
Danh et al. Advances in Difference Equations        (2019) 2019:255 
https://doi.org/10.1186/s13662-019-2191-4

R E S E A R C H Open Access

Regularization of an initial inverse problem
for a biharmonic equation
Hua Quoc Nam Danh1,2, Donal O’Regan3, Van Au Vo4, Binh Thanh Tran5 and Can Huu Nguyen6*

*Correspondence:
nguyenhuucan@tdtu.edu.vn
6Applied Analysis Research Group,
Faculty of Mathematics and
Statistics, Ton Duc Thang University,
Ho Chi Minh City, Vietnam
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the problem of finding the initial distribution for the linear
inhomogeneous biharmonic equation. The problem is severely ill-posed in the sense
of Hadamard. In order to obtain a stable numerical solution, we propose two
regularization methods to solve the problem. We show rigourously, with error
estimates provided, that the corresponding regularized solutions converge to the
true solution strongly in L2 uniformly with respect to the space coordinate under
some a priori assumptions on the solution. Finally, in order to increase the significance
of the study, numerical results are presented and discussed illustrating the theoretical
findings in terms of accuracy and stability.
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1 Introduction
In this paper, we consider the non-homogeneous biharmonic equation

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2u = ∂4u
∂y4 + 2 ∂4u

∂y2 ∂x2 + ∂4u
∂x4 = ρ(y, x), in QL := (0, L) × Ω ,

u(y, x) = �u(y, x) = 0, on ΣL := (0, L) × ∂Ω ,

u(L, x) = g(x), ∂u
∂y u(L, x) = 0, in Ω ,

�u(L, x) = h(x), ∂�u
∂y (L, x) = 0, in Ω ,

(1.1)

where Ω ⊂ R
d , d ≥ 1 is an open bounded domain with a smooth boundary ∂Ω , and the

linear source function ρ ∈L∞(0, L;L2(Ω)). In practice, the data g, h ∈L2(Ω) are noisy and
are represented by the observation data gα , hα ∈L2(Ω) satisfying

∥
∥gα – g

∥
∥
L2(Ω) ≤ α,

∥
∥hα – h

∥
∥
L2(Ω) ≤ α; (1.2)

here α > 0 is a small positive number representing the level of noise.
There are many papers on different methods for approximating solutions to boundary

value problems for elliptic partial differential equations and most are centered on second
order equations where maximum principles are used to obtain asymptotic estimates for
the error [1–5, 7, 8, 11, 13–15, 17–19]. The theory for elliptic equations of order greater
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than two is less developed [8] (note that such equations arise in physics and in engineering
design and they also appear naturally in many areas of mathematics, including conformal
geometry, and nonlinear elasticity [1, 4, 5]).

The prototypical example of a higher-order elliptic operator, well known from the the-
ory of elasticity, is the biharmonic �2 = �(�) = ∇4, and a more general example is the
polyharmonic operator �p = �(�...�)

︸ ︷︷ ︸
p times

, p > 2. The biharmonic equation arises in many

engineering applications such as the deformation of thin plates, the motion of fluids, free
boundary problems, nonlinear elasticity and for historical details we refer the reader to
[2, 3, 7, 14] (for a more elaborate history of the biharmonic problem and the relation with
elasticity from an engineering point of view we refer the reader to the survey of Meleshko
[11]).

In 1928, Covrant et al. [6] posed a difference analog for the first boundary value problem
for the homogeneous biharmonic equation

Lu =
(

∂2u
∂y2 +

∂2u
∂x2

)2

= 0 (1.3)

and proved that the approximate solutions converge to the exact solution as the mesh
is refined (however, no estimates for the error were given). In [10], the authors obtained
necessary and sufficient conditions for existence of a solution for the biharmonic equation
(1.3) in a rectangular domain [0,π ] × [0, L] in the space L2(0,π ). In [9] using a nonlocal
boundary value problem method, convergence of regularized approximation with a priori
parameter choice was proven, provided data noise level tends to zero (however, the authors
did not investigate error estimates). The method of nonlocal boundary value problems for
second order elliptic equations was used by several authors (see [13, 15, 17–19]). There
are many papers on the linear homogeneous case for the biharmonic equation, but, how-
ever, very little is known on regularization theory and numerical simulation for the linear
inhomogeneous case. Our main aim in this paper is to discuss regularized solutions for
problem (1.1). Using the Fourier truncation method introduced in [16], we propose the
regularized solution and give an error estimate.

The paper is organized as follows. In Sect. 2, the formulation of the problem and its ill-
posed property are given. In Sect. 3, stability estimates are proved under a priori condi-
tions on the solution. Numerical results are presented and discussed in Sect. 4 and, finally,
conclusions are summarized in Sect. 5.

2 Preliminaries
2.1 Notations and assumptions
We begin this section by introducing some notations and assumptions that are needed for
our analysis in the next sections.

Definition 2.1 Without loss of generality, we assume that –� has the eigenvalues λm

(m ∈N
∗):

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ↗ ∞, (2.1)

and the corresponding eigenelements ξm(x), which form an orthonormal basis in L2(Ω).
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Definition 2.2 (Hilbert scale space, see [12]) The Hilbert scale space H
p, (p > 0) defined

by

H
p :=

{

f ∈L2(Ω) :
∞∑

m=1

λ2p
m
〈
f , ξm(x)

〉2
L2(Ω) ≤ ∞

}

, (2.2)

is equipped with the norm defined by

‖f ‖2
Hp =

∞∑

m=1

λ2p
m
∣
∣
〈
f , ξm(x)

〉

L2(Ω)

∣
∣2 ≤ ∞. (2.3)

For a Hilbert space X, we denote by Lp(0, L; X) (respectively, C([0, L]; X)) the Banach space
of measurable (respectively, continuous) functions f : [0, L] → X, such that

‖f ‖Lp(0,L;X) =
(∫ L

0

∥
∥f (y)

∥
∥p

X dy
)1/p

< ∞, 1 ≤ p < ∞,

‖f ‖L∞(0,L;X) = ess sup
0≤y≤L

∥
∥f (y)

∥
∥

X < ∞, p = ∞,

respectively,

‖f ‖C([0,L];X) = sup
0≤y≤L

∥
∥f (y)

∥
∥

X < ∞.

Throughout this paper, the function ρ is perturbed so as to contain errors in the form
of noisy ρα ∈L∞(0, L;L2(Ω)) satisfying

∥
∥ρα – ρ

∥
∥
L∞(0,L;L2(Ω)) ≤ α. (2.4)

2.2 Mild solution and ill-posed of problem (1.1)
The solution to problem (1.1) can be represented in the form of an expansion in the or-
thogonal series

u(y, x) =
∞∑

m=1

um(y)ξm(x), with um(y) =
〈
u(y, x), ξm(x)

〉

L2(Ω). (2.5)

By considering that the series (2.5) converges and allows a term by term differentiation
(the required number of times), we construct a formal solution to the problem. We obtain
the problems

⎧
⎪⎪⎨

⎪⎪⎩

u(4)
m (y) – 2λmu′′

m(y) + λ2
mum(y) = ρm(y), y ∈ (0, L),

um(L) = gm, u′
m(L) = 0,

u′′
m(L) – λmum(L) = hm, u′′′

m(L) – λmu′
m(L) = 0.

(2.6)

Here gm, hm and ρm(y) are Fourier coefficients of the expansion according to the orthonor-
mal basis {ξm(x)}m∈N∗ of the functions g(x), h(x) and ρ(y, x), respectively:

g(x) =
∞∑

m=1

gmξm(x), h(x) =
∞∑

m=1

hmξm(x),
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ρ(y, x) =
∞∑

m=1

ρm(y)ξm(x).

By direct calculation, the solution to problem (2.6) has the form

um(y) = cosh
(√

λm(L – y)
)
gm +

(L – y) sinh(
√

λm(L – y))
2
√

λm
hm

+
∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

ρm(σ ) dσ

+
∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

ρm(σ ) dσ . (2.7)

Substituting the result into (2.5), we obtain the formal solution to problem (1.1).
Next, we give an example which shows that the solution of problem (1.1) does not de-

pend continuously on the final data.

Example For any j ∈N
∗, let g̃j, h̃j and ρ̃j be as follows:

⎧
⎨

⎩

g̃j(x) := ξj(x)√
λj

, h̃j(x) = 0,

ρ̃(y, x) := e–λjL

L ξj(x), ∀y ∈ [0, L].
(2.8)

Let ũj be the solution of (1.1) with g̃j, h̃j and ρ̃j. One has

∥
∥̃uj(y, ·)∥∥L2(Ω)

≥
∥
∥
∥
∥
∥

∞∑

m=1

cosh
(√

λm(L – y)
)〈

g̃(x), ξm(x)
〉

L2(Ω)ξm(x)

∥
∥
∥
∥
∥
L2(Ω)

–

∥
∥
∥
∥
∥

∞∑

m=1

∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

〈
ρ̃(σ , x), ξm(x)

〉

L2(Ω) dσξm(x)

∥
∥
∥
∥
∥
L2(Ω)

–

∥
∥
∥
∥
∥

∞∑

m=1

∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

〈
ρ̃(σ , x), ξm(x)

〉

L2(Ω) dσξm(x)

∥
∥
∥
∥
∥
L2(Ω)

=
∥
∥
∥
∥cosh

(√
λj(L – y)

)ξj(x)
√

λj

∥
∥
∥
∥
L2(Ω)

–
∥
∥
∥
∥

∫ L

y

(σ – y) cosh(
√

λj(σ – y))
2λj

e–λjL

L
dσξj(x)

∥
∥
∥
∥
L2(Ω)

–

∥
∥
∥
∥
∥

∞∑

j=1

∫ L

y

sinh(
√

λj(σ – y))
2λj

√
λj

e–λjL

L
dσξj(x)

∥
∥
∥
∥
∥
L2(Ω)

.

Since z > 0, we have

ez

2
≤ cosh(z) ≤ ez,

ez – 1
2

≤ sinh(z) ≤ ez, (2.9)
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and it follows that

∥
∥̃uj(y, ·)∥∥L2(Ω) ≥ e(L–y)

√
λj

2
√

λj
–

∫ L

y

(
1

2λj
+

1
2Lλj

√
λj

)

dσ

=
e(L–y)

√
λj

2
√

λj
–

(
L

2λj
+

1
2λj

√
λj

)

≥ e(L–y)
√

λj

2
√

λj
–

(
L

2λj
+

1
2λj

√
λj

)

, 0 ≤ y < L. (2.10)

Hence, we deduce that

‖̃uj‖L∞(0,L;L2(Ω)) = ess sup
0≤y≤L

∥
∥̃u(y, ·)∥∥L2(Ω)

≥ eL
√

λj

2
√

λj
–

(
L

2λj
+

1
2λj

√
λj

)

, (2.11)

as j → ∞, we see that (for 0 ≤ y < L)

lim
j→∞

(‖̃g‖L2(Ω) + ‖̃h‖L2(Ω)
)

= 0, (2.12)

lim
j→∞‖̃uj‖L∞(0,L;L2(Ω)) ≥ lim

j→∞

[
eL

√
λj

2
√

λj
–

(
L

2λj
+

1
2λj

√
λj

)]

= +∞. (2.13)

Thus our problem is ill-posed in the Hadamard sense in the L2(Ω)-norm.

3 Regularization and error estimate
In order to obtain stable numerical solutions, we propose two regularization methods
to solve the problem. As was shown in the previous section, for the linear biharmonic
problem (1.1), its solution (true solution) can be represented as an integral equation which
contains some instability terms. Indeed, we find that the four functions

cosh(
√

λmz), sinh(
√

λmz), z > 0,

in (2.7) are unbounded, as functions of the variable m, for y ∈ (0, L). Consequently, small
errors in high frequency components can blow up and completely destroy the solution
for y ∈ (0, L). A natural idea to stabilize the problem is to eliminate all high frequencies
(truncation method) or to replace them by a bounded approximation (quasi-boundary
value method). We introduce two bounded operators as follows:

• For f ∈ C([0, L];L2(Ω)), we define

Q̂γ (α)f (y, x) =
∞∑

m=1

Iγ (α)
L,m

〈
f (y, x), ξm(x)

〉

L2(Ω)ξm(x), (3.1)
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where

Iγ (α)
L,m =

(
1 + γ (α)

√
λme

√
λmL)–1, ∀m ∈N

∗,

and γ (α) > 0 is the parameter regularization which satisfies

lim
α→0+

γ (α) = 0. (3.2)

• For f ∈ C([0, L];L2(Ω)), we define

B̂Mα f (y, x) =
∑

m∈T†
α

〈
f (y, x), ξm(x)

〉

L2(Ω)ξm(x), (3.3)

where

T
†
α :=

{
m ∈N

∗|λm ≤ Mα

}
,

and Mα > 0 is the parameter regularization which satisfies

lim
α→0+

Mα = +∞. (3.4)

3.1 The main results
3.1.1 Result for quasi-boundary value method
Let us consider the following well-posed problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2uγ (α) = Q̂γ (α)ρα(y, x), in QL,

uγ (α) = �uγ (α) = 0, on ΣL,

uγ (α)(L, x) = Q̂γ (α)gα(x), ∂uα

∂y (L, x) = 0, in Ω ,

�uγ (α)(L, x) = Q̂γ (α)hα(x), ∂�uγ (α)

∂y (L, x) = 0, in Ω .

(3.5)

Theorem 3.1 ((QBV) method) Assume that the exact solution u of (1.1) satisfies

‖u‖L∞(0,L;Hp+1(Ω)) ≤ E1, (3.6)

where p, E1 are positive constants. Choose γ (α) ∈ (0, 1) such that
⎧
⎨

⎩

limα→0+ γ (α) = 0,

limα→0+ α
γ (α) = finite.

(3.7)

Then the estimate

∥
∥uγ (α)(y, ·) – u(y, ·)∥∥L2(Ω) ≤ C(λ1, L)

log( L
γ (α) )

(
α

γ (α)
+ E1

)

(3.8)

holds.

Remark 3.1 From condition (3.7), if we choose γ (α) = αk for some k ∈ (0, 1), then the error
estimate in (3.8) is of order α1–k

log( L
αk )

, which tends to zero as α → 0+.
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3.1.2 Result for truncation method
Next, we propose a second regularized solution uα solving the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2uα = B̂Mαρα(y, x), in QL,

uα = �uα = 0, on ΣL,

uα(L, x) = B̂Mα gα(x), ∂uα

∂y (L, x) = 0, in Ω ,

�uα(L, x) = B̂Mα hα(x), ∂�uα

∂y (L, x) = 0, in Ω .

(3.9)

Theorem 3.2 ((TR) method). Suppose that the problem (1.1) has a solution u satisfying

‖u‖L∞(0,L;Hp(Ω)) ≤ E2, (3.10)

for some known constant E2 > 0. Assume that we can choose Mα > 0 such that

⎧
⎨

⎩

limα→0+ Mα = +∞,

limα→0+ αeL
√

Mα = 0.
(3.11)

Then

∥
∥uα(y, ·) – u(y, ·)∥∥L2(Ω) ≤ Ce

√
MαLα +

E2

Mp
α

. (3.12)

Remark 3.2 Let us choose Mα = 1
L2 log2(α–), for some  ∈ (0, 1). Then the hypothesis

lim
α→0+

αeL
√

Mα = 0,

is fulfilled and (3.12) is of order

max

{

α1–;
1

log2p(α–)

}

, p ∈N
∗. (3.13)

Theorem 3.3 (Estimate H
p) Let us choose Mα > 0 such that limα→0+ Mα = ∞ and

lim
α→0+

αMp
αe

√
MαL < ∞. (3.14)

Assume further that the problem (1.1) has a unique exact solution u satisfying u ∈
L∞(0, L;Hp+q), for p, q > 0. Then, for all y ∈ [0, L], we have

∥
∥uα(y, ·) – u(y, ·)∥∥

Hp(Ω)

≤ C(λ1, L)Mp
αe

√
MαLα + M–q

α ‖u‖L∞(0,L;Hp+q(Ω)). (3.15)

Remark 3.3 Let any χ ∈ (0, 1). We choose

Mα =
log2(α–χ )

L2 −→ ∞, as α goes to 0+.
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Then condition (3.14) is satisfied as α → 0+ and the right-hand side of (3.15) is of order

max

{

log2p(α–χ
)
α1–χ ;

1
log2q(α–χ )

}

, p, q > 0. (3.16)

3.2 Proof of Theorem 3.1
Problem (3.5) can be rewritten as the following integral equation:

uγ (α)(y, x) =
∞∑

m=1

[
coshγ (α)(

√
λm(L – y)

)
gα

m
]
ξm(x)

+
∞∑

m=1

[
(L – y) sinhγ (α)(

√
λm(L – y))

2
√

λm
hα

m

]

ξm(x)

+
∞∑

m=1

[∫ L

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

ρα
m(σ ) dσ

]

ξm(x)

+
∞∑

m=1

[∫ L

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

ρα
m(σ ) dσ

]

ξm(x), (3.17)

where we define the operators for z > 0

coshγ (α)(
√

λmz) := Iγ (α)
L,m cosh(

√
λmz), (3.18)

sinhγ (α)(
√

λmz) := Iγ (α)
L,m sinh(

√
λmz), (3.19)

and

gα
m =

〈
gα(x), ξm(x)

〉

L2(Ω), hα
m =

〈
hα(x), ξm(x)

〉

L2(Ω),

ρα
m(σ ) =

〈
ρα(x,σ ), ξm(x)

〉

L2(Ω).

First, we shall prove some inequalities which will be used in the main part of our proof.
The following lemma is proved directly (we omit the proof ).

Lemma 3.1 For z ≥ 0, we have

(a)
∣
∣cosh(

√
λmz)

∣
∣ ≤ e

√
λmz, (3.20a)

(b)
∣
∣sinh(

√
λmz)

∣
∣ ≤ e

√
λmz. (3.20b)

We need the following lemma.

Lemma 3.2 For z ∈ [0, L]. The following estimates hold

(a)
∣
∣coshγ (α)(

√
λmz)

∣
∣ ≤

[
L

γ (α) log( L
γ (α) )

] z
L

, (3.21a)

(b)
∣
∣sinhγ (α)(

√
λmz)

∣
∣ ≤

[
L

γ (α) log( L
γ (α) )

] z
L

. (3.21b)
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Proof (a) We have

∣
∣coshγ (α)(

√
λmz)

∣
∣ =

∣
∣Iγ (α)

L,m
∣
∣
∣
∣cosh(

√
λmz)

∣
∣,

≤ e
√

λmz

1 + γ (α)
√

λme
√

λmL
=

e–
√

λm(L–z)

γ (α)
√

λm + e–
√

λmL

=
e–

√
λmy

(γ (α)
√

λm + e–
√

λmL)
L–z

L (γ (α)
√

λm + e–
√

λmL)
z
L

≤ 1
(γ (α)

√
λm + e–

√
λmL)

z
L

. (3.22)

On other hand, it is easy to see that

f (ν) =
1

cν + e–νL ≤ L
c log( L

c )
,

for 0 < c < Le. Hence if γ (α) < Le, then we obtain

1
γ (α)

√
λm + e–

√
λmL

≤ L
γ (α) log( L

γ (α) )
. (3.23)

It follows from (3.22) that

1
(γ (α)

√
λm + e–

√
λmL)

z
L

≤
[

L
γ (α) log( L

γ (α) )

] z
L

. (3.24)

The proof of (b) is similar. This completes the proof of the lemma. �

We are now in a position to prove the theorem.

Proof of Theorem 3.1 Using the triangle inequality, we have

∥
∥uγ (α)(y, ·) – u(y, ·)∥∥L2(Ω)

≤ ∥
∥uγ (α)(y, ·) – Q̂γ (α)u(y, ·)∥∥L2(Ω)
︸ ︷︷ ︸

Ãα

+
∥
∥Q̂γ (α)u(y, ·) – u(·, y)

∥
∥
L2(Ω)

︸ ︷︷ ︸
B̃α

. (3.25)

We observe that

Q̂γ (α)u(y, x) =
∞∑

m=1

[
coshγ (α)(

√
λm(L – y)

)
gm

]
ξm(x)

+
∞∑

m=1

[
(L – y) sinhγ (α)(

√
λm(L – y))

2
√

λm
hm

]

ξm(x)

+
∞∑

m=1

[∫ L

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

ρm(σ ) dσ

]

ξm(x)

+
∞∑

m=1

[∫ L

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

ρm(σ ) dσ

]

ξm(x). (3.26)
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We first estimate the term Ãα . Combining with (2.7) and (3.17) we obtain

uγ (α)(y, x) – Q̂γ (α)u(y, x)

=
∞∑

m=1

[
coshγ (α)(

√
λm(L – y)

)(
gα

m – gm
)]

ξm(x)

+
∞∑

m=1

[
(L – y) sinhγ (α)(

√
λm(L – y))

2
√

λm

(
hα

m – hm
)
]

ξm(x)

+
∞∑

m=1

[∫ L

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

]

ξm(x)

+
∞∑

m=1

[∫ L

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

]

ξm(x). (3.27)

From Parseval’s relation we obtain

∣
∣Ãα

∣
∣2 = 4

∞∑

m=1

∣
∣coshγ (α)(

√
λm(L – y)

)∣
∣2∣∣gα

m – gm
∣
∣2

+ 4
∞∑

m=1

∣
∣
∣
∣
(L – y) sinhγ (α)(

√
λm(L – y))

2
√

λm

∣
∣
∣
∣

2∣
∣hα

m – hm
∣
∣2

+ 4
∞∑

m=1

∣
∣
∣
∣

∫ L

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

+ 4
∞∑

m=1

∣
∣
∣
∣

∫ L

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

= Aα
1 + Aα

2 + Aα
3 + Aα

4 . (3.28)

Using (3.21a) we have

∣
∣Aα

1
∣
∣ = 4

∞∑

m=1

∣
∣coshγ (α)(

√
λm(L – y)

)∣
∣2∣∣gα

m – gm
∣
∣2

≤ 4
[

L
γ (α) log( L

γ (α) )

] 2L–2y
L ∞∑

m=1

∣
∣gα

m – gm
∣
∣2

≤ 4
[

L
γ (α) log( L

γ (α) )

] 2L–2y
L ∥

∥gα – g
∥
∥2
L2(Ω)

≤ 4
[

L
γ (α) log( L

γ (α) )

]2

α2, (3.29)

where we have used the elementary inequality ez ≥ z, for z > 0 which leads to

L
γ (α) log( L

γ (α) )
> 1,
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and thus it follows that

[
L

γ (α) log( L
γ (α) )

] L–y
L ≤ L

γ (α) log( L
γ (α) )

, 0 ≤ y < L.

It follows from (3.21b) that

∣
∣Aα

2
∣
∣ = 4

∞∑

m=1

∣
∣
∣
∣
(L – y) sinhγ (α)(

√
λm(L – y))

2
√

λm

∣
∣
∣
∣

2∣
∣hα

m – hm
∣
∣2

≤ L2

λ1

[
L

γ (α) log( L
γ (α) )

] 2L–2y
L ∞∑

m=1

∣
∣hα

m – hm
∣
∣2

≤ L2

λ1

[
L

γ (α) log( L
γ (α) )

] 2L–2y
L ∥

∥hα – h
∥
∥2
L2(Ω)

≤ L2

λ1

[
L

γ (α) log( L
γ (α) )

]2

α2. (3.30)

Using Hölder’s inequality, (3.21a) and (2.4), one has

∣
∣Aα

3
∣
∣ = 4

∞∑

m=1

∣
∣
∣
∣

∫ L

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

≤ 4
∞∑

m=1

(L – y)
∫ L

y

∣
∣
∣
∣
(σ – y) coshγ (α)(

√
λm(σ – y))

2λm

∣
∣
∣
∣

2∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ L3

λ2
1

∫ L

y

[
L

γ (α) log( L
γ (α) )

] 2σ–2y
L ∞∑

m=1

∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ L4

λ2
1

[
L

γ (α) log( L
γ (α) )

]2∥
∥ρα – ρ

∥
∥2
L∞(0,L;L2(Ω))

≤ L4

λ2
1

[
L

γ (α) log( L
γ (α) )

]2

α2. (3.31)

Thus from (2.4) and (3.21b), by the Hölder inequality, we have

∣
∣Aα

4
∣
∣ = 4

∞∑

m=1

∣
∣
∣
∣

∫ L

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

≤ 4
∞∑

m=1

(L – y)
∫ L

y

∣
∣
∣
∣
sinhγ (α)(

√
λm(σ – y))

2λm
√

λm

∣
∣
∣
∣

2∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ L
λ3

1

[
L

γ (α) log( L
γ (α) )

]2∥
∥ρα – ρ

∥
∥2
L∞(0,L;L2(Ω))

≤ L2

λ3
1

[
L

γ (α) log( L
γ (α) )

]2

α2. (3.32)
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Combining (3.28)–(3.32) yields

∣
∣Ãα

∣
∣ =

C(λ1, L)
log( L

γ (α) )
α

γ (α)
, (3.33)

where C(λ1, L) is a positive constant that depends on λ1, L but it is independent of y and
m. Next we have

Q̂γ (α)u(y, x) – u(y, x) =
∞∑

m=1

[
Iγ (α)

L,m um(y) – um(y)
]
ξm(x).

It follows from Parseval’s relation that

∣
∣B̃α

∣
∣2 =

∥
∥Q̂γ (α)u(y, ·) – u(y, ·)∥∥2

L2(Ω) =
∞∑

m=1

∣
∣Iγ (α)

L,m um(y) – um(y)
∣
∣2

=
∞∑

m=1

∣
∣1 – Iγ (α)

L,m
∣
∣2∣∣um(y)

∣
∣2

=
∞∑

m=1

∣
∣
∣
∣

γ (α)
√

λme
√

λmL

1 + γ (α)
√

λme
√

λmL

∣
∣
∣
∣

2∣
∣um(y)

∣
∣2

=
∞∑

m=1

γ 2(α)
∣
∣
∣
∣

1
γ (α)

√
λm + e–

√
λmL

∣
∣
∣
∣

2

λm
∣
∣um(y)

∣
∣2.

Using inequality (3.23), we get

∣
∣B̃α

∣
∣2 ≤ γ 2(α)

λ
1+2p
1

[
L

γ (α) log( L
γ (α) )

]2 ∞∑

m=1

λ2(1+p)
m

∣
∣um(y)

∣
∣2

≤ γ 2(α)
λ

1+2p
1

[
L

γ (α) log( L
γ (α) )

]2

‖u‖2
L∞(0,L;Hp+1(Ω))

≤
[

C(λ1, L)E1

log( L
γ (α) )

]2

, (3.34)

for C(λ1, L) a positive constant which depends on L and λ1. Hence, we get

∣
∣B̃α

∣
∣ ≤ C(λ1, L)E1

log( L
γ (α) )

. (3.35)

Combining (3.25), (3.33) and (3.35), we deduce that

∥
∥uγ (α)(y, ·) – u(y, ·)∥∥L2(Ω) ≤ C(λ1, L)

log( L
γ (α) )

α

γ (α)
+

C(λ1, L)E1

log( L
γ (α) )

, (3.36)

which leads to (3.8). The proof of Theorem 3.1 is completed. �

3.3 Proof of Theorem 3.2
It is easy to verify the following result.
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Lemma 3.3 For z ≥ 0 and λm ≤ Mα , we have

(a)
∣
∣cosh(

√
λmz)

∣
∣ ≤ e

√
Mαz, (3.37a)

(b)
∣
∣sinh(

√
λmz)

∣
∣ ≤ e

√
Mαz. (3.37b)

The solution of the regularized problem (3.9) is given by

uα(y, x) =
∑

m∈T†
α

[
cosh

(√
λm(L – y)

)
gα

m
]
ξm(x)

+
∑

m∈T†
α

[
(L – y) sinh(

√
λm(L – y))

2
√

λm
hα

m

]

ξm(x)

+
∑

m∈T†
α

[∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

ρα
m(σ ) dσ

]

ξm(x)

+
∑

m∈T†
α

[∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

ρα
m(σ ) dσ

]

ξm(x). (3.38)

By the triangle inequality, one has

∥
∥uα(y, ·) – u(y, ·)∥∥L2(Ω)

≤ ∥
∥uα(y, ·) – B̂Mα u(y, ·)∥∥L2(Ω)
︸ ︷︷ ︸

J̃ α

+
∥
∥B̂Mα u(y, ·) – u(y, ·)∥∥L2(Ω)
︸ ︷︷ ︸

K̃α

. (3.39)

It is straightforward to see that

B̂Mα u(y, x) =
∑

m∈T†
α

[
cosh

(√
λm(L – y)

)
gm

]
ξm(x)

+
∑

m∈T†
α

[
(L – y) sinh(

√
λm(L – y))

2
√

λm
hm

]

ξm(x)

+
∑

m∈T†
α

[∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

ρm(σ ) dσ

]

ξm(x)

+
∑

m∈T†
α

[∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

ρm(σ ) dσ

]

ξm(x). (3.40)

Observe that, from (2.7) and (3.2), we get

uα(y, x) – B̂Mα u(y, x)

=
∑

m∈T†
α

[
cosh

(√
λm(L – y)

)(
gα

m – gm
)]

ξm(x)

+
∑

m∈T†
α

[
(L – y) sinh(

√
λm(L – y))

2
√

λm

(
hα

m – hm
)
]

ξm(x)
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+
∑

m∈T†
α

[∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

]

ξm(x)

+
∑

m∈T†
α

[∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

]

ξm(x). (3.41)

Using Parseval’s relation coupled with the basic inequality (a + b + c + d)4 ≤ 4(a2 + b2 + c2 +
c2), we have

∣
∣J̃ α

∣
∣2 ≤ 4

∑

m∈T†
α

∣
∣cosh

(√
λm(L – y)

)(
gα

m – gm
)∣
∣2

+ 4
∑

m∈T†
α

∣
∣
∣
∣
(L – y) sinh(

√
λm(L – y))

2
√

λm

(
hα

m – hm
)
∣
∣
∣
∣

2

+ 4
∑

m∈T†
α

∣
∣
∣
∣

∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

+ 4
∑

m∈T†
α

∣
∣
∣
∣

∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

= Jα
1 + Jα

2 + Jα
3 + Jα

4 . (3.42)

We first estimate the term Jα
1 . Using (3.37a) and (1.2), one has

∣
∣Jα

1
∣
∣ ≤ 4

∑

m∈T†
α

e2
√

Mα (L–y)∣∣gα
m – gm

∣
∣2

≤ 4e2
√

MαL
∞∑

m=1

∣
∣gα

m – gm
∣
∣2

≤ 4e2
√

MαL∥∥gα – g
∥
∥2
L2(Ω) ≤ 4e2

√
MαLα2. (3.43)

It follows from (3.37b) and (1.2) that

∣
∣Jα

2
∣
∣ ≤ 4

∑

m∈T†
α

∣
∣
∣
∣
(L – y) sinh(

√
λm(L – y))

2
√

λm

∣
∣
∣
∣

2∣
∣hα

m – hm
∣
∣2

≤ L2
∑

m∈T†
α

e2
√

Mα (L–y)

λ1

∣
∣hα

m – hm
∣
∣2 ≤ L2e2

√
MαL

λ1

∞∑

m=1

∣
∣hα

m – hm
∣
∣2

≤ L2e2
√

MαL

λ1

∥
∥hα – h

∥
∥2
L2(Ω) ≤ L2e2

√
MαLα2

λ1
. (3.44)

For Jα
3 , applying Hölder’s inequality and using (3.37a) coupled with (2.4) we have

∣
∣Jα

3
∣
∣ ≤ 4

∑

m∈T†
α

(L – y)
∫ L

y

∣
∣
∣
∣
(σ – y) cosh(

√
λm(σ – y))

2λm

∣
∣
∣
∣

2∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ
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≤ L
∑

m∈T†
α

∫ L

y

(σ – y)2e2
√

Mα (σ–y)

λ2
1

∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ L3

λ2
1

e2
√

MαL
∫ L

y

∞∑

m=1

∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ L3

λ2
1

e2
√

MαL
∫ L

y

∥
∥ρα(·,σ ) – ρ(·,σ )

∥
∥2
L2(Ω) dσ

≤ L4

λ2
1

e2
√

MαL∥∥ρα – ρ
∥
∥2
L∞(0,L;L2(Ω)) ≤ L4

λ2
1

e2
√

MαLα2. (3.45)

Similarly, from (3.37b), (2.4) and Hölder’s inequality, we deduce that

∣
∣Jα

4
∣
∣ = 4

∑

m∈T†
α

∣
∣
∣
∣

∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

≤
∑

m∈T†
α

L
∫ L

y

e2
√

Mα (σ–y)

λ3
1

∣
∣ρα

m(σ ) – ρm(σ )
∣
∣2 dσ

≤ Le2
√

MαL

λ3
1

∫ L

y

∥
∥ρα(·,σ ) – ρ(·,σ )

∥
∥2
L2(Ω) dσ

≤ L2e2
√

MαL

λ3
1

∥
∥ρα – ρ

∥
∥2
L∞(0,L;L2(Ω)) ≤ L2e2

√
MαL

λ3
1

α2. (3.46)

Combining (3.42)–(3.46), we conclude that

∣
∣J̃ α

∣
∣ ≤ C(λ1, L)e

√
MαLα. (3.47)

Also we have

∣
∣K̃α

∣
∣2 =

∑

m∈N∗\T†
α

|〈u(y, x), ξm(x)
〉

L2(Ω)|2

≤
∑

m∈N∗\T†
α

λ–2p
m

[
λ2p

m
∣
∣
〈
u(y, x), ξm(x)

〉

L2(Ω)

∣
∣2]

≤ M–2p
α

∑

m∈N∗\T†
α

λ2p
m
∣
∣
〈
u(y, x), ξm(x)

〉

L2(Ω)

∣
∣2

≤ M–2p
α ‖u‖2

L∞(0,L;Hp(Ω)). (3.48)

Combining (3.39), (3.47) and (3.48), we get

∥
∥uα(y, ·) – u(y, ·)∥∥L2(Ω) ≤ C(λ1, L)e

√
MαLα +

E2

Mp
α

. (3.49)

This completes the proof of the theorem.
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3.4 Proof of Theorem 3.3

Proof Using the triangle inequality, we deduce that

∥
∥uα(y, ·) – u(y, ·)∥∥

Hp(Ω)

≤ ∥
∥uα(y, ·) – B̂Mα u(y, ·)∥∥

Hp(Ω) +
∥
∥u(y, ·) – B̂Mα u(y, ·)∥∥

Hp(Ω). (3.50)

From (3.41), we have

∥
∥uα(y, ·) – B̂Mα u(y, ·)∥∥2

Hp(Ω)

≤ 4
∑

m∈T†
α

λ2p
m
∣
∣cosh

(√
λm(L – y)

)(
gα

m – gm
)∣
∣2

+ 4
∑

m∈T†
α

λ2p
m

∣
∣
∣
∣
(L – y) sinh(

√
λm(L – y))

2
√

λm

(
hα

m – hm
)
∣
∣
∣
∣

2

+ 4
∑

m∈T†
α

λ2p
m

∣
∣
∣
∣

∫ L

y

(σ – y) cosh(
√

λm(σ – y))
2λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

+ 4
∑

m∈T†
α

λ2p
m

∣
∣
∣
∣

∫ L

y

sinh(
√

λm(σ – y))
2λm

√
λm

(
ρα

m(σ ) – ρm(σ )
)

dσ

∣
∣
∣
∣

2

. (3.51)

Using similar arguments to obtaining (3.47), we deduce that

∥
∥uα(y, ·) – B̂Mα u(y, ·)∥∥

Hp(Ω) ≤ C(λ1, L)Mp
αe

√
MαLα. (3.52)

Similarly, we infer from (3.48) that

∥
∥u(y, ·) – B̂Mα u(y, ·)∥∥

Hp(Ω)

=
∑

m∈N∗\T†
α

λ2p
m
∣
∣
〈
u(y, x), ξm(x)

〉

L2(Ω)

∣
∣2

≤ M–2q
α

∑

m∈N∗\T†
α

λ2p+2q
m

∣
∣
〈
u(y, x), ξm(x)

〉

L2(Ω)

∣
∣2

≤ M–2q
α ‖u‖2

L∞(0,L;Hp+q(Ω)). (3.53)

Combining (3.50), (3.52) and (3.53), we get

∥
∥uα(y, ·) – u(y, ·)∥∥

Hp(Ω)

≤ C(λ1, L)Mp
αe

√
MαLα + M–q

α ‖u‖L∞(0,L;Hp+q(Ω)), (3.54)

leading as a result to (3.15). �

4 Numerical results
In this section, we provide an example to illustrate how the proposed regularized solution
approximates the exact solution for the biharmonic elliptic problem. Let QL := (0, 1) ×
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(0,π ), and the problem has the following form:

�2u = – sin(x)
(
–2 sin(x) cosh(y – 1)y2 + 2 sin(x) cosh(y – 1)2

+ 4 sin(x) cosh(y – 1)y + 4 sin(x)y2 – 6 sin(x) cosh(y – 1)

– 8 sin(x)y – y2 + 4 sin(x) + 2 cosh(y – 1) + 2y – 1
)
, (4.1)

subject to the conditions given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(y, 0) = �u(y, 0) = 0, y ∈ (0, 1),

u(y,π ) = �u(y,π ) = 0, y ∈ (0, 1),

u(1, x) = – sin(x), ∂u
∂y u(1, x) = 0, x ∈ (0,π ),

�u(1, x) = 2 sin(x), ∂�u
∂y (1, x) = 0, x ∈ (0,π ).

(4.2)

The eigenvalues and eigenvectors of the operator –� depend on the specified boundary
conditions. For the Dirichlet boundary conditions, the eigenvalues are λm = m2 and the
corresponding eigenelements ξm(x) =

√
2
π

sin(mx) which form an orthonormal basis in
L2(0,π ).

Then we have the exact solution

u(y, x) =
[
(y – 1)2 – cosh(y – 1)

]
sin(x). (4.3)

Next, we generate the final measurement data with noise by

⎧
⎨

⎩

gα(x) = α rand(size(g)) – sin(x),

hα(x) = α rand(size(h)) + 2 sin(x).
(4.4)

For the discretization, a uniform grid of mesh points (xi, yj) is used to discretize the space
and time intervals for i = 1, Nx + 1, j = 1, Ny + 1,

�x =
π

Nx
, �y =

1
Ny

, xi =
(i – 1)π

Nx
, yj =

(j – 1)π
Ny

.

The inner product in L2(0,π ) can be approximated by the 1-D composite Simpson rule of
numerical integration as

∫ π

0
f (x) dx ≈ π

3(Nx + 1)

(Nx+1)/2∑

k=1

[
f (x2k–2) + 4f (x2k–1) + f (x2k))

]
, (4.5)

where xk = kπ
Nx+1 , x0 = 0, xNx+1 = π .

The regularized solution of the problem (4.1)–(4.2) is as follows:

uγ (α)(y, x)

=
√

2
π

∞∑

m=1

[
coshγ (α)(

√
λm(1 – y)

)
gα

m
]

sin(mx)
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+
√

2
π

∞∑

m=1

[
(1 – y) sinhγ (α)(

√
λm(1 – y))

2
√

λm
hα

m

]

sin(mx)

+
√

2
π

∞∑

m=1

[∫ 1

y

(σ – y) coshγ (α)(
√

λm(σ – y))
2λm

ρα
m(σ ) dσ

]

sin(mx)

+
√

2
π

∞∑

m=1

[∫ 1

y

sinhγ (α)(
√

λm(σ – y))
2λm

√
λm

ρα
m(σ ) dσ

]

sin(mx), (4.6)

where we define the operators for z > 0

coshγ (α)(
√

λmz) := Iγ (α)
L,m cosh(

√
λmz), (4.7)

sinhγ (α)(
√

λmz) := Iγ (α)
L,m sinh(

√
λmz), (4.8)

and

gα
m =

〈

gα(x),
√

2
π

sin(mx)
〉

L2(0,π )
, hα

m =
〈

hα(x),
√

2
π

sin(mx)
〉

L2(0,π )
,

ρα
m(σ ) =

〈

ρα(x,σ ),
√

2
π

sin(mx)
〉

L2(0,π )
.

The relative errors are evaluated by

Err =
‖u – uγ (α)‖L2(0,π )

‖u‖L2(0,π )
. (4.9)

Here, we present graphs illustrating the numerical example, which we are considering.
Table 1 shows that the smaller α, the smaller the error between the exact solution and the
regularized solution, and the errors are acceptable. Specifically, in Fig. 1, we can see the
evaluation results at y = 0.1 and y = 0.3. Moreover, we also show 3D graphs of the exact
and regularized solutions throughout the domain (0, 1) × (0,π ) in Fig. 2. Seen from that
point of view, the result of the method of correction is effective.

5 Conclusions
Problem (1.1) was solved using two regularization methods based on problems (3.1) and
(3.2). Convergence and stability estimates, as the noise level tends to zero, are formu-
lated and proved. Numerical examples support the theoretical findings of the paper. In
future work we hope to consider extending the current study to nonlinear sources to
allow for an even wider range of physical applications in for example nonlinear elastic-
ity.

Table 1 The errors between the exact solution and the regularized solution at y = 0.1 and y = 0.3 for
α ∈ {0.1; 0.01; 0.001}
Errors α = 10–1 α = 10–2 α = 10–3

Err(y = 0.1) 0.0575122776 0.0335725277 0.0267921267
Err(y = 0.3) 0.1107632402 0.0724465656 0.0348216443
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Figure 1 The exact and regularized solutions at y = 0.1 (a) and y = 0.3 (b) for α ∈ {10–1, 10–2, 10–3}

Figure 2 3D graphs of the exact and regularized solutions
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