 2D lamina. Comput. Math. Appl. **116**, 161–175 (2022)

Article
MathSciNet
MATH
Google Scholar

Coclite, G.M., Fanizzi, A., Lopez, L., Maddalena, F., Pellegrino, S.F.: Numerical methods for the nonlocal wave equation of the peridynamics. Appl. Numer. Math. **155**, 119–139 (2020). https://doi.org/10.1016/j.apnum.2018.11.007. ISSN 0168-9274

Article
MathSciNet
MATH
Google Scholar

Jafarzadeh, S., Larios, A., Bobaru, F.: Efficient solutions for nonlocal diffusion problems via boundary-adapted spectral methods. J. Peridyn. Nonlocal Model. **2**(1), 85–110 (2020)

Article
MathSciNet
Google Scholar

Lopez, L., Pellegrino, S.F.: A spectral method with volume penalization for a nonlinear peridynamic model. Int. J. Numer. Methods Eng. **122**(3), 707–725 (2021). https://doi.org/10.1002/nme.6555

Article
MathSciNet
Google Scholar

Lopez, L., Pellegrino, S.F.: A nonperiodic Chebyshev spectral method avoiding penalization techniques for a class of nonlinear peridynamic models. Int. J. Numer. Methods Eng. **123**(20), 4859–4876 (2022)

Article
Google Scholar

Liang, X., Wang, L., Xu, J., Wang, J.: The boundary element method of peridynamics. Int. J. Numer. Methods Eng. **122**(20), 5558–5593 (2021)

Article
MathSciNet
Google Scholar

Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. **83**(17–18), 1526–1535 (2005)

Article
Google Scholar

Emmrich, E., Weckner, O.: Analysis and numerical approximation of an integro-differential equation modeling non-local effects in linear elasticity. Math. Mech. Solids **12**(4), 363–384 (2007)

Article
MathSciNet
MATH
Google Scholar

Seleson, P., Littlewood, D.J.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. **71**(11), 2432–2448 (2016)

Article
MathSciNet
MATH
Google Scholar

Bessa, M.A., Foster, J.T., Belytschko, T., Liu, W.K.: A meshfree unification: reproducing kernel peridynamics. Comput. Mech. **53**(6), 1251–1264 (2014)

Article
MathSciNet
MATH
Google Scholar

Bobaru, F., Yang, M., Alves, L.F., Silling, S.A., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. **77**(6), 852–877 (2009)

Article
MATH
Google Scholar

Le, Q.V., Bobaru, F.: Surface corrections for peridynamic models in elasticity and fracture. Comput. Mech. **61**(4), 499–518 (2018)

Article
MathSciNet
MATH
Google Scholar

Bobaru, F., Ha, Y.D.: Adaptive refinement and multiscale modeling in 2D peridynamics. Int. J. Multiscale Comput. Eng. **9**(6), 635–659 (2011)

Article
Google Scholar

Dipasquale, D., Zaccariotto, M., Galvanetto, U.: Crack propagation with adaptive grid refinement in 2D peridynamics. Int. J. Fract. **190**(1), 1–22 (2014)

Article
Google Scholar

Ren, H., Zhuang, X., Cai, Y., Rabczuk, T.: Dual-horizon peridynamics. Int. J. Numer. Methods Eng. **108**(12), 1451–1476 (2016)

Article
MathSciNet
Google Scholar

Gu, X., Zhang, Q., Xia, X.: Voronoi-based peridynamics and cracking analysis with adaptive refinement. Int. J. Numer. Methods Eng. **112**(13), 2087–2109 (2017)

Article
MathSciNet
Google Scholar

Shojaei, A., Mossaiby, F., Zaccariotto, M., Galvanetto, U.: An adaptive multi-grid peridynamic method for dynamic fracture analysis. Int. J. Mech. Sci. **144**, 600–617 (2018)

Article
Google Scholar

Henke, S.F., Shanbhag, S.: Mesh sensitivity in peridynamic simulations. Comput. Phys. Commun. **185**(1), 181–193 (2014)

Article
MathSciNet
MATH
Google Scholar

Kilic, B., Madenci, E.: Coupling of peridynamic theory and the finite element method. J. Mech. Mater. Struct. **5**(5), 707–733 (2010)

Article
Google Scholar

Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. **200**(9–12), 1237–1250 (2011)

Article
MathSciNet
MATH
Google Scholar

Liu, Z., Cheng, A., Wang, H.: An hp-Galerkin method with fast solution for linear peridynamic models in one dimension. Comput. Math. Appl. **73**(7), 1546–1565 (2017)

Article
MathSciNet
MATH
Google Scholar

Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. **231**(23), 7730–7738 (2012)

Article
MathSciNet
MATH
Google Scholar

Huang, X., Bie, Z., Wang, L., Jin, Y., Liu, X., Su, G., He, X.: Finite element method of bond-based peridynamics and its ABAQUS implementation. Eng. Fract. Mech. **206**, 408–426 (2019)

Article
Google Scholar

Zaccariotto, M., Tomasi, D., Galvanetto, U.: An enhanced coupling of PD grids to FE meshes. Mech. Res. Commun. **84**, 125–135 (2017)

Article
Google Scholar

Zaccariotto, M., Mudric, T., Tomasi, D., Shojaei, A., Galvanetto, U.: Coupling of FEM meshes with peridynamic grids. Comput. Methods Appl. Mech. Eng. **330**, 471–497 (2018)

Article
MathSciNet
MATH
Google Scholar

Galvanetto, U., Mudric, T., Shojaei, A., Zaccariotto, M.: An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems. Mech. Res. Commun. **76**, 41–47 (2016)

Article
Google Scholar

Zhang, Y., Madenci, E.: A coupled peridynamic and finite element approach in ANSYS framework for fatigue life prediction based on the kinetic theory of fracture. J. Peridyn. Nonlocal Model. **4**(1), 51–87 (2022)

Article
MathSciNet
Google Scholar

Zheng, G., Shen, G., Xia, Y., Hu, P.: A bond-based peridynamic model considering effects of particle rotation and shear influence coefficient. Int. J. Numer. Methods Eng. **121**(1), 93–109 (2020)

Article
MathSciNet
Google Scholar

Han, D., Zhang, Y., Wang, Q., Lu, W., Jia, B.: The review of the bond-based peridynamics modeling. J. Micromech. Mol. Phys. **4**(1), 1830001 (2019)

Article
Google Scholar

Silling, S.A., Bobaru, F.: Peridynamic modeling of membranes and fibers. Int. J. Non-Linear Mech. **40**(2–3), 395–409 (2005)

Article
MATH
Google Scholar

Chen, Z., Ju, J.W., Su, G., Huang, X., Li, S., Zhai, L.: Influence of micro-modulus functions on peridynamics simulation of crack propagation and branching in brittle materials. Eng. Fract. Mech. **216**, 106498 (2019)

Article
Google Scholar

Kilic, B.: Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. The University of Arizona (2008)

Chen, Z., Bakenhus, D., Bobaru, F.: A constructive peridynamic kernel for elasticity. Comput. Methods Appl. Mech. Eng. **311**, 356–373 (2016)

Article
MathSciNet
MATH
Google Scholar

Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. **304**, 408–451 (2016)

Article
MathSciNet
MATH
Google Scholar

Huang, D., Lu, G., Wang, C., Qiao, P.: An extended peridynamic approach for deformation and fracture analysis. Eng. Fract. Mech. **141**, 196–211 (2015)

Article
Google Scholar

Coclite, G.M., Dipierro, S., Maddalena, F., Valdinoci, E.: Wellposedness of a nonlinear peridynamic model. Nonlinearity **32**(1), 1–21 (2018). https://doi.org/10.1088/1361-6544/aae71b. ISSN 1361-6544

Article
MathSciNet
MATH
Google Scholar

Coclite, G.M., Dipierro, S., Fanizza, G., Maddalena, F., Valdinoci, E.: Dispersive effects in a peridynamic model. arXiv preprint, arXiv:2105.01558 (2021)

Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

Book
Google Scholar

Silling, S.A.: Solitary waves in a peridynamic elastic solid. J. Mech. Phys. Solids **96**, 121–132 (2016)

Article
MathSciNet
MATH
Google Scholar

Pego, R.L., Van, T.-S.: Existence of solitary waves in one dimensional peridynamics. J. Elast. **136**(2), 207–236 (2019)

Article
MathSciNet
MATH
Google Scholar

Emmrich, E., Puhst, D.: A short note on modeling damage in peridynamics. J. Elast. **123**(2), 245–252 (2016)

Article
MathSciNet
MATH
Google Scholar

Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. **132**(2), 197–218 (2018). https://doi.org/10.1007/s10659-017-9661-2. ISSN 0374-3535

Article
MathSciNet
MATH
Google Scholar

Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Ann. Phys. **241**(11), 430–432 (1878)

Article
Google Scholar

Volterra, V.: Sur les équations intégro-différentielles et leurs applications. Acta Math. **35**, 295 (1912)

Article
MathSciNet
MATH
Google Scholar

Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. **33**(2), 239 (1961)

Article
MathSciNet
MATH
Google Scholar

Astarita, G., Marrucci, G., Joseph, D.D.: Principles of non-Newtonian fluid mechanics. J. Appl. Mech. **42**(3), 750 (1975)

Article
Google Scholar