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Abstract
A harvested predator-prey system with Holling type III functional response is
considered. By applying qualitative theory of differential equations, we show the
instability and global stability properties of the equilibria and the existence and
uniqueness of limit cycles for the model. The possibility of existence of a bionomic
equilibrium is discussed. The optimal harvesting policy is studied from the view point
of control theory. Numerical simulations are carried out to illustrate the validity of our
results.
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1 Introduction
The dynamical relationship between predators and their preys is one of the dominant
subjects in ecology and mathematical ecology due to its universal importance, see [].
Harvesting generally has a strong impact on the population dynamics of a harvested

species. The severity of this impact depends on the harvesting strategy implemented
which in turnmay range from rapid depletion to complete preservation of the population.
Problems related to the exploitation of multispecies systems are interesting and difficult
both theoretically and practically. The problem of inter-specific competition between two
species which obey the law of logistic growth was considered by Gause []. But he did not
study the effect of harvesting. Clark [] considered harvesting of a single species in a two-
species ecologically competing population model. Modifying Clark’s model, Chaudhuri
[, ] studied combined harvesting and considered the perspectives of bioeconomics and
dynamic optimization of a two-species fishery. Matsuda [] showed that the total yield
and lowest stock levels of harvested resources increase if fishers may focus their effort on
a temporally abundant stock. Matsuda [] showed that the maximum sustainable yield
from the multispecies systems does not guarantee persistence of all resources. Dai [] an-
alyzed the global behavior of a predator-prey system with some functional response in
the presence of constant harvesting. Xiao [] studied Bogdanov-Takens bifurcations in a
predator-prey system with constant rate harvesting.
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Kar [] studied global dynamics and controllability of a harvested prey-predator system
with Holling type III functional response:

⎧⎨
⎩

dx
dτ

= x(α – x) – βxy
+x – Ex,

dy
dτ

= βxy
+x – γ y – Ey.

(.)

The aim of this paper is to consider the instability and global stability properties of the
equilibria and the optimal harvesting policy, the existence and uniqueness of limit cycles
of a harvested predator-prey system with Holling type III functional response:

⎧⎨
⎩

dx
dt = x(α – x) – βxy

+x – Ex,
dy
dt =

βxy
+x – ry – Ey,

(.)

where x, y denote prey and predator population respectively at any time t; α, β , β, r, E

and E are positive constants. Here α, β , β and r are the same with system (.), E and
E denote the harvesting efforts for the prey and predator respectively, the term βx/( +
x) denotes the functional response of the predator, which is known as Holling type III
response function [].
This work ismotivated by the paper by Kar andMatsuda. They studied the above system

(.) and showed the local stability of equilibria and uniqueness of limit cycle, but they did
not discuss the global stability of the positive equilibrium, the possibility of existence of a
bionomic equilibrium, and the optimal harvesting policy. This paper gives the complete
qualitative analysis for model (.) and the results improve and extend the corresponding
results of the above system (.).
This paper is organized as follows. Basic properties such as the boundedness, existence,

stability and instability of the equilibria of the model are given in Section . In Section ,
sufficient conditions for the global stability of the unique positive equilibrium are ob-
tained. In Section , we derive the existence and uniqueness of limit cycle. In Section , we
study a bionomic equilibrium. In Section , we study optimal harvest policy. In Section ,
we give numerical stimulations of system (.).

2 Basic properties of themodel
Let R+

 = {(x, y) | x≥ , y ≥ }. For practical biological meaning, we simply study system
(.) in R+

 .

Lemma. All the solutions (x(t), y(t)) of system (.)with the initial values x() > , y() >
 are uniformly bounded.

Proof Let us consider the function

w = x +
β

β
y.

Differentiating w with respect to τ and using (.), we get

dw
dτ

=
dx
dτ

+
β

β

dy
dτ

= x(α – x) – Ex –
βr
β

y –
βr
β

Ey.
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Now we have

dw
dt

+ rw = x(α – x) + rx–Ex –
βr
β

Ey≤ (α + r)x– (+E)x ≤ (α + r)

( + E)
= L (say).

Applying the theory of differential inequality [], we obtain

 < w(x, y) <
L
r
(
 – e–rt

)
+w

(
x(), y()

)
e–rt ,

which, upon letting t → ∞, yields  < w < (L/r). So, we have that all the solutions of system
(.) that start in R+

 are confined to the region B, where

B =
{
(x, y) ∈ R+

 : w =
L
r
+ ε for any ε > 

}
.

This completes the proof. �

Nowwe find all the equilibria admitted by the system and study their stability properties.
The equilibria of (.) are the intersection points of the prey isocline on which ẋ =  and
the predator isocline on which ẏ = . Obviously, P(, ) is the trivial equilibrium and
P( α

+E
, ) is the only axial equilibrium of system (.). The third and the most interesting

equilibrium point is P(x∗, y∗), where x∗ and y∗ are given by

x∗ =

√
r + E

β – r – E
, y∗ =

[α – ( + E)x∗]( + x∗)
βx∗ . (.)

Thus the existence condition for the positive interior equilibrium point P depends upon
the restrictions

β > r + E (.)

and

 < x∗ <
α

 + E
, (.)

namely

α > ( + E)

√
r + E

β – r – E
. (.)

We assume that the system parameters are such that they satisfy conditions (.) and
(.). From the expressions for x∗ and y∗, we observe that x∗ increases with E and y∗

decreases with E. This is natural because an increase in E decreases the predator popu-
lation and hence enhances the survival rate of the prey; on the other hand, an increase in
E results in the loss of food for the predator.

Lemma . () P(, ) is a saddle point;
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() If E > βα

(+E)+α
– r holds, P( α

+E
, ) is a stable focus or a stable node. If E <

βα

(+E)+α
– r holds, then P( α

+E
, ) is a saddle point; P( α

+E
, ) is a stable node point for

E = βα

(+E)+α
– r; P(x∗, y∗) is a stable focus or a stable node for α < (+E)x∗

x∗– ; P(x∗, y∗) is

an unstable focus or an unstable node for α > (+E)x∗
x∗– ; P(x∗, y∗) is a center or a focus for

α = (+E)x∗
x∗– .

Proof The Jacobian matrix of system (.) is given by

J(x, y) =

(
α – ( + E)x – βxy

(+x) – βx
+x

βxy
(+x)

βx
+x – r – E

)
.

() Since det J(, ) = –α(r + E) < , we derive that P(, ) is a saddle point;
() The Jacobian matrix of system (.) for the equilibrium point P( α

+E
, ) is given by

J
(

α

 + E
, 

)
=

⎛
⎝–α – βα

(+E)+α

 βα

(+E)+α
– r – E

⎞
⎠ .

If βx
+x –r–E <  holds, namely E > βα

(+E)+α
–r, then det J( α

+E
, ) > , p = – tr J( α

+E
, ) >

, we can derive that P( α
+E

, ) is a stable focus or a stable node. If βx
+x – r – E >  holds,

namely E < βα

(+E)+α
– r, then det J( α

+E
, ) < , we can derive that P( α

+E
, ) is a sad-

dle point. If E = βα

(+E)+α
– r, then det J( α

+E
, ) = , P( α

+E
, ) is a higher-order singular

point. At this time, point P( α
+E

, ) and point P(x∗, y∗) are the same point. So, we can
derive that P( α

+E
, ) is a stable node point.

The Jacobian matrix of system (.) for the equilibrium point P(x∗, y∗) is given by

J
(
x∗, y∗) =

(
α – ( + E)x∗ – βx∗y∗

(+x∗) – βx∗
+x∗

βx∗y∗
(+x∗) 

)
.

As det J(x∗, y∗) = ββx∗y∗
(+x∗) ,

P = – tr J
(
x∗, y∗) = –

[
α – ( + E)x∗ –

βx∗y∗

( + x∗)

]
= –

–α + αx∗ – ( + E)x∗

 + x∗ ,

we know that if –α + αx∗ – ( + E)x∗ > , namely α < (+E)x∗
x∗– , we derive that P > ,

P(x∗, y∗) is a stable focus or a stable node. If –α + αx∗ – ( + E)x∗ < , namely α >
(+E)x∗

x∗– , we derive that P < , P(x∗, y∗) is an unstable focus or an unstable node. If –α +
αx∗ – ( + E)x∗ = , namely α = (+E)x∗

x∗– , P(x∗, y∗) is a center or a focus. The proof is
completed. �

Wemake the following transformation:

dt =
[
 + x

]
dτ .
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Substituting this into system (.), then replacing τ with t gives
⎧⎨
⎩

dx
dt = x[α – ( + E)x]( + x) – βxy,
dy
dt = y[(β – r – E)x – r – E].

(.)

From Lemma . we know that if P = ––α+αx∗–(+E)x∗
+x∗ =  holds, namely α = (+E)x∗

x∗– ,
P(x∗, y∗) is a center focus. We can make further conclusions as follows.

Lemma .
() If C >  holds, namely α = (+E)x∗

x∗– > [Aβ+(+E)]x∗
 , P(x∗, y∗) is a stable fine focus

with order one;
() If C <  holds, namely α = (+E)x∗

x∗– < [Aβ+(+E)]x∗
 , P(x∗, y∗) is an unstable fine

focus with order one,
where C = �(β–r–E)y∗[–Aβx∗–(+E)x∗+α]

Aβx∗ .

Proof First use the coordinate translation, that is, translate the origin of coordinates into
the point P(x∗, y∗). Then we make the following substitutions for model (.):

x = x – x∗, y = y – y∗, dt = βx∗ dt.

Replacing x, y, t with x, y, t respectively, we have

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = –y – 

x∗ xy + 
βx∗ [αx∗ – ( + E) – ( + E)x∗ – βy∗]x

– 
x∗ xy + 

βx∗ [α – ( + E)x∗]x – +E
βx∗ x,

dy
dt =

(β–r–E)y∗
βx∗ x + (β–r–E)y∗

βx∗ x + (β–r–E)
βx∗ xy + β–r–E

βx∗ xy.

(.)

We denote A =
√

(β–r–E)y∗
βx∗ >  and make the following transformations: u = x, v = 

Ay,
dτ = –Adt. Replacing u, v, τ with x, y, t, respectively, gives

⎧⎨
⎩

dx
dt = y +Dxy – Ex +Nxy – Fx + Lx = y +

∑
j= Pj(x, y)≡ P̂(x, y),

dy
dt = –x –Gx –Hxy – Ixy = –x +

∑
j=Qj(x, y) ≡ Q̂(x, y),

(.)

where D = 
x∗ , E = 

Aβx∗ [αx∗ – ( + E) – ( + E)x∗ – βy∗], N = 
x∗ , F = 

Aβx∗ [α – ( +
E)x∗], L = +E

Aβx∗ , G = (β–r–E)y∗
Aβx∗ , H = (β–r–E)

Aβx∗ , I = β–r–E
Aβx∗ .

It is obvious that D = N , and HD = I . Then we make use of the Poincare method to
calculate the focus value.
Construct a form progression F(x, y) = x + y +

∑∞
k= Fk(x, y), where Fk(x, y) is the kth

homogeneous multinomial with x and y. Considering dF
dt |(.) = ∂F

∂t · P̂(x, y) + ∂F
∂t Q̂(x, y) = ,

we can obtain that three multinomials and four multinomials of F(x, y) are equal to zero
separately. Noting that xP(x, y) + yQ(x, y) = –H(x, y), we can obtain

H = Ex + (G – D)xy + Hxy.

Let

F(x, y) = ax + axy + axy + ay,

http://www.advancesindifferenceequations.com/content/2013/1/249
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then we can obtain the following form:

y
∂F
∂x

– x
∂F
∂y

= y
(
ax + axy + ay

)
– x

(
ax + axy + ay

)
= –ax + (a – a)xy + (a – a)xy + ay.

From y ∂F
∂x – x ∂F

∂y =H, we can derive that

–ax + (a – a)xy + (a – a)xy + ay = Ex + (G – D)xy + Hxy.

By the comparison method of correlates, we can obtain that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a = G–D
 ,

a = –E,

a = ,

a = –H+E
 ,

then F(x, y) = G–D
 x – Exy – H+E

 y and

–H = xP + yQ +
∂F
∂x

· P +
∂F
∂y

·Q

= (EG + D – G – F)x + (HG + EG – I – DE)xy

+
(
N + GD + E + EH – D)xy + (

H + EH
)
xy.

Let x = r cos θ , y = r sin θ , then we can derive that

C =
∫ �


H(cos θ , sin θ )dθ =

�(β – r – E)y∗[–Aβx∗ – ( + E)x∗ + α]
Aβx∗ .

Hence the point O(, ) of system (.) is an unstable fine focus with order one when
C > , namely α = (+E)x∗

x∗– > [Aβ+(+E)]x∗
 . But considering the time change dτ = –Adt,

P(x∗, y∗) is a stable fine focus with order one. And P(x∗, y∗) is an unstable fine focus with
order one when C < , namely α = (+E)x∗

x∗– < [Aβ+(+E)]x∗
 . The proof is completed. �

3 Global stability of the unique positive equilibrium
Theorem. Suppose that α < 

√
(+E) holds, there is no close orbit around system (.)

in the first quadrant. And if x∗ < 
√
 holds, the positive equilibrium P(x∗, y∗) of system

(.) is globally asymptotically stable for x∗( + E) < α <min{ (+E)x∗
x∗– , 

√
( + E)}.

Proof By Lemmas . and ., the solution (x(t), y(t)) of system (.) with the initial values
x() > , y() >  is unanimous bounded for all t ≥ , and the point P(x∗, y∗) is globally
asymptotically stable under conditions of Theorem .. We should prove that system (.)
does not have limit cycle if α < 

√
( + E) holds.

Define a Dulac function B(x, y) = x–y–, then along system (.), we have

W =
∂(BP)

∂x
+

∂(BQ)
∂y

=
x

y
[
αx – α – ( + E)x

]
.

http://www.advancesindifferenceequations.com/content/2013/1/249


Jiang and Wang Advances in Difference Equations 2013, 2013:249 Page 7 of 17
http://www.advancesindifferenceequations.com/content/2013/1/249

Let f (x) = αx – α – ( + E)x, then f ′(x) = αx – ( + E)x, we can derive that the
roots of f ′(x) =  are x = , and x = α

(+E)
.

As f () = –α < , we know that f (x) reaches the maximum value –α + α

(+E)
at x.

Hence if α < 
√
( + E) holds,W <  for all x≥ , then system (.) does not have any

close orbit. Then we can obtain that if x∗ < 
√
 holds, the positive equilibrium P(x∗, y∗)

exists and is globally asymptotically stable for x∗( + E) < α <min{ (+E)x∗
x∗– , 

√
( + E)}.

This completes the proof. �

4 Existence and uniqueness of limit cycle
Theorem . Suppose that α > (+E)x∗

x∗– , then system (.) has at least one limit cycle in
the first quadrant.

Proof We see that dx
dt |x= α

+E
= – βxy

+x <  with y > , so we have x = α
+E

is an untangent line
of the system. And the positive trajectory of system (.) goes through from its right side
to its left side when it meets the line x = α

+E
.

Construct a Dulac function w(x, y) = y + β
β
x – l, computing w =  along the trajectories

of system (.), we have

dw
dt

=
dy
dt

+
β

β

dx
dt

= –(r + E)y +
βx
β

[
α – ( + E)x

]

=
βx
β

[
α – ( + E)x

]
– (r + E)

(
l –

β

β
x
)
.

If l >  is large enough, we have dw
dt < , where  < x < α

+E
. So, the line y + β

β
x = l goes

through upper to lower part in the region {(x, y) |  < x < α
+E

,  < y < l – β
β

}. For system
(.), construct a Bendixson ring ̂OABC including P(x∗, y∗). Define OA, AB, BC as the
lengths of line L = y = , L = x– α

+E
= , L = y + β

β
x– l separately. The outer boundary

line of Bendixson ring ̂OABC is J . Due to Lemma ., we know that there exists a unique
unstable singular point P(x∗, y∗) in the Bendixson ring ̂OABC. By the Poincare-Bendixson
theorem, system (.) has at least one limit cycle in the first quadrant. This completes the
proof. �

Note α = (+E)x∗
x∗– = α∗. From the proof of Lemma ., we know that

d
dt

(trace JP )α=α∗ =  –


 + x∗ =
r + E

β
�= . (.)

Hence by the Hopf bifurcation theorem [], the system enters into a Hopf-type small
amplitude periodic solution at the parametric value α = α∗ near the positive interior equi-
librium point P.
Now we consider the problem of uniqueness of the limit cycle arising from Hopf bi-

furcation at the parametric value α = α∗. There are different techniques for studying the
uniqueness of limit cycles. Kuang [] gave the following result on the uniqueness of limit
cycles for the system:

dx
dt

= xρ(x) – yφ(x), x() > ,

dy
dt

= y
(
–v + ϕ(x)

)
, y() > ,

(.)

http://www.advancesindifferenceequations.com/content/2013/1/249
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where v > ; all the functions are sufficiently smooth on [,∞] and satisfy

φ() = , ϕ() =  and φ′(x) > , ϕ′(x) >  for x > . (.)

Theorem . Assume that (.) holds. If there exist constants ξ and η with  < ξ < η such
that

φ(ξ ) = v and (x – η)ρ(x) <  for x �= η; (.)

d
dx

(
xρ(x)
φ(x)

)
x=ξ

> ; (.)

d
dx

(xρ ′(x) + ρ(x) – xρ(x) φ′(x)
φ(x)

–v + ϕ(x)

)
≤  for x �= ξ . (.)

Then system (.) has exactly one limit cycle which is globally asymptotically stable [].

Theorem . If conditions (.), (.) and α > (+E)x∗
x∗– > [Aβ+(+E)]x∗

 hold, then system
(.) has a unique limit cycle.

Proof We can rewrite system (.) as system (.) with ρ(x) = α – ( + E)x,

φ(x) =
βx

 + x
and ϕ(x) =

βx

 + x
= eφ(x).

It is clear that φ(x) and ϕ(x) satisfy assumption (.). Let ξ = x∗ =
√

r+E
β–r–E

, and η = α
+E

.
Then by (.) we see that ξ < α

+E
. Assumption (.) is satisfied. In fact, we have ϕ(ξ ) =

r + E; ρ(x) >  if  < x < α
+E

and ρ(x) <  if x > α
+E

. For the sake of convenience, let

S(x) = xρ ′(x) + ρ(x) – xρ(x)
φ′

φ

and

T(x) = –
S(x)

ϕ(x) – r – E
for x �= x∗.

Since

d
dx

(
xρ(x)
φ(x)

)
=
S(x)
φ(x)

,

we get d
dx (

xρ(x)
φ(x) )x=x∗ = –α+αx∗–(+E)x∗

βx∗ > . Hence, assumption (.) is satisfied.
Now

T(x) = –
S(x)

ϕ(x) – r – E
= –


(β – r – E)x – r – E

[
–α + αx – ( + E)x

]
.

Differentiating this equality and using the fact that r + E = (β – r – E)x∗, we obtain

T ′(x) =
(β – r – E)

[(β – r – E)x – r – E]
[
( + E)x – ( + E)x∗x + αx∗x – αx

]
.

http://www.advancesindifferenceequations.com/content/2013/1/249
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Taking α > (+E)x∗
x∗– into account, we have

α
(
x∗ – 

)
> 

( + E)x∗

x∗ – 
(
x∗ – 

)
= ( + E)x∗.

Hence

T ′(x) >
(β – r – E)

[(β – r – E)x – r – E]
[
( + E)xU(x)

]
,

where U(x) = x – (x∗)x + x∗.
Since U ′(x) = (x – x∗), U(x) has a minimum value at x = x∗.
Therefore, T ′(x) ≥ . Thus assumption (.) is satisfied.
Thus we observe that whenever the nontrivial equilibrium of system (.) is unstable,

then all the solutions of the system, initiating in the interior of the positive quadrant of
the (x, y) plane, except at the equilibrium, approach a unique limit cycle eventually. But
by Lemma ., we know that when α = (+E)x∗

x∗– > [Aβ+(+E)]x∗
 , P(x∗, y∗) is a stable fine

focus with order one. So, when and only when α > (+E)x∗
x∗– > [Aβ+(+E)]x∗

 , system (.)
has a unique limit cycle. The proof is completed. �

Remark  System (.) has no limit cycle whenever the harvesting efforts E and E satisfy
the condition α < (+E)x∗

x∗– . So, local stability of the equilibriumpoint (x∗, y∗) implies global
asymptotic stability. From the point of view of ecological managers, it may be desirable to
have a unique positive equilibrium which is globally asymptotically stable in order to plan
harvesting and maintain sustainable development of an ecosystem.

Remark  If we wish, we can prevent the cycles in the system considered. Let (Ê, Ê) be
the harvesting efforts for which system (.) admits a limit cycle. Then these efforts must
satisfy the condition α > (+E)x∗

x∗– > [Aβ+(+E)]x∗
 . Now let (x̃, ỹ) be the required limiting

value for the solutions of the system. Let (E∗
 ,E∗

) be such that (x∗(E∗
 ), y∗(E∗

)) = (x̃, ỹ). Hence
(x̃, ỹ) will be asymptotically stable only if the harvesting efforts (E∗

 ,E∗
) satisfy the condition

α < (+E)x∗
x∗– . Therefore, by choosing the effort functions (E(t),E(t)) as (E(),E()) =

(Ê, Ê) and (E(∞),E(∞)) = (E∗
 ,E∗

), it is possible to prevent cycles and drive to the steady
state (x̃, ỹ).

5 Bionomic equilibrium
Motivated by the paper by Kar [], we consider the bionomic equilibrium and optimal
harvest policy of system (.). Let q be the constant prey species cost per unit effort. Let
q be the constant predator species cost per unit effort, let p be the constant price per
unit biomass of the prey species, and let p be the constant price per unit biomass of the
predator species.
The economic rent (net revenue) at any time is given by

N =
(
px – q

)
E + (py – q)E =N +N, (.)

where N = (px – q)E and N = (py– q)E, they denote the economic rent of the prey
species and the predator species separately.

http://www.advancesindifferenceequations.com/content/2013/1/249
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The bionomic equilibrium of the predator-prey system implies both a biological equilib-
rium and an economic equilibrium. The biological equilibrium occurs when dx

dt =
dy
dt = ,

and the economic equilibrium is defined to be achieved when the economic rent is com-
pletely dissipated (i.e., when N = ).
Hence we can derive the bionomic equilibrium from the following system:

x(α – x) –
βxy
 + x

– Ex = ,

βxy
 + x

– ry – Ey = ,

N =
(
px – q

)
E + (py – q)E = .

(.)

Now the following cases may arise.
Case : If x ≤

√
q
p

and y > q
p
, then N ≤  and N > . In this case, we should stop

harvesting the prey species, but we can harvest the predator species. Hence we can derive
that E∞ = , and fromN = (px –q)E + (py–q)E = , we have y∞ = q

p
. We substitute

E∞ =  and y∞ = q
p

into x(α – x) – βxy
+x – Ex = , then we have

x – αx +
(
 +

βq
p

)
– α = . (.)

Let f (x) = x – αx + ( + βq
p

) – α = (x – )(x – α) + βq
p

, we know that f () = –α < ,
f (α) = βq

p
α > . So, f (x) =  has at least one positive root in (,α).

Now we discuss the roots of f (x) =  as follows.
For f ′(x) = x – αx + ( + βq

p
), we can derive that f ′(x) >  when x ≥ α, and f (α) =

βq
p

α > , then f (x) =  does not have any roots in [α, +∞). Hence we discuss the roots of
f (x) =  only in (,α).
() If α ≤ ( + βq

p
), we have f ′(x)≥ , then f (x) =  has only one positive root in (,α).

() If α > ( + βq
p

), we can derive that x =
α–

√
α–(+ βq

p
)

 and x =
α+

√
α–(+ βq

p
)

 are
the roots of f ′(x) = . It is obvious that  < x < x < α

 < α, f (xi) = –(xi – αxi + α).
We can further obtain that:
(i) If f (x) >  and f (x) < , then f (x) =  has three positive roots in (,α).
(ii) If f (x) =  or f (x) = , then f (x) =  has two positive roots in (,α).
(iii) If f (x) <  or f (x) > , then f (x) =  has one positive root in (,α).

Let the root of f (x) =  be x∞, then we substitute x∞ and y∞ into βxy
+x – ry – Ey = .

We can obtain that E∞ = βx∞

+x∞ – r. For E∞ > , then we must have r < βx∞

+x∞ . At last, we
have the bionomic equilibrium (x∞, y∞, ,E∞).
Case : If x >

√
q
p

and y ≤ q
p
, then N >  and N ≤ . In this case, we should stop

harvesting the predator species, but we can harvest the prey species. Hence we can derive
that E∞ = , and fromN = (px –q)E +(py–q)E = , we have x∞ =

√
q
p
. Substituting

E∞ =  and x∞ =
√

q
p

into βxy
+x – ry – Ey = , we have r = βp

p+q
and y∞ is any positive

number. Then we substitute x∞ and y∞ into x(α – x) – βxy
+x – Ex = , we can obtain that

E∞ = (α–x∞)(+x∞)–βx∞y∞
x∞(+x∞) . For E∞ > , then we must have y∞ <

(α–
√ q

p
)(+ q

p
)

β
√ q

p

. Hence y∞ is
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any positive number but it must satisfy y∞ <
(α–

√ q
p

)(+ q
p

)

β
√ q

p

. At last, we have the bionomic
equilibrium (x∞, y∞,E∞, ).
Case : If x ≤

√
q
p

and y ≤ q
p
, then N ≤  and N ≤ . In this case, we should stop

harvesting the predator species and the prey species. Hence we can derive that E∞ = 
and E∞ = . Then the bionomic equilibrium does not exist.
Case : If x >

√
q
p
and y > q

p
, thenN >  andN > . In this case, we can harvest both the

predator species and the prey species. Hence, fromN = (px –q)E + (py–q)E = , we
have x∞ =

√
q
p

and y∞ = q
p
. Then we substitute x∞ and y∞ into x(α – x) – βxy

+x –Ex = ,
βxy
+x – ry–Ey = .We can obtain that E∞ = (α–x∞)(+x∞)–βx∞y∞

x∞(+x∞) and E∞ = βx∞

+x∞ – r. For

E∞ >  and E∞ > , then we must have β < (p+q)(α
√p–

√q)p
pq

√q
and β > r(p+q)

q
. At last, we

have the bionomic equilibrium (x∞, y∞,E∞,E∞).

6 Optimal harvest policy
The fundamental problem in determination of an optimal harvest policy in a commercial
predator-prey system is to determine the optimal trade-off between the current and future
harvests. So, for determining an optimal harvesting policy, we consider the present value
J of a continuous time stream of revenues given by

J =
∫ ∞


N(x, y,E,E, t)e–δt dt,

where δ denotes the instantaneous annual rate of discount. N is the economic rent (net
revenue) at any time t given by N(x, y,E,E, t) = (px – q)E + (py– q)E, where q and
q are the cost per unit biomass of the x and y species, separately; p and p are the prices
per unit biomass of the x and y species, respectively.
We shall optimize the objective function

J =
∫ ∞


e–δt[(px – q

)
E + (py – q)E

]
dt, (.)

subject to the state Eq. (.) by using Pontryagin’s maximal principle.
Let us now construct the Hamiltonian function

H∗ = e–δt[(px – q
)
E + (py – q)E

]
+ λ

[
x(α – x) –

βxy
 + x

– Ex
]
+ λ

[
βxy
 + x

– ry – Ey
]
, (.)

where λ(t) and λ(t) are the adjoint variables. E and E are the control variables. Now
wewish to find themaximum equilibrium (xδ , yδ ,Eδ ,Eδ) of the Hamiltonian functionH∗.
For the control variables E and E are the linear function of H∗, we have that the optimal
equilibrium must occur at the extreme point, namely

∂H∗

∂Ei
= , i = , . (.)
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By the maximal principle, there exist adjoint variables λ(t) and λ(t) for all t ≥  such
that

dλ

dt
= –

∂H∗

∂x
= –

{
e–δtpEx + λ

[
α – x –

βxy
( + x)

– Ex
]
+
βλxy
( + x)

}
(.)

and

dλ

dt
= –

∂H∗

∂y
= –

{
e–δtpE –

λβx

 + x
+ λ

[
βx

 + x
– r – E

]}
. (.)

Using Eq. (.) we can derive that

λ(t) = e–δt
(
p –

q
x

)
(.)

and

λ(t) = e–δt
(
q –

q
y

)
. (.)

By Eqs. (.) and (.) we know that λi(t)eδt (i = , ) are invariable by the change of
time t.
Using (.), Eqs. (.) and (.), we have that Eqs. (.) and (.) become

p
[
α – x –

βxy
 + x

]
+

(
p –

q
x

)[
–α –

βxy
( + x)

+
βxy
 + x

]

+
βxy
( + x)

(
p –

q
y

)
– δ

(
p –

q
x

)
= , (.)

p
[

βx

 + x
– r

]
–

(
p –

q
x

)
βx

 + x
– δ

(
p –

q
y

)
= . (.)

By Eqs. (.) and (.), we can obtain the positive root (xδ , yδ). Then substituting the
values of the positive root into (.), we get

Eδ =
(α – xδ)( + xδ

) – βxδyδ

xδ( + xδ
)

, (.)

Eδ =
βxδ



 + xδ
 – r. (.)

7 Numerical simulation
Example  For simulation let us take α = , β = , β = , r = ..
We verify the limit cycle, global stability and controllability of system (.). (See Fig-

ures -.)
To show the controllability of the system, we take examples as follows:
() (E,E) = (., ) (see Figure );
() (E,E) = (., ) (see Figure );
() (E,E) = (, ) (see Figure );
() (E,E) = (,, ) (see Figure ).
Figures - show the dependence of the dynamic behavior of system (.) on the har-

vesting efforts for the prey E. Figures - show that when E is small, both the prey and
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Jiang and Wang Advances in Difference Equations 2013, 2013:249 Page 13 of 17
http://www.advancesindifferenceequations.com/content/2013/1/249

Figure 1 Phase diagram of the limit cycle with different initial conditions (E1 = 0.5, E2 = 1.5). Here

harvesting efforts lie in the region α > 2(1+E1)x
∗3

x∗2–1 > [3Aβ+11(1+E1)]x
∗

3 .

Figure 2 Phase plane trajectories corresponding to different initial levels (E1 = 2, E2 = 1.5). The figure
clearly indicates that the interior equilibrium point P2 is globally asymptotically stable.

predator population converge to their equilibriumvalues respectively, but asE is large, the
predator does not have enough food and approaches extermination at last. As E is large
enough, both the prey and predator approach extermination at last. Which means that if
we change the value of E, it is possible to prevent the cyclic behavior of the predator-prey
system and to drive it to a required stable state.
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Figure 3 The quantity of predator is larger than the prey when they approach globally asymptotically
stable.

Figure 4 The quantity of predator is less than the prey when they approach globally asymptotically
stable.

Example  For p = ., q = ., p = ., q = ., δ = ., and the remaining parameter
values being the same as above, then Eqs. (.), (.) can be simplified as follows:

. – .x –
.xy
 + x

+
(
. –

.
x

)(
– –

xy
( + x)

+
xy
 + x

)

+
xy(. – .

y )
( + x)

+
.
x

= , (.)
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Figure 5 The prey approaches stable state, but the prey approaches extermination at last.

Figure 6 Both the predator and the prey approach extermination at last.

.x

 + x
– . –

x(. – .
x )

 + x
+
.
y

= . (.)

We can solve roots of Eqs. (.) and (.) by the tool of Maple. The roots of Eqs. (.)
and (.) are solved as follows:

{x = ., y = .};
{x = . + .I, y = . + .I};
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{x = . + .I, y = . + .I};
{x = –. + .I, y = . – .I};
{x = –. + .I, y = –. – .I};
{x = –. – .I, y = –. + .I};
{x = –. – .I, y = . + .I};
{x = . – .I, y = . – .I};
{x = . – .I, y = . – .I}.

But only {x = ., y = .} satisfies

xδ >
√
q
p

(
=

√



)
, yδ >

q
p

(= .).

So, we can derive that xδ = ., yδ = .. Then, substituting the val-
ues of xδ and yδ into (.), we get Eδ = ., Eδ = .. So, we can
derive that an optimal equilibrium solution is (., ., .,
.).

8 Conclusion
In this paper, qualitative analysis of a harvested predator-prey systemwith Holling type III
functional response is considered. This work presents analysis of the effect of harvesting
efforts on the prey-predator system. We have proved that exactly one stable limit cycle
occurs in the system under certain conditions and have proved the global stability of the
positive equilibrium. It was also found that it is possible to control the system in such a
way that the system approaches a required state, using the efforts E and E as the control.
The results we have obtained may be helpful for the fishery managers wishing to maintain
a globally sustainable yield.
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