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Abstract
In this paper, the authors study the distribution of the Vasicek model with
mixed-exponential jumps and its applications in finance and insurance. With the aid
of the piecewise deterministic Markov process theory and the martingale theory, the
authors first obtain the explicit forms of the Laplace transforms for the distribution of
the Vasicek model with mixed-exponential jumps and its integrated process. As some
applications in finance and insurance, the pricing of the default-free zero-coupon
bond and the European put option on the zero-coupon bond, and the moments of
the aggregate accumulated claim amounts are discussed. The authors also provide
some remarks and numerical calculations.
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1 Introduction
Vasicek [1] proposed the following classical Vasicek model which is defined by an equation
of the form

drt = α(β – rt) dt + σ dBt , (1.1)

where α is the rate of mean reversion, β is the long-run level, σ is the volatility coefficient,
and Bt is a standard Brownian motion.

The Vasicek model is one of the earliest no-arbitrage interest rate models based upon
the idea of mean reverting interest rates. It was the first one to capture mean reversion,
an essential characteristic of the interest rate that sets it apart from other financial prices.
Compared with the CIR model (Cox et al. [2]), the main disadvantage in the Vasicek model
is that it is theoretically possible for the interest rate to become negative, an undesirable
feature. However, because the explicit solution of the Vasicek model is perfect, some au-
thors still put their attention to the Vasicek model and its generalized versions. Hull and
White [3] extended the one-state-variable interest-rate model of Vasicek [1] and showed
that the extended Vasicek model is very tractable analytically and is consistent with the
current term structure of interest rates or the current volatilities of all forward interest
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rates. They compared the option prices obtained using the extended Vasicek model with
those obtained in the existing literature. Patie [4] also generalized the Vasicek model and
provided its applications in computing the Laplace transform of the price of a European
call option. For more research results on the applications of these models in finance and
insurance, we can refer the reader to Shimko et al. [5], Mamon [6], Liang et al. [7], Siu
[8], Nowman [9], Chen and Hu [10], Qiu et al. [11], Liang et al. [12], Su and Wang [13],
Liang et al. [14], Dong [15], Ishitani [16], Xiao et al. [17], Branger et al. [18], Nowak and
Romaniuk [19], Chang and Chang [20].

As to the European and American options, Hajipour and Malek [21] proposed a highly
accurate method based on non-standard Runge–Kutta (NRK), modified weighted essen-
tially non-oscillatory (MWENO), and grid stretching methods to solve the Black–Scholes
equation with discontinuous final condition. The authors believed that this adaptive
MWENO method can be extended to solve the American option Black–Scholes equation.
Hajipour and Malek [22] presented efficient high-order methods based on weighted es-
sentially non-oscillatory (WENO) technique and backward differentiation formula (BDF)
to solve the European and American put options of the Black–Scholes equation. Jajarmi
et al. [23] presented the analysis of a hyperchaotic financial system as well as its chaos
control and synchronization.

As stated in Beliaeva et al. [24], some scholars, such as Backus et al. [25], Das and Foresi
[26], Das [27], Johannes [28], and Piazzesi [29], found that jumps caused by market crashes,
interventions by the Federal Reserve, economic surprises, shocks in the foreign exchange
markets, and other rare events play a significant role in explaining the dynamics of interest
rate changes.

In fact, in practice, there are primary events such as the government’ fiscal and mon-
etary policies, the release of corporate financial reports, some natural disasters, terrorist
attacks, etc. that will possibly result in some jumps in the interest rate. As time passes, the
interest rate process decreases or increases as the firm tries its best to adjust its manage-
ment after the arrival of a primary event, and so the whole social and economic environ-
ment will impel the interest rate to the initial level. This decrease or increase will continue
until another event occurs, which will result in another jump in the interest rate process.
Therefore, how to describe accurately the above phenomenon of economic activity is an
important issue in the interest rate modeling.

In order to describe the appearances of sudden jumps in the interest rate process, we
consider the Vasicek model with jumps introduced by Chacko and Das [30], which has
the following structure:

dyt = α(β – yt) dt + σ dBt + dJt , (1.2)

where α, β , σ , and Bt are as in the previous model (1.1). We assume that α > 0, β ≥ 0, and
σ ≥ 0. Jt is a compound Poisson process which is given by

Jt =
Mt∑

j=1

Xj, (1.3)

where Mt is a Poisson process with frequency ρ and it stands for the total number of jumps
up to time t. {Xj, j ≥ 1} denote the jump sizes and are assumed to be independent and
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identically distributed random variables with distribution function F(x) and probability
density function fX(x).

Das [27] showed that the model offers a good statistical description of short rate be-
havior, and is useful in understanding many empirical phenomena. Some analytical and
empirical methods used in this paper support many applications, such as testing for Fed
intervention effects, which are shown to be an important source of surprise jumps in inter-
est rates. Beliaeva et al. [24] discussed the pricing of American interest rate options under
the Vasicek model with jumps. They provided the pricing of European options on coupon
bonds and American options on coupon bonds under this model. Su and Wang [31] inves-
tigated the valuation of European option with credit risk in a reduced form model, where
the intensity of default is assumed to follow the above extended Vasicek model.

To make our main results of this article more valuable in a practical field, we assume
that the jumps sizes in (1.3) follow the mixed-exponential distribution, i.e.,

fX(x) = pu

m∑

i=1

λiηie–ηix1(x≥0) + qd

n∑

j=1

qjθjeθjx1(x<0), (1.4)

where pu ≥ 0, qd = 1 – pu ≥ 0,

λi ∈ (–∞, +∞) for all i = 1, . . . , m,
m∑

i=1

λi = 1,

qj ∈ (–∞, +∞) for all j = 1, . . . , n,
n∑

j=1

qj = 1,

ηi > 1 for all i = 1, . . . , m, and θj > 0 for all j = 1, . . . , n.

It is clear that the parameters should satisfy some extra conditions to guarantee fX(x) to
be a probability density function. As stated in Cai and Kou [32], a necessary condition for
fX(x) to be a probability density function is λ1 > 0, q1 > 0,

∑m
i=1 λiηi ≥ 0, and

∑n
j=1 qjθj ≥ 0,

and a simple sufficient condition is
∑k

i=1 λiηi ≥ 0 for all k = 1, 2, . . . , m and
∑l

j=1 qjθj ≥ 0
for all l = 1, 2, . . . , n.

Cai and Kou [32] pointed out that the mixed-exponential distribution is a very important
distribution, which can approximate any distribution in the sense of weak convergence
(see Botta and Harris [33]). Actually, even the hyper-exponential jump, which seems only
a little narrower than the mixed-exponential jump, cannot be used to approximate all the
distribution. Cai and Kou [32] also provided some interesting examples of approximating
the gamma distribution, the Pareto distribution, and the Weibull distribution numerically
with the mixed-exponential distribution.

It is obvious that (1.1) is a special case of (1.2) for ρ = 0. In addition, if we take β = σ = 0
in model (1.2), it would lead to shot noise process for yt . It is well known that the shot
noise models have been applied to diverse areas such as finance, insurance, hydrology, and
electronics. Therefore, from an applied point of view, it is very significant and nontrivial
to study the wider class of Vasicek models with jumps.

Throughout this article, we let Yt =
∫ t

0 yu du be the integrated process of yt . We also
assume that all components dynamics (1.2) and (1.3) are defined on a filtered complete
probability space {	,F , Q}. In this article, we will first deduce the Laplace transforms of
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the distributions of the processes yt and Yt . Then we will present some applications of
these Laplace transforms in finance and insurance.

The rest of this article is organized as follows. In Sect. 2, we obtain the Laplace trans-
forms for the Vasicek models with mixed-exponential jumps and their integrated pro-
cesses. In Sect. 3, by means of the results in the previous section, we discuss the financial
application of the Vasicek model with mixed-exponential jumps, and derive the pricing of
a default-free zero-coupon bond and a European put option on a zero-coupon bond. In
Sect. 4, we investigate the expectation and variance of the aggregate accumulated claim
amounts. Some numerical calculations are also given in Sects. 3 and 4. In Sect. 5, some
concluding remarks are presented.

2 The Laplace transforms of the distribution of the Vasicek model with
mixed-exponential jumps

In this section, by means of the piecewise deterministic Markov process theory and the
martingale theory, we first deduce the joint Laplace transform of the distribution of the
vector process (yt , Yt), where yt and Yt are defined as in Sect. 1. Then we obtain the Laplace
transforms of the distribution of the Vasicek model with mixed-exponential jumps. As we
know, the piecewise deterministic Markov process theory was developed by Davis [34]
and has been proved to be a very powerful mathematical tool for examining non-diffusion
models. We can refer the reader to find some more details on this theory in Davis [34].

The infinitesimal generator A of the unique solution to SDE (1.1) is given by

Af (y) = α(β – y)
∂f
∂y

+
1
2
σ 2 ∂2f

∂y2 , (2.1)

where f is an arbitrary twice differentiable continuous function. We assume that yt is a
Vasicek model with jumps which is a solution of SDE (1.2). By applying the piecewise
deterministic Markov process theory and using Theorem 5.5 in Davis [34], one can see
that the infinitesimal generator of the process (Yt , yt , t) acting on a function f (Y , y, t) is
given by

Af (Y , y, t) =
∂f
∂t

+ y
∂f
∂Y

+ α(β – y)
∂f
∂y

+
1
2
σ 2 ∂2f

∂y2

+ ρ

{∫ ∞

–∞
f (Y , y + x, t) dF(x) – f (Y , y, t)

}
, (2.2)

where f : (0,∞) × (0,∞) × R+ → (0,∞) satisfies:
(1) f (Y , y, t) is bounded on arbitrary finite time intervals;
(2) f (Y , y, t) is differentiable with respect to all t, y, Y ;
(3)

∣∣∣∣
∫ +∞

–∞
f (Y , y + x, t) dF(x) – f (Y , y, t)

∣∣∣∣ < ∞.

In order to obtain the joint Laplace transform for the distribution of the vector process
(yt , Yt), we first present a lemma following the method mentioned in Rolski et al. [35].
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Lemma 2.1 Assume that m, k are two constants such that k ≥ 0. Then

exp
{

–A(t)yt – kYt + R(t)
}

(2.3)

is a martingale where

A(t) =
(

m –
k
α

)
eαt +

k
α

, (2.4)

R(t) =
(

βk –
σ 2k2

2α2

)
t +

(
m –

k
α

)(
β –

kσ 2

α2

)(
eαt – 1

)

–
σ 2

4α

(
m –

k
α

)2(
e2αt – 1

)
+ ρ

∫ t

0

{
1 – h

[
A(v)

]}
dv, (2.5)

h(ξ ) =
∫ +∞

–∞
e–ξx dF(x). (2.6)

Proof Let

f (Y , y, t) = exp
{

–A(t)y – kY + R(t)
}

. (2.7)

From Theorem 7.6.1 in Jacobsen [36], f (Y , y, t) has to satisfy Af (Y , y, t) = 0 if it is a mar-
tingale. Hence, by (2.2), we have

–A′(t)y + R′(t) – ky – α(β – y)A(t) +
1
2
σ 2A2(t) + ρ

[
h
(
A(t)

)
– 1

]
= 0. (2.8)

Solving Eq. (2.8), we can get (2.4) and (2.5). The proof is completed. �

Now, by means of Lemma 2.1, we give the joint Laplace transform of the distribution of
the vector process (yt , Yt).

Theorem 2.1 Assume that μ, k are two constants and that fX(x) satisfies (1.4). Then the
joint Laplace transform of the distribution of (yt , Yt) is given by

EQ{
e–μyt e–k(Yt–Ys) | ys

}
= exp

{
–B(s, t;μ, k)ys + C(s, t;μ, k)

}
, (2.9)

where

B(s, t;μ, k) =
(

μ –
k
α

)
eα(s–t) +

k
α

, (2.10)

C(s, t;μ, k) =
(

ρ + βk –
σ 2k2

2α2

)
(s – t)

+
(

β –
kσ 2

α2

)[
B(s, t;μ, k) – μ

]
–

σ 2

4α

(
μ –

k
α

)2[
e2α(s–t) – 1

]

+ ρpu

m∑

i=1

λiηi

k + αηi
ln

[
(k + αηi)eα(t–s) + (αμ – k)

α(μ + ηi)

]

– ρqd

n∑

j=1

qjθj

k – αθj
ln

[
(k – αθj)eα(t–s) + (αμ – k)

α(μ – θj)

]
. (2.11)
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Proof By Lemma 2.1, for an arbitrary fixed time t∗ (0 ≤ s ≤ t∗), we have

EQ{
exp

{
–A

(
t∗)yt∗ – kYt∗ + R

(
t∗)} | ys

}
= exp

{
–A(s)ys – kYs + R(s)

}
.

Then we get

EQ{
exp

{
–A

(
t∗)yt∗ – k(Yt∗ – Ys)

} | ys
}

= exp
{

–A(s)ys + R(s) – R
(
t∗)}. (2.12)

Set A(t∗) = μ ≥ 0. By (2.4), we get

m =
(

μ –
k
α

)
eαt∗ +

k
α

.

Then we can get

A(s) =
(

μ –
k
α

)
eα(s–t∗) +

k
α

= B
(
s, t∗;μ, k

)
, (2.13)

A(v) =
(

μ –
k
α

)
eα(v–t∗) +

k
α

= B
(
v, t∗;μ, k

)
(2.14)

and

R(s) – R
(
t∗) =

(
ρ + βk –

σ 2k2

2α2

)(
s – t∗) +

(
β –

kσ 2

α2

)[
B
(
s, t∗;μ, k

)
– μ

]

–
σ 2

4α

(
μ –

k
α

)2[
e2α(s–t∗) – 1

]
+ ρ

∫ t∗

s
h
[
B
(
v, t∗;μ, k

)]
dv. (2.15)

Let u = t∗ – v in (2.15), we have

ρ

∫ t∗

s
h
[
B
(
v, t∗;μ, k

)]
dv = ρ

∫ t∗–s

0
h
[
B(0, u;μ, k)

]
du. (2.16)

From A(t∗) = μ, (2.12)–(2.16), we have

EQ{
e–μyt∗ e–k(Yt∗ –Ys) | ys

}

= exp

{
–B

(
s, t∗;μ, k

)
ys +

(
ρ + βk –

σ 2k2

2α2

)(
s – t∗) +

(
β –

kσ 2

α2

)[
B
(
s, t∗;μ, k

)
– μ

]

–
σ 2

4α

(
μ –

k
α

)2[
e2α(s–t∗) – 1

]
+ ρ

∫ t∗–s

0
h
[
B(0, u;μ, k)

]
du

}
. (2.17)

By some standard computations, we have

h
[
B(0, u;μ, k)

]
= pu

m∑

i=1

λiηieαu

(k/α + ηi)eαu + (μ – k/α)

– qd

n∑

j=1

qjθjeαu

(k/α – θj)eαu + (μ – k/α)
.
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Hence

ρ

∫ t∗–s

0
h
[
B(0, u;μ, k)

]
du = ρpu

m∑

i=1

λiηi

k + αηi
ln

[
(k + αηi)eα(t∗–s) + (αμ – k)

α(μ + ηi)

]

– ρqd

n∑

j=1

qjθj

k – αθj
ln

[
(k – αθj)eα(t∗–s) + (αμ – k)

α(μ – θj)

]
. (2.18)

Plugging (2.18) into the integral term of (2.17), we get

EQ{
e–μyt∗ e–k(Yt∗ –Ys) | ys

}

= exp

{
–B

(
s, t∗;μ, k

)
ys +

(
ρ + βk –

σ 2k2

2α2

)(
s – t∗)

+
(

β –
kσ 2

α2

)[
B
(
s, t∗;μ, k

)
– μ

]
–

σ 2

4α

(
μ –

k
α

)2[
e2α(s–t∗) – 1

]

+ ρpu

m∑

i=1

λiηi

k + αηi
ln

[
(k + αηi)eα(t∗–s) + (αμ – k)

α(μ + ηi)

]

– ρqd

n∑

j=1

qjθj

k – αθj
ln

[
(k – αθj)eα(t∗–s) + (αμ – k)

α(μ – θj)

]}
. (2.19)

Since t∗ is arbitrary, (2.19) remains true for all t ≥ s ≥ 0, which implies (2.9). The proof
is completed. �

Setting k = 0 and μ = 0 in (2.9), respectively, we obtain the following corollary.

Corollary 2.1 Assume that μ, k are two constants and that fX(x) satisfies (1.4). Then the
Laplace transforms of the distributions of yt and Yt are respectively given by

EQ{
e–μyt | ys

}
= exp

{
–B(s, t;μ, 0)ys + C(s, t;μ, 0)

}
(2.20)

and

EQ{
e–k(Yt–Ys) | ys

}
= exp

{
–B(s, t; 0, k)ys + C(s, t; 0, k)

}
. (2.21)

Remark 2.1 If we take s = β = σ = 0, pu = 1, qd = 0, and m = 2 in (2.20), we can get directly

EQ{
e–μyt | y0

}
= exp

{
–μe–αty0

}(η1 + μe–αt

η1 + μ

) ρλ1
α

(
η2 + μe–αt

η2 + μ

) ρλ2
α

,

which is actually the conclusion (9) of Jang [37].

3 Applications in finance
In this section, we state some financial applications of the Vasicek model with mixed-
exponential jumps (1.2). Based on the results obtained in the previous section, we de-
rive the pricing of a default-free zero-coupon bond and a European put option on a zero-
coupon bond. We also present some numerical calculations in the section.
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3.1 Pricing a default-free zero-coupon bond
We first present the bond pricing formula.

Proposition 3.1 Assume that the interest rate rt satisfies dynamics (1.2), (1.3), and (1.4).
Then the pricing of the discount zero-coupon bond at time t (0 < t < T ) is given by

P(t, T) = exp
{

–B(t, T ; 0, 1)rt + C(t, T ; 0, 1)
}

, (3.1)

where T is the expiration date of the zero-coupon bond.

Proof Note that P(t, T) = EQ{e–
∫ T

t rs ds | rs}. Then (3.1) follows immediately from Corol-
lary 2.1. The proof is completed. �

Without loss of generality, we consider a zero-coupon bond paying 1 at time T . The
present value of the default-free zero-coupon bond at time 0 paying 1 at time T is given
by

P(0, T) = EQ{
e–

∫ T
0 rs ds | r0

}
.

Applying Proposition 3.1, we give the following example to illustrate the calculation of the
price of the default-free zero-coupon bond.

Example 3.1 The parameter values in (3.1) used to calculate the price of the default-free
zero-coupon bond are

t = 0, T = 1, η1 = 2, η2 = 1.5, θ1 = 2, θ2 = 1.5,

m = n = 2, pu = 0.6, qd = 0.4, λ1 = 1.2, λ2 = –0.2,

q1 = 1.3, q2 = –0.3, α = 2, β = 0.5, r0 = 0.03, ρ = 3, σ = 2.

Then the default-free zero-coupon bond price is given by

P(0, 1) = EQ{
e–

∫ 1
0 rs ds | r0

}
= 0.8662.

If we use a deterministic interest rate r = 0.05, the default-free zero-coupon bond price is

e–0.05 = 0.9512.

In order to illuminate the dynamic relationship between P(0, 1) and the parameters ρ ,
σ , η1, η2, θ1, and θ2, we give Fig. 1.

Remark 3.1 In this paper we can find that the higher the frequency ρ is, the lower the price
of the default-free zero-coupon bond is (see Fig. 1(a)). From Fig. 1(b), we also can find that
the higher the initial interest rate is, the lower the price of the default-free zero-coupon
bond is. Similarly, the bigger the magnitude of the positive jump is, the less attractive
purchasing a default-free zero-coupon bond is. Thus the smaller η1 and η2 are, the lower
the price of the default-free zero-coupon bond is (see Fig. 1(c)). In addition, the higher
volatility coefficient σ is, the higher the price of the default-free zero-coupon bond is (see
Fig. 1(d)).
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Figure 1 The dynamic relationships between P(0, 1) and the other parameters

3.2 Pricing a European put option on a zero-coupon bond
We assume that the interest rate dynamics are described as in (1.2), (1.3), and (1.4). Now
we investigate the pricing of a European put option on a zero-coupon bond.

As we know, max{K – P(T0, T), 0} is the payoff at the expiration date T0 of a European
put option on a zero-coupon bond. Here, K is the strike price of the European put option.
Then the price at time 0 of the European put option on the zero-coupon bond is

P0 = EQ[
e–

∫ T0
0 rs ds max

{
K – P(T0, T), 0

}]
. (3.2)

Proposition 3.2 Assume that the interest rate rt satisfies dynamics (1.2), (1.3), and (1.4).
Then the pricing of the European put option on the zero-coupon bond is given by

P0 = KP(0, T0)�1 – P(0, T)�2, (3.3)

where

�i =
1
2

+
1
π

∫ +∞

0
	

(
e–iur∗φi(u)

iu

)
du, i = 1, 2, (3.4)

r∗ =
C(T0, T ; 0, 1) – ln K

B(T0, T ; 0, 1)
, (3.5)

φ1(u) = exp
{

C(0, T0; iu, 1) – C(0, T0; 0, 1) +
(
B(0, T0; 0, 1) – B(0, T0; iu, 1)

)
r0

}
, (3.6)

φ2(u) = exp
{

C
(
0, T0; iu – B(T0, T ; 0, 1), 1

)
+ C(T0, T ; 0, 1)

– C(0, T ; 0, 1) +
(
B(0, T ; 0, 1) – B

(
0, T0; iu – B(T0, T ; 0, 1), 1

))
r0

}
. (3.7)
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Proof It is clear that the expectation in (3.2) can be divided into the following two expres-
sions:

P0 = KEQ[
e–

∫ T0
0 rs ds1(P(T0,T)≤K )

]

– EQ[
e–

∫ T0
0 rs dsP(T0, T)1(P(T0,T)≤K )

]

= KP(0, T0)EQ
[

e–
∫ T0

0 rs ds

P(0, T0)
1(rT0 ≥r∗)

]

– P(0, T)EQ
[

e–
∫ T0

0 rs dsP(T0, T)
P(0, T)

1(rT0 ≥r∗)

]
.

By means of the methods used in Duffie et al. [38], we can accomplish the calculations of
the above expectations. We consider two new measures Q1 and Q2 which are all equivalent
to measure Q. The Radon–Nikodym derivatives are defined as

dQ1

dQ
=

e–
∫ T0

0 rs ds

P(0, T0)
and

dQ2

dQ
=

e–
∫ T0

0 rs dsP(T0, T)
P(0, T)

.

Then, under the new measures Q1 and Q2, we have

P0 = KP(0, T0)Q1(rT0 ≥ r∗) – P(0, T)Q2(rT0 ≥ r∗) = KP(0, T0)�1 – P(0, T)�2,

where

�i = Qi(rT0 ≥ r∗) =
1
2

+
1
π

∫ +∞

0
	

(
e–iur∗φi(u)

iu

)
du, i = 1, 2,

which can be obtained by following the methods of Duffie et al. [38]. More details can be
found in Appendices in Duffie et al. [38].

Under the measures Q1 and Q2, the characteristic functions of random variable rT0 are
defined as φ1(u) and φ2(u), which are given by

φ1(u) = EQ1
[
eiurT0

]
= EQ

[
e–

∫ T0
0 rs ds

P(0, T0)
eiurT0

]
=

1
P(0, T0)

EQ[
e–

∫ T0
0 rs ds+iurT0

]

and

φ2(u) = EQ2
[
eiurT0

]
= EQ

[
e–

∫ T0
0 rs dsP(T0, T)

P(0, T)
eiurT0

]

=
exp{C(T0, T ; 0, 1)}

P(0, T)
EQ[

e–
∫ T0

0 rs ds+(iu–B(T0,T ;0,1))rT0
]
.

Therefore, from Proposition 3.1 and Theorem 2.1, (3.6) and (3.7) can be obtained directly.
Here we omit the details. The proof is completed. �

Then we present the following example to illustrate the calculation of the price of the
European put option on the zero-coupon bond. We consider a one-year European put
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Table 1 European put option prices and varying parameter values

Parameters σ = 0.2 σ = 0.4 ρ = 40 ρ = 60 r0 = 0.04 r0 = 0.06

P0 0.2097 0.1763 0.2043 0.2146 0.2198 0.2180
P′
0 0.0260 0.0249 0.0256 0.0256 0.0257 0.0254

Parameters η1 = θ1 = 3
η2 = θ2 = 2

η1 = θ1 = 30
η2 = θ2 = 20

β = 0.08 β = 0.10 K = 0.2 K = 0.4

P0 0.1231 0.0816 0.2202 0.2166 0.1477 0.1316
P′
0 0.0257 0.0257 0.0236 0.0276 0.0257 0.0257

option on a five-year zero-coupon bond. The zero-coupon bond pays one unit of currency
to the buyer of the bond at maturity time.

Example 3.2 The parameter values in (3.3) are given by

m = n = 2, pu = 0.6, qd = 0.4, α = 2, β = 0.09, σ = 0.3,

ρ = 50, η1 = θ1 = 15, η2 = θ2 = 10, r0 = 0.05, K = 0.3,

λ1 = 1.2, λ2 = –0.2, q1 = 1.3, q2 = –0.3, T = 5, T0 = 1.

In order to illuminate the dynamic relationships between the price of the European put
option on the zero-coupon bond and some varying parameter values in this model, we
present Table 1.

In Table 1, P′
0 denotes the price of a European put option on the zero-coupon bond in

the pure diffusion model (1.1).

Remark 3.2 In Example 3.2, we discuss the prices of the European put option on the zero-
coupon bond with some varying parameter values in model (1.2). Table 1 indicates the
following facts. Firstly, because both the volatility from the diffusion term σ dBt and that
from the jump term dJt have a positive effect on the option prices, the prices in the jump-
diffusion model are higher than those in the pure diffusion model. Secondly, the varying
values of the volatility coefficient have an apparent effect on the option prices. As shown
in Table 1, the higher volatility coefficient will cause higher prices of the underlying asset
(the zero-coupon bond). Thus the higher volatility coefficient σ is, the lower the option
price is. Finally, we can find that higher frequency ρ in the Poisson process leads to higher
option prices. The reason is that higher frequency will result in lower prices of the zero-
coupon bond.

4 Application in insurance
In this section, we discuss the applications of model (1.2) in insurance. By means of the
conclusions of Sect. 2, we will deduce the expectation and variance of the process yt .

Proposition 4.1 Assume that the process yt satisfies dynamics (1.2), (1.3), and (1.4). Then
the expectation of yt is given by

EQ(yt | y0) = e–αty0 –

[
β +

ρ

α

(
pu

m∑

i=1

λi

ηi
+ qd

n∑

j=1

qj

θj

)]
(
e–αt – 1

)
. (4.1)
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Proof Let s = 0 in (2.20), we have

EQ{
e–μyt | y0

}
= exp

{
–μe–αty0 – ρt + β

(
e–αt – 1

)
μ –

σ 2

4α
μ2(e–2αt – 1

)}

×
m∏

i=1

[
ηieαt + μ

ηi + μ

] ρpuλi
α

×
n∏

j=1

[
θjeαt – μ

θj – μ

] ρqdqj
α

. (4.2)

Differentiate (4.2) with respect to μ and put μ = 0, then (4.1) is obtained directly. �

Proposition 4.2 Assume that the process yt satisfies dynamics (1.2), (1.3), and (1.4). Then
the variance of yt is given by

VarQ(yt | y0) =

[
σ 2

2α
+

ρ

α

(
pu

m∑

i=1

λi

η2
i

+ qd

n∑

j=1

qj

θ2
j

)]
(
1 – e–2αt). (4.3)

Proof We compute the second derivative of (4.2) with respect to μ and put μ = 0, then the
second moment of yt is

EQ(
y2

t | y0
)

=
(
e–αty0 – β

(
e–αt – 1

))2 +
σ 2

2α

(
1 – e–2αt)

–
2ρ

α

(
pu

m∑

i=1

λi

ηi
+ qd

n∑

j=1

qj

θj

)
(
e–αty0 – β

(
e–αt – 1

))(
e–αt – 1

)

+
ρ2

α2

(
pu

m∑

i=1

λi

ηi
+ qd

n∑

j=1

qj

θj

)
(
e–αt – 1

)2

+
ρ

α

(
pu

m∑

i=1

λi

η2
i

+ qd

n∑

j=1

qj

θ2
j

)
(
1 – e–2αt). (4.4)

Therefore, from (4.1) and (4.4), we can get (4.3). The proof is completed. �

Replace yt and –α in (1.2) to Lt and ν (ν > 0), respectively, and assume that L0 = 0 and
β = 0. Then we have the following model:

dLt = νLt dt + σ dBt + dJt , (4.5)

where Lt denotes the aggregate claim amounts accumulated via a stochastic interest rate
up to time t. Similar to the previous arguments, we get the expectation and variance of
the process Lt .

Proposition 4.3 Assume that the process Lt satisfies dynamics (4.5), (1.3), and (1.4). Then
the expectation and variance of the process Lt are given by

EQ(Lt) =
ρ

ν

(
pu

m∑

i=1

λi

ηi
+ qd

n∑

j=1

qj

θj

)
(
eνt – 1

)
(4.6)
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and

VarQ(Lt) =

[
σ 2

2ν
+

ρ

ν

(
pu

m∑

i=1

λi

η2
i

+ qd

n∑

j=1

qj

θ2
j

)]
(
e2νt – 1

)
. (4.7)

Corollary 4.1 Assume that the process Lt satisfies dynamics (4.5), (1.3), and (1.4) for σ = 0,
ν = δ, pu = 1, qd = 0, and m = 2. Then the expectation and variance of the process Lt are
given by

EQ(Lt) =
ρ

δ

(
λ1

η1
+

λ2

η2

)(
eδt – 1

)
(4.8)

and

VarQ(Lt) =
ρ

δ

(
λ1

η2
1

+
λ2

η2
2

)(
e2δt – 1

)
. (4.9)

Remark 4.1 Léveillé and Garrido [39], Jang [37] studied the moments of the aggregate
accumulated claim amounts and obtained the conclusions (4.8) and (4.9). Since (4.9) is
a special case of (4.7) for σ = 0, pu = 1, qd = 0, and m = 2, we extend the corresponding
results in Léveillé and Garrido [39] and Jang [37].

5 Conclusion
In this paper, we introduce the concept of Vasicek model with mixed-exponential jumps.
We assume that the jump arrival process follows a Poisson process and the jump sizes fol-
low a mixed-exponential distribution. We first describe the structure of the generalized
Vasicek model. Then we give the infinitesimal generator of the vector process (Yt , yt , t),
where yt is the generalized Vasicek model and Yt is the integrated process of yt . By means
of the piecewise deterministic Markov process theory and the martingale property, we
derive the explicit forms of the Laplace transforms for the distribution of the generalized
Vasicek model and its integrated process. Based on the conclusions obtained, we discuss
some applications of the Laplace transforms in finance and insurance. We present the
explicit expressions for the price of the default-free zero-coupon bond, the price of the
European put option on the zero-coupon bond and the moments of the aggregate accu-
mulated claims. Some numerical calculations are also provided in this paper to illuminate
the dynamic relationships between the prices and the parameters used in the model.

As we know, in practice, we might need to employ one of the heavy-tailed distributions
for jump size, such as those of Pareto, Gumbel, and Fréchet, in the cases of extreme in-
surance losses or sudden extreme interest rate rises. However, since it is not likely for us
to obtain the explicit expressions for the Laplace transforms of the distributions of yt and
Yt , we need to use some numerical approaches to calculate the insurance premiums, the
zero-coupon bond, and the European put option prices.
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