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Abstract
The aim of this paper is to study Jindalrae and Gaenari numbers and polynomials in
connection with Jindalrae–Stirling numbers of the first and second kinds. For this
purpose, we first introduce Jindalrae–Stirling numbers of the first and second kinds as
extensions of the notions of the degenerate Stirling numbers of the first and second
kinds, and deduce several relations involving those special numbers. Then we
introduce Jindalrae and Gaenari numbers and polynomials and obtain some explicit
expressions and identities associated with those numbers and polynomials. In
addition, we interpret our results by using umbral calculus.
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1 Introduction and preliminaries
Let n be a nonnegative integer. Then the Stirling numbers of the first kind are defined as

(x)n =
n∑

l=0

S1(n, l)xl (
see [5]

)
, (1)

where (x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1), whereas the Stirling numbers of the
second kind are given by

xn =
n∑

l=0

S2(n, l)(x)l
(
see [10, 18]

)
. (2)

By (1) and (2), we get

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(k ≥ 0) (3)
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and

1
k!

(
log(1 + t)

)k =
∞∑

n=k

S1(n, k)
tn

n!
(k ≥ 0). (4)

It is well known that the Bell polynomials are defined as

ex(et–1) =
∞∑

n=0

Bn(x)
tn

n!
(
see [13, 19]

)
. (5)

When x = 1, Bn = Bn(1) are called the Bell numbers.
For 0 �= λ ∈R, the degenerate exponential functions are defined by

ex
λ(t) =

∞∑

n=0

(x)n,λ

n!
tn, eλ(t) = e1

λ(t) =
∞∑

n=0

(1)n,λ

n!
tn (

see [12, 21]
)
, (6)

where (x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ) (n ≥ 1).
Let logλ(t) be the compositional inverse of eλ(t), called the degenerate logarithm func-

tion, such that logλ(eλ(t)) = eλ(logλ t) = t.
Then we note that

logλ(1 + t) =
1
λ

(
(1 + t)λ – 1

)
=

∞∑

n=1

λn–1(1)n, 1
λ

tn

n!
(
see [14]

)
. (7)

By (7), we get limλ→0 logλ(1 + t) = log(1 + t).
In [14], the degenerate Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ. (8)

As an inversion formula of (8), the degenerate Stirling numbers of the second kind are
defined by

(x)n,λ =
n∑

k=0

S2,λ(n, k)(x)k (n ≥ 0)
(
see [16]

)
. (9)

By (8) and (9), we get

1
k!

(
logλ(1 + t)

)k =
∞∑

n=k

S1,λ(n, k)
tn

n!
(k ≥ 0)

(
see [14]

)
(10)

and

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0)

(
see [16]

)
. (11)

We define the degenerate Bell polynomials Bn,λ(x) by

ex
λ

(
eλ(t) – 1

)
=

∞∑

n=0

Bn,λ(x)
tn

n!
. (12)
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When x = 1, Bn,λ = Bn,λ(1) are called the degenerate Bell numbers.
From (6) and (10), we note that

ex
λ

(
eλ(t) – 1

)
=

∞∑

k=0

(x)k,λ
1
k!

(
eλ(t) – 1

)k

=
∞∑

k=0

(x)k,λ

∞∑

n=k

S2,λ(n, k)
tn

n!

=
∞∑

n=0

( n∑

k=0

(x)k,λS2,λ(n, k)

)
tn

n!
. (13)

By (12) and (13), we get

Bn,λ(x) =
n∑

k=0

S2,λ(n, k)(x)k,λ (n ≥ 0). (14)

Here we note that the so-called new type degenerate Bell polynomials Beln,λ(x), which
are different from the degenerate Bell polynomials just introduced, have been considered
recently in [19]. They are defined by the generating function ex

λ(et – 1) =
∑∞

n=0 Beln,λ(x) tn

n! ,
so that Beln,λ(x) =

∑n
k=0 S2(n, k)(x)k,λ (n ≥ 0).

In [2, 3], Carlitz initiated a study of the degenerate Bernoulli and Euler polynomials and
numbers, which are degenerate versions of the usual Bernoulli and Euler polynomials and
numbers (see [1, 22, 25, 30, 31]). In recent years, studying degenerate versions of quite a
few special polynomials and numbers has regained lively interest of some mathematicians
and yielded many interesting results (see [4–7, 10, 12–17, 19–21, 23, 24, 26–28]). Here we
note that such degenerate versions of many special polynomials and numbers have been
investigated by employing different tools like generating functions, combinatorial meth-
ods, umbral calculus techniques, probability theory, p-adic analysis, differential equations,
etc.

The aim of the present paper is to study Jindalrae and Gaenari polynomials and num-
bers in connection with Jindalrae–Stirling numbers of the first and second kinds, and find
some arithmetic and combinatorial results on those polynomials and numbers. First, we
define Jindalrae–Stirling numbers of the first and second kinds as extensions of the no-
tions of the degenerate Stirling numbers of the first and second kinds, and find some rela-
tions involving those special numbers. Then we introduce Jindalrae and Gaenari numbers
and polynomials and obtain some explicit expressions and identities associated with those
numbers and polynomials. In addition, we interpret our results by using umbral calculus.

Further continuation of the present work would be to find some applications of our
results in science and engineering as well as in mathematics. We outlined possible ap-
plications of our results to other areas of mathematics, namely to probability, differential
equations, and identities of symmetry, in the last section. However, some applications to
areas other than mathematics will require considerable amount of work. We hope that we
will be able to find such applications in the near future.

This paper is organized as follows. In Sect. 1, we go over some necessary stuff that is
needed throughout this paper. This includes the degenerate exponential functions, the
degenerate logarithm function, the degenerate Stirling numbers of the first and second
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kinds, and the degenerate Bell numbers. Here we note that the degenerate Bell polynomi-
als Bn,λ(x) (see (12)) are different from the partially degenerate Bell polynomials beln,λ(x) in
[15] and also from the new type degenerate Bell polynomials Beln,λ(x) in [19]. In Sect. 2,
we introduce Jindalrae–Stirling numbers of the first and second kinds, as extensions of
the notions of the degenerate Stirling numbers of the first and second kinds and find some
relations connecting those special numbers, the degenerate Stirling numbers of the first
and second kinds and the degenerate Bell numbers and polynomials. Then we introduce
Jindalrae numbers and polynomials, as an extension of the notion of the degenerate Bell
numbers and polynomials, and Gaenari numbers and polynomials and find some explicit
expressions and identities involving those numbers and polynomials, Jindalrae–Stirling
numbers of the first and second kinds, the degenerate Stirling numbers of the first and
second kinds, and the degenerate Bell polynomials. In Sect. 3, we interpret the results in
Sect. 2 by means of umbral calculus. Finally, we conclude this paper in Sect. 4.

2 Jindalrae and Gaenari numbers and polynomials
By replacing t by et – 1 in (3), we get

1
k!

(
eet–1 – 1

)k =
∞∑

m=k

S2(m, k)
1

m!
(
et – 1

)m

=
∞∑

m=k

S2(m, k)
∞∑

n=m
S2(n, m)

tn

n!

=
∞∑

n=k

( n∑

m=k

S2(m, k)S2(n, m)

)
tn

n!
. (15)

Let

1
k!

(
eet–1 – 1

)k =
∞∑

n=k

T(n, k)
tn

n!
. (16)

Then, by (15) and (16), we get

T(n, k) =
∞∑

m=k

S2(n, m)S2(m, k), (17)

where n, k ≥ 0, with n ≥ k.
Further, we have

1
k!

(
eet–1 – 1

)k =
1
k!

( ∞∑

n=1

Bn
tn

n!

)k

=
1
k!

∞∑

n=k

( ∑

n1+···+nk =n

(
n

n1, . . . , nk

)
Bn1 · · ·Bnk

)
tn

n!
, (18)
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where the inner sum runs over all positive integers n1, . . . , nk , with n1 + · · · + nk = n. Thus,
by (16), (17), and (18), we get

T(n, k) =
1
k!

∑

n1+···+nk =n

(
n

n1, . . . , nk

)
Bn1 · · ·Bnk

=
n∑

m=k

S2(n, m)S2(m, k). (19)

Note that T(n, 1) =
∑n

m=1 S2(n, m) = Bn (n ≥ 1).
For k ≥ 0, as an extension of the notion of the degenerate Stirling numbers of the second

kind, we define Jindalrae–Stirling numbers of the second kind (see (9) and (11)) by

1
k!

(
eλ

(
eλ(t) – 1

)
– 1

)k =
∞∑

n=k

S(2)
J ,λ(n, k)

tn

n!
. (20)

On the other hand,

1
k!

(
eλ

(
eλ(t) – 1

)
– 1

)k =
∞∑

m=k

S2,λ(m, k)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=k

( n∑

m=k

S2,λ(m, k)S2,λ(n, m)

)
tn

n!
. (21)

Therefore, by (20) and (21), we obtain the following theorem.

Theorem 1 For n, k ≥ 0, with n ≥ k, we have

S(2)
J ,λ(n, k) =

n∑

m=k

S2,λ(n, m)S2,λ(m, k).

When k = 1, we have

∞∑

n=1

S(2)
J ,2 (n, 1)

tn

n!
= eλ

(
eλ(t) – 1

)
– 1

=
∞∑

n=0

Bn,λ
tn

n!
– 1 =

∞∑

n=1

Bn,λ
tn

n!
.

For n ≥ 1, we have

S(2)
J ,λ(n, 1) = Bn,λ

=
n∑

m=1

S2,λ(n, m)S2,λ(m, 1)

=
n∑

m=1

S2,λ(n, m)(1)m,λ. (22)
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For k ≥ 0, by replacing t by logλ(1 + t) in (20), we get

1
k!

(
eλ(t) – 1

)k =
∞∑

m=k

S(2)
J ,λ(m, k)

1
m!

(
logλ(1 + t)

)m

=
∞∑

m=k

S(2)
J ,λ(m, k)

∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=k

( n∑

m=k

S(2)
J ,λ(m, k)S1,λ(n, m)

)
tn

n!
. (23)

Therefore, by (10) and (23), we obtain the following theorem.

Theorem 2 For n, k ≥ 0, with n ≥ k, we have

S2,λ(n, k) =
n∑

m=k

S(2)
J ,λ(m, k)S1,λ(n, m).

When k = 1, we have

S2,λ(n, 1) =
n∑

m=1

S(2)
J ,λ(m, 1)S1,λ(n, m) =

n∑

m=1

Bm,λS1,λ(n, m). (24)

It is easy to show that S2,λ(n, 1) = (1)n,λ (n ≥ 1). Therefore, by (24), we obtain the following
corollary.

Corollary 3 For n ∈N, we have

n∑

m=1

Bm,λS1,λ(n, m) = (1)n,λ.

As an inversion formula of (20) and an extension of the notion of the degenerate Stirling
numbers of the first kind (see (8) and (10)), we define Jindalrae–Stirling numbers of the
first kind by

1
k!

(
logλ

(
logλ(1 + t) + 1

))k =
∞∑

n=k

S(1)
J ,λ(n, k)

tn

n!
(k ≥ 0). (25)

We note that

1
k!

(
logλ

(
logλ(1 + t) + 1

))k =
∞∑

m=k

S1,λ(m, k)
1

m!
(
logλ(1 + t)

)m

=
∞∑

m=k

S1,λ(m, k)
∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=k

( n∑

m=k

S1,λ(m, k)S1,λ(n, m)

)
tn

n!
. (26)

Therefore, by (25) and (26), we obtain the following theorem.
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Theorem 4 For n, k ≥ 0, with n ≥ k, we have

S(1)
J ,λ(n, k) =

n∑

m=k

S1,λ(n, m)S1,λ(m, k).

When k = 1, we have

S(1)
J ,λ(n, 1) =

n∑

m=1

S1,λ(m, 1)S1,λ(n, m)

=
n∑

m=1

(m – 1)!
(

λ – 1
m – 1

)
S1,λ(n, m). (27)

Corollary 5 For n ≥ 1, we have

S(1)
J ,λ(n, 1) =

n∑

m=1

(m – 1)!
(

λ – 1
m – 1

)
S1,λ(n, m).

From (20), we note that

∞∑

n=k

S(2)
J ,λ(n, k)

tn

n!
=

1
k!

(
eλ

(
eλ(t) – 1

)
– 1

)k

=
1
k!

k∑

l=0

(
k
l

)
(–1)k–lel

λ

(
eλ(t) – 1

)

=
∞∑

n=0

(
1
k!

k∑

l=0

(
k
l

)
(–1)k–lBn,λ(l)

)
tn

n!
, (28)

where k is a nonnegative integer.
By comparing the coefficients on both sides of (28), we get

1
k!

k∑

l=0

(
k
l

)
(–1)k–lBn,λ(l) =

{
S(2)

J ,λ(n, k), if n ≥ k,
0, if 0 ≤ n < k.

(29)

Therefore, by (29), we obtain the following theorem.

Theorem 6 For n, k ≥ 0, with n ≥ k, we have

S(2)
J ,λ(n, k) =

1
k!

k∑

l=0

(
k
l

)
(–1)k–lBn,λ(l).

Now, we observe that

∞∑

k=0

(x)k,λ
1
k!

(
logλ

(
logλ(1 + t) + 1

))k =
∞∑

k=0

(x)k,λ

∞∑

n=k

S(1)
J ,λ(n, k)

tn

n!

=
∞∑

n=0

( n∑

k=0

(x)k,λS(1)
J ,λ(n, k)

)
tn

n!
. (30)
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On the other hand,

∞∑

k=0

(x)k,λ
1
k!

(
logλ

(
logλ(1 + t) + 1

))k = ex
λ

(
logλ

(
logλ(1 + t) + 1

))
.

=
(
logλ(1 + t) + 1

)x

=
∞∑

l=0

(x)l
1
l!
(
logλ(1 + t)

)l

=
∞∑

l=0

(x)l

∞∑

n=l

S1,λ(n, l)
tn

n!

=
∞∑

n=0

( n∑

l=0

S1,λ(n, l)(x)l

)
tn

n!
. (31)

Thus, by (30) and (31), we get

n∑

l=0

S1,λ(n, l)(x)l =
n∑

k=0

S(1)
J ,λ(n, k)(x)k,λ (n ≥ 0). (32)

From (9) and (32), we can derive the following Eq. (33):

n∑

l=0

S1,λ(n, l)(x)l =
n∑

k=0

S(1)
J ,λ(n, k)(x)k,λ

=
n∑

k=0

S(1)
J ,λ(n, k)

k∑

l=0

S2,λ(k, l)(x)l

=
n∑

l=0

( n∑

k=l

S(1)
J ,λ(n, k)S2,λ(k, l)

)
(x)l. (33)

Therefore, by comparing the coefficients as both sides of (33), we obtain the following
theorem.

Theorem 7 For n, l ≥ 0, we have

S1,λ(n, l) =
n∑

k=l

S(1)
J ,λ(n, k)S2,λ(k, l).

When l = 1, we have

S1,λ(n, 1) =
n∑

k=1

S(1)
J ,λ(n, k)S2,λ(k, 1)

=
n∑

k=1

(1)k,λS(1)
J ,λ(n, k). (34)
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As an extension of the degenerate Bell polynomials in (12), the Jindalrae polynomials are
defined by

ex
λ

(
eλ

(
eλ(t) – 1

)
– 1

)
=

∞∑

n=0

Jn,λ(x)
tn

n!
. (35)

When x = 1, Jn,λ = Jn,λ(1) are called Jindalrae numbers.
From (35), we note that

ex
λ

(
eλ

(
eλ(t) – 1

)
– 1

)
=

∞∑

k=0

(x)k,λ
1
k!

(
eλ

(
eλ(t) – 1

)
– 1

)k

=
∞∑

k=0

(x)k,λ

∞∑

n=k

S(2)
J ,λ(n, k)

tn

n!

=
∞∑

n=0

( n∑

k=0

(x)k,λS(2)
J ,λ(n, k)

)
tn

n!
. (36)

Therefore, by (35) and (36), we obtain the following theorem.

Theorem 8 For n ≥ 0, we have

Jn,λ(x) =
n∑

k=0

(x)k,λS(2)
J ,λ(n, k).

In particular, for x = 1,

Jn,λ =
n∑

k=0

(1)k,λS(2)
J ,λ(n, k).

By replacing t by logλ(1 + t) in (35), we get

ex
λ

(
eλ(t) – 1

)
=

∞∑

m=0

Jm,λ(x)
1

m!
(
logλ(1 + t)

)m

=
∞∑

m=0

Jm,λ(x)
∞∑

n=m
S1,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

Jm,λ(x)S1,λ(n, m)

)
tn

n!
. (37)

Therefore, by (12) and (37), we obtain the following theorem.

Theorem 9 For n ≥ 0, we have

Bn,λ(x) =
n∑

m=0

Jm,λ(x)S1,λ(n, m).
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In particular,

Bn,λ =
n∑

m=0

Jm,λS1,λ(n, m).

From (20), we note that

ex
λ

(
eλ

(
eλ(t) – 1

)
– 1

)
=

∞∑

m=0

Bm,λ(x)
1

m!
(
eλ(t) – 1

)m

=
∞∑

m=0

Bm,λ(x)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

Bm,λ(x)S2,λ(n, m)

)
tn

n!
. (38)

Therefore, by (35) and (38), we obtain the following theorem.

Theorem 10 For n ≥ 0, we have

Jn,λ(x) =
n∑

m=0

Bm,λ(x)S2,λ(n, m).

In particular,

Jn,λ =
n∑

m=0

Bm,λS2,λ(n, m).

It is not difficult to show that logλ(logλ(1 + t) + 1) is the compositional inverse of
eλ(eλ(t) – 1) – 1. Now, we consider the Gaenari polynomials given by

ex
λ

(
logλ

(
logλ(1 + t) + 1

))
=

∞∑

n=0

Gn,λ(x)
tn

n!
. (39)

When x = 1, Gn,λ(1) = Gn,λ are called the Gaenari numbers.
From (6), we note that

ex
λ

(
logλ

(
logλ(1 + t) + 1

))
=

∞∑

k=0

(x)k,λ
1
k!

(
logλ

(
logλ(1 + t) + 1

))k

=
∞∑

k=0

(x)k,λ

∞∑

n=k

S(1)
J ,λ(n, k)

tn

n!

=
∞∑

n=0

( n∑

k=0

(x)k,λS(1)
J ,λ(n, k)

)
tn

n!
. (40)

Therefore, by (39) and (40), we obtain the following theorem.
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Theorem 11 For n ≥ 0, we have

Gn,λ(x) =
n∑

k=0

(x)k,λS(1)
J ,λ(n, k).

In particular,

Gn,λ =
n∑

k=0

(1)k,λS(1)
J ,λ(n, k).

By replacing t by eλ(t) – 1 in (39), we get

ex
λ

(
logλ(1 + t)

)
=

∞∑

m=0

Gm,λ(x)
1

m!
(
eλ(t) – 1

)m

=
∞∑

m=0

Gm,λ(x)
∞∑

n=m
S2,λ(n, m)

tn

n!

=
∞∑

n=0

( n∑

m=0

Gm,λ(x)S2,λ(n, m)

)
tn

n!
. (41)

On the other hand,

ex
λ

(
logλ(1 + t)

)
=

∞∑

n=0

(x)n
tn

n!
. (42)

Therefore, by (41) and (42), we obtain the following theorem.

Theorem 12 For n ≥ 0, we have

(x)n =
n∑

m=0

Gm,λ(x)S2,λ(n, m).

When x = 1, we have

(1)n =
n∑

m=0

Gm,λS2,λ(n, m). (43)

By (43), we get

G0,λ = 1,
n∑

m=0

Gm,λS2,λ(n, m) =

{
1, if n = 1,
0, if n > 1.

(44)

From (44), we note that G1,λ = 1. Indeed, we note that

ex
λ

(
logλ

(
logλ(1 + t) + 1

))
=

(
1 + log(1 + t)

)x. (45)
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Thus, by (39) and (45), we get

(
1 + logλ(1 + t)

)x =
∞∑

n=0

Gn,λ(x)
tn

n!
. (46)

From (7) and (46), we have

∞∑

n=0

Gn,λ
tn

n!
= 1 +

∞∑

n=1

λn–1(1)n,1/λ
tn

n!
. (47)

Thus, by (47), we get

Gn,λ = λn–1(1)n,1/λ (n ≥ 1).

Corollary 13 For n ≥ 1, we have

Gn,λ = λn–1(1)n,1/λ (n ≥ 1).

By replacing t by eλ(eλ(t) – 1) – 1 in (39), we get

ex
λ(t) =

∞∑

m=0

Gm,λ(x)
1

m!
(eλ

(
eλ(t) – 1

)m

=
∞∑

m=0

Gm,λ(x)
∞∑

n=m
S(2)

J ,λ(n, m)
tn

n!

=
∞∑

n=0

( n∑

m=0

Gm,λ(x)S(2)
J ,λ(n, m)

)
tn

n!
. (48)

From (6) and (48), we have

(x)n,λ =
n∑

m=0

Gm,λ(x)S(2)
J ,λ(n, m) (n ≥ 0). (49)

In particular,

(1)n,λ =
n∑

m=0

Gm,λS(2)
J ,λ(n, m).

From (35), we also note that

ex
λ(t) =

∞∑

m=0

Jm,λ(x)
1

m!
(
logλ

(
logλ(1 + t) + 1

))m

=
∞∑

m=0

Jm,λ(x)
∞∑

n=m
S(1)

J ,λ(n, m)
tn

n!

=
∞∑

n=0

( n∑

m=0

Jm,λ(x)S(1)
J ,λ(n, m)

)
tn

n!
. (50)
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Thus, by (6) and (50), we get

(x)n,λ =
n∑

m=0

Jm,λ(x)S(1)
J ,λ(n, m) (n ≥ 0). (51)

From (49) and (51), we have

n∑

m=0

Gm,λ(x)S(2)
J ,λ(n, m) =

n∑

m=0

Jm,λ(x)S(1)
J ,λ(n, m). (52)

3 Further remarks
In this section, we are going to interpret what we obtained in the previous section by means
of umbral calculus. First, we will go over some necessary facts about umbral calculus. For
more details on umbral calculus, we let the reader refer to [29].

A series g(t) with O(g(t)) = 0 and a series f (t) with O(f (t)) = 1 are respectively called
an invertible series and a delta series. Recall here that the order O(f (t)) of the nonzero
power series f (t) is the smallest integer k for which the coefficient of tk does not vanish.
Let g(t) be an invertible series, and let f (t) be a delta series. Then there exists a unique
sequence sn(x) of polynomials such that 〈g(t)f (t)k|sn(x)〉 = n!δn,k for n, k ≥ 0 (see [29]).
The sequence sn(x) is called the Sheffer sequence for the Sheffer pair (g(t), f (t)), which is
denoted by sn(x) ∼ (g(t), f (t)). In particular, sn(x) is called the associated sequence to f (t)
if sn(x) ∼ (1, f (t)). Further, sn(x) is called the Appell sequence for g(t) if sn(x) ∼ (g(t), t). It
is well known that sn(x) ∼ (g(t), f (t)) if and only if

1
g(f̄ (t))

exf̄ (t) =
∑

n≥0

sn(x)
tn

n!
, (53)

where f̄ (t) is the compositional inverse of f (t) determined by f (f̄ (t)) = f̄ (f (t)) = t.
For each nonnegative integer m, the mth power of an invertible series g(t) will be indi-

cated by (g(t))m, while the compositional powers of a delta series f (t) will be denoted by
f m(t) = f ◦ f ◦· · ·◦ f (t) (m times). For pn(x) and qn(x) =

∑n
k=0 qn,ktk , the umbral composition

of qn(x) with pn(x), denoted by qn ◦ pn(x), is defined by qn ◦ pn(x) =
∑n

k=0 qn,kpk(x).
The next result is stated in Theorem 3.5.5 of [29].

Theorem 14 The set of Sheffer sequences forms a group under operation of umbral compo-
sition. If sn(x) ∼ (g(t), f (t)) and rn(x) ∼ (h(t),�(t)), then rn(x) ◦ sn(x) ∼ (g(t)h(f (t)),�(f (t))).
The identity under umbral composition is xn ∼ (1, t), and the inverse of the sequence
sn(x) ∼ (g(t), f (t)) is the Sheffer sequence for (g(f̄ (t))–1, f̄ (t)).

As a corollary, we obtain the following result that will be needed later.

Corollary 15 Let sn(x) ∼ (g(t), f (t)), and let rn(x) ∼ (1,�(t)). Then, for any positive integer
m, the generating function for r(m)

n ◦ sn(x) is obtained from that for sn(x) by substituting �̄m(t)
for t.
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Proof As r(m)
n ◦ sn(x) ∼ (g(t),�m(f (t))), and the compositional inverse of �m(f (t)) is f̄ (�̄m(t)),

we have

g
(
f̄
(
�̄m(t)

))–1exf̄ (�̄m(t)) =
∑

n≥0

r(m)
n ◦ sn(x)

tn

n!
. (54)

�

From the definition of umbral composition, we see that the mth power under umbral
composition of rn(x) ∼ (h(t),�(t)) is given by

r(m)
n (x) ∼

(m–1∏

i=1

h
(
�i(t)

)
,�m(t)

)
(55)

for any positive integer m. In particular, this says that, for the Appell sequence rn(x) ∼
(h(t), t), we have r(m)

n (x) ∼ ((h(t))m, t), whereas for the associated sequence rn(x) ∼ (1,�(t)),
we have r(m)

n (x) ∼ (1,�m(t)).
For n ≥ 0, we write rn(x) =

∑n
k=0 rn,kxk =

∑
k≥0 rn,kxk , where we agree that ri,j = 0 for all

i < j. In general, we write

r(m)
n (x) =

n∑

k–0

r(m)
n,k xk =

∑

k≥0

r(m)
n,k xk

for all m ∈ Z>0. Then we see that

r(m)
n,k =

n∑

�1,...,�m–1=0

rn,�1 r�1,�2 · · · r�m–1,k , m ≥ 1, (56)

where we understand r(1)
n,k = rn,k for m = 1.

3.1 Jindalrae polynomials
From (35), we note that the Jindalrae polynomials Jn,λ(x) are given by

∞∑

n=0

Jn,λ(x)
tn

n!
= exf̄ (�̄2(t)), (57)

where f (t) = 1
λ

(eλt – 1), �(t) = logλ(1 + t). Noting that f̄ (t) = 1
λ

log(1 + λt), �̄(t) = eλ(t) – 1, we
have

exf̄ (t) = ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
,

ex�̄(t) =
∞∑

n=0

n∑

k=0

S2,λ(n, k)xk tn

n!
.

(58)

By (58), we let

sn(x) = (x)n,λ ∼
(

1, f (t) =
1
λ

(
eλt – 1

))
,

rn(x) =
n∑

k=0

S2,λ(n, k)xk ∼ (
1,�(t) = logλ(1 + t)

)
.

(59)
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From (54) and (57), we observe that

Jn,λ(x) = r(2)
n ◦ sn(x). (60)

As a check, we verify Theorem 8 again by using (60). From (56) and (59), we see that

r(2)
n (x) =

n∑

k=0

n∑

l=0

S2,λ(n, l)S2,λ(l, k)xk

=
n∑

k=0

n∑

l=k

S2,λ(n, l)S2,λ(l, k)xk

=
∞∑

k=0

S(2)
J ,λ(n, k)xk . (61)

Thus, from (59), (60), and (61), we get the desired result as follows:

Jn,λ(x) =
n∑

k=0

S(2)
J ,λ(n, k)(x)k,λ.

For any positive integer r, Korobov polynomials of the first kind of order r are given by

(
t

logλ(1 + t)

)r

(1 + t)x =
(

λt
(1 + t)λ – 1

)r

(1 + t)x =
∞∑

n=0

Kn,(r)(x;λ). (62)

For x = 0, Kn,(r)(λ) = Kn,(r)(0;λ) are called Korobov numbers of the first kind of order r. The
Korobov polynomials (respectively, numbers) of the first kind are also called the degener-
ate Bernoulli polynomials (respectively, numbers) of the second kind.

In [9], it was shown that

n∑

l1,...,lm–1=0

S2,λ(n, l1)S2,λ(l1, l2) · · ·S2,λ(lm–1, k)

=
∑

n≥l1≥···≥lm–1≥k

S2,λ(n, l1)S2,λ(l1, l2) · · ·S2,λ(lm–1, k)

=
∑

k1+···+km=n–k

(
n – 1

k1, . . . , km, k – 1

) m∏

j=1

Kkj ,(n–
∑m

i=j+1 ki)(λ).

Therefore, in the special cases of m = 1 and m = 2, we respectively have

S2,λ(n, k) =
(

n – 1
k – 1

)
Kn–k,(n)(λ),

S(2)
J ,λ(n, k) =

∑

k1+k2=n–k

(
n – 1

k1, k2, k – 1

)
Kk2,(n)(λ)Kk1,(n–k2)(λ).
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3.2 Gaenari polynomials
From (39), we recall that the Gaenari polynomials Gn,λ(x) are given by

∞∑

n=0

Gn,λ(x)
tn

n!
= exf̄ (�̄2(t)), (63)

where f (t) = 1
λ

(eλt – 1), �(t) = eλ(t) – 1.
Noting that f̄ (t) = 1

λ
log(1 + λt), �̄(t) = logλ(1 + t), we have

exf̄ (t) = ex
λ(t) =

∞∑

n=0

(x)n,λ
tn

n!
,

ex�̄(t) =
∞∑

n=0

n∑

k=0

S1,λ(n, k)xk tn

n!
.

(64)

By (58), we let

sn(x) = (x)n,λ ∼
(

1, f (t) =
1
λ

(
eλt – 1

))
,

rn(x) =
n∑

k=0

S1,λ(n, k)xk ∼ (
1,�(t) = eλ(t) – 1

)
.

(65)

From (54) and (63), we observe that

Gn,λ(x) = r(2)
n ◦ sn(x). (66)

Here we would like to verify Theorem 11 again by making use of (66). From (56) and (65),
we see that

r(2)
n (x) =

n∑

k=0

n∑

l=0

S1,λ(n, l)S1,λ(l, k)xk

=
n∑

k=0

n∑

l=k

S1,λ(n, l)S1,λ(l, k)xk

=
∞∑

k=0

S(1)
J ,λ(n, k)xk . (67)

Thus, from (65), (66), and (67), we get what we wanted as follows:

Gn,λ(x) =
n∑

k=0

S(1)
J ,λ(n, k)(x)k,λ.

For any positive integer r, the degenerate Bernoulli polynomials βn,(r)(x;λ) of order r are
defined by

(
t

eλ(t) – 1

)r

ex
λ(t) =

∑

n≥0

βn,(r)(x;λ)
tn

n!
. (68)
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For x = 0, βn,(r)(λ) = βn,(r)(0;λ) are called the degenerate Bernoulli numbers of order r.
In [9], it was shown that

n∑

l1,...,lm–1=0

S1,λ(n, l1)S1,λ(l1, l2) · · ·S1,λ(lm–1, k)

=
∑

n≥l1≥···≥lm–1≥k

S1,λ(n, l1)S1,λ(l1, l2) · · ·S1,λ(lm–1, k)

=
∑

k1+···+km=n–k

(
n – 1

k1, . . . , km, k – 1

) m∏

j=1

βkj ,(n–
∑m

i=j+1 ki)(λ).

Hence, in the special cases of m = 1 and m = 2, we respectively have

S1,λ(n, k) =
(

n – 1
k – 1

)
βn–k,(n)(λ),

S(1)
J ,λ(n, k) =

∑

k1+k2=n–k

(
n – 1

k1, k2, k – 1

)
βk2,(n)(λ)βk1,(n–k2)(λ).

4 Conclusion
In this paper, we introduced Jindalrae–Stirling numbers of the first and second kinds as
extensions of the notions of the degenerate Stirling numbers of the first and second kinds
(see [5, 10, 18, 21]) and found some relations connecting those special numbers, the degen-
erate Stirling numbers of the first and second kinds and the degenerate Bell numbers and
polynomials (see [12, 13, 15, 19, 21, 27]). Then we introduced Jindalrae numbers and poly-
nomials, as an extension of the notion of the degenerate Bell numbers and polynomials,
and Gaenari numbers and polynomials and obtained some explicit expressions and iden-
tities involving those numbers and polynomials, Jindalrae–Stirling numbers of the first
and second kinds, the degenerate Stirling numbers of the first and second kinds, and the
degenerate Bell polynomials. In addition, we interpreted our results by means of umbral
calculus (see [6, 9, 13, 29]).

As to possible applications our results, we would like to mention three things. The
first one is their applications to differential equations. In [8], new combinatorial identi-
ties for some degenerate special polynomials were found from certain infinite families of
linear and nonlinear ordinary differential equations, satisfied by the generating functions
of those polynomials. The second one is their applications to probability theory. In [16, 18],
new identities connecting some special numbers and moments of random variables were
derived by using the generating functions of the moments of certain random variables.
The last one is their applications to identities of symmetry. In [11], abundant identities of
symmetry were derived for various degenerate versions of many special polynomials by
using p-adic integrals.

It is one of our future projects to continue this line of research, namely study of degener-
ate versions of some special polynomials and numbers, and to find some of their possible
applications to mathematics, science, and engineering.
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