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1 Introduction
Fractional difference calculus is quite new to researchers. It has been used in mathemat-
ical models that explain many real-life situations, for example, economics, electrical net-
works, and queuing problems (see [1–3] and the references therein). Basic definitions and
properties of fractional difference calculus were presented in [4], and discrete fractional
boundary value problems have been found in [5–33]. However, the studies of a system of
fractional boundary value problems are quite rare (see [34–42]).

For an extension of the research work in this area, in this paper, we study the following
system of fractional difference equations with parameters:

–�α1 u1(t) = λ1F1
[
t + α1 – 1, t + α2 – 1, u1(t + α1 – 1), u2(t + α2 – 1)

]
,

–�α2 u2(t) = λ2F2
[
t + α1 – 1, t + α2 – 1, u1(t + α1 – 1), u2(t + α2 – 1)

]
,

(1.1)

subject to nonlocal fractional difference-sum boundary conditions of the form

�–β1 u1(α1 + β1 – 3) = �γ1 u1(α1 – γ1 – 2) = 0,

�–β2 u2(α2 + β2 – 3) = �γ2 u2(α2 – γ2 – 2) = 0,

u1(T + α1) = χ1u1(η1), η1 ∈Nα1–2,T+α1–1,

u2(T + α2) = χ2u2(η2), η2 ∈Nα2–2,T+α2–1,

(1.2)
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where t ∈ N0,T := {0, 1, . . . , T}, αi ∈ (2, 3], βi,γi ∈ (0, 1), i = 1, 2. Moreover, we suppose that
the following assumptions hold:

(A1) Fi ∈ C
(
Nα1–1,T+α1–1 ×Nα2–1,T+α2–1 × (0,∞) × (0,∞), (0,∞)

)
;

where Nαi–1,T+αi–1 := {αi – 1,αi,αi + 1, . . . , T + αi – 1};
(A2) 0 < χiη

αi–1
i < (T + αi)αi–1;

(A3) λ1,λ2 are positive parameters;

(A4) Fi(t1, t2, u1, u2) > 0 for u1, u2 > 0, ti ∈Nαi–1,T+αi–1.

For convenience, we use the following notations (i = 1, 2):

F0
i = lim

u1,u2→0+

[
max

ti∈Nαi–1,T+αi–1

Fi(t1, t2, u1, u2)
u1 + u2

]
,

F∞
i = lim

u1,u2→∞

[
min

ti∈Nαi–1,T+αi–1

Fi(t1, t2, u1, u2)
u1 + u2

]
.

We organize our paper as follows. In Sect. 2, we recall some definitions and basic lem-
mas and present some properties of the fractional difference operators. In this section, we
also derive a representation for the solution to (1.1)–(1.2) by converting the problem to
equivalent summation equations. In Sect. 3, we prove the existence and uniqueness result
for problem (1.1)–(1.2) by using the Banach fixed point theorem. In Sect. 4, we prove the
existence of at least one and two solutions for problem (1.1)–(1.2) by using the Krasnosel-
skii fixed point theorem in a cone map. In the last section, we provide some examples to
illustrate our results.

Theorem 1.1 ([43], Krasnoselskii’s fixed point theorem) Let E be a Banach space, and let
K ⊂ E be a cone. Let Ω1 and Ω2 be open subsets of E such that 0 ∈ Ω1 and Ω1 ⊂ Ω2, and
let

A : K ∩ (Ω2 \ Ω1) −→ K

be a completely continuous operator such that
(i) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.
Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 1.2 ([44], Arzelá–Ascoli theorem) A set of functions in C[a, b] with the sup norm
is relatively compact if and only it is uniformly bounded and equicontinuous on [a, b].

Theorem 1.3 ([44]) If a set is closed and relatively compact, then it is compact.

2 Preliminaries
In this section, we provide some notations, definitions, and lemmas, which are used in the
main results.
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Definition 2.1 The generalized falling function is defined by tα := Γ (t+1)
Γ (t+1–α) for any t and

α for which the right-hand side is defined. If t + 1 – α is a pole of the Gamma function and
t + 1 is not a pole, then tα = 0.

Definition 2.2 For α > 0 and f defined on Na, the α-order fractional sum of f is defined
by

�–αf (t) = �–αf (t; a) :=
1

Γ (α)

t–α∑

s=a

(
t – σ (s)

)α–1f (s),

where t ∈Na+α and σ (s) = s + 1.

Definition 2.3 For α > 0 and f defined onNa, the αth-order Riemann–Liouville fractional
difference of f is defined by

�αf (t) := �N�–(N–α)f (t) =
1

Γ (–α)

t+α∑

s=a

(
t – σ (s)

)–α–1f (s),

where t ∈Na+N–α , and N ∈N is chosen so that 0 ≤ N – 1 < α ≤ N .

Lemma 2.1 ([5]) For 0 ≤ N – 1 < α ≤ N ,

�–α�αy(t) = y(t) + C1tα–1 + C2tα–2 + · · · + CN tα–N

for some Ci ∈R, 1 ≤ i ≤ N .

The following is a solution of a linear variant of the boundary value problem (1.1).

Lemma 2.2 Suppose that (A1)–(A3) hold. For i ∈ {1, 2}, let αi ∈ (2, 3] and βi, γi ∈ (0, 1) be
given constants, and let hi ∈ C(Nαi–1,T+αi–1,R+) be given functions. The problem

–�αi ui(t) = hi(t + αi – 1), t ∈N0,T , (2.1)

�–βi ui(αi + βi – 3) = �γi ui(αi – γi – 2) = 0, (2.2)

ui(T + αi) = χiui(ηi),ηi ∈Nαi–2,T+αi–1 (2.3)

has the unique solution

ui(ti) =
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]Γ (αi)

{ T∑

s=0

(
T + αi – σ (s)

)αi–1hi(s + αi – 1)

– χi

ηi–αi∑

s=0

(
ηi – σ (s)

)αi–1hi(s + αi – 1)

}

–
1

Γ (αi)

ti–αi∑

s=0

(
ti – σ (s)

)αi–1hi(s + αi – 1) (2.4)

for ti ∈Nαi–3,T+αi .
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Proof Using Lemma 2.1 and the fractional sum of order αi ∈ (2, 3], i ∈ {1, 2}, for (2.1), we
obtain

ui(ti) = C1it
αi–1
i + C2it

αi–2
i + C3it

αi–3
i –

1
Γ (αi)

ti–αi∑

s=0

(
ti – σ (s)

)αi–1hi(s + αi – 1) (2.5)

for ti ∈Nαi–3,T+αi .
Next, applying the fractional sum of order βi ∈ (0, 1), i ∈ {1, 2}, to (2.5), we have

�–βi ui(ti) =
1

Γ (βi)

ti–βi∑

s=αi–3

(
ti – σ (s)

)βi–1[C1isαi–1 + C2isαi–2 + C3isαi–3]

–
1

Γ (αi)Γ (βi)

ti–βi∑

r=αi

r–αi∑

s=0

(
ti – σ (r)

)βi–1(r – σ (s)
)αi–1hi(s + αi – 1) (2.6)

for ti ∈Nαi+βi–3,T+αi+βi .
Taking the fractional difference of order γi ∈ (0, 1), i ∈ {1, 2}, of (2.5), we obtain

�γi ui(ti) =
1

Γ (–γi)

ti+γi∑

s=αi–3

(
ti – σ (s)

)–γi–1[C1isαi–1 + C2isαi–2 + C3isαi–3]

–
1

Γ (αi)Γ (–γi)

ti+γi∑

r=αi

r–αi∑

s=0

(
ti – σ (r)

)–γ –1(r – σ (s)
)αi–1hi(s + αi – 1) (2.7)

for ti ∈Nαi–γi–2,T+αi–γi .
Using the boundary condition �–βi ui(αi + βi – 3) = 0 in (2.2), we find that C3i = 0.
Then we have

ui(ti) = C1it
αi–1
i + C2it

αi–2
i –

1
Γ (αi)

ti–αi∑

s=0

(
ti – σ (s)

)αi–1hi(s + αi – 1). (2.8)

From the boundary condition �γi ui(αi – γi – 2) = 0 in (2.2) we have C2i = 0.
Therefore

ui(ti) = C1it
αi–1
i –

1
Γ (αi)

ti–αi∑

s=0

(
ti – σ (s)

)αi–1hi(s + αi – 1). (2.9)

By using the boundary condition (2.3) we obtain

C1i =
1

[(T + αi)αi–1 – χiη
αi–1
i ]Γ (αi)

{ T∑

s=0

(
T + αi – σ (s)

)αi–1hi(s + αi – 1)

– χi

ηi–αi∑

s=0

(
ηi – σ (s)

)αi–1hi(s + αi – 1)

}

. (2.10)

Finally, substituting C1i into (2.9), we obtain (2.4). The proof is complete. �
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Corollary 2.1 Problem (2.1)–(2.3) has the unique solution, which is of the form

ui(ti) =
T∑

s=0

Gi(ti, s)hi(s + αi – 1) (2.11)

for ti ∈Nαi–3,T+αi , i = 1, 2, where

Gi(ti, s) :=
1

Γ (αi)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1(ti, s), s ∈N0,ti–αi ∩N0,ηi–αi ,

g2(ti, s), s ∈Nti–αi+1,ηi–αi ,

32(ti, s), s ∈Nηi–αi+1,ti–αi ,

g4(ti, s), s ∈Nti–αi+1,T ∩Nηi–αi+1,T ,

(2.12)

with

g1(ti, s) :=
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]

{(
T + αi – σ (s)

)αi–1 – χi
(
ηi – σ (s)

)αi–1}

–
(
ti – σ (s)

)αi–1,

g2(ti, s) :=
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]

{(
T + αi – σ (s)

)αi–1 – χi
(
ηi – σ (s)

)αi–1},

g3(ti, s) :=
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]

(
T + αi – σ (s)

)αi–1 –
(
ti – σ (s)

)αi–1,

g4(ti, s) :=
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]

(
T + αi – σ (s)

)αi–1.

(2.13)

Green’s function (2.12) has the following properties.

Proposition 2.1 ([13]) For i = 1, 2, let Gi(ti, s) be Green’s function given in (2.12)–(2.13).
Then for all (ti, s) ∈Nαi–3,T+αi ×N0,T ,

Gi(ti, s) ≥ 0.

Proposition 2.2 ([13]) For i = 1, 2, let Gi(ti, s) be Green’s function given in (2.12)–(2.13).
Suppose that for given ηi ∈ Nαi–2,T+αi–1 and αi ∈ (2, 3], χi satisfies the inequality

0 ≤ χi ≤ min
(ti ,s)∈Nαi–3,T+αi ×N0,T

{
(T + αi)αi–1

η
αi–1
i

–
t
αi–2
i (T + αi – σ (s))αi–1

η
αi–1
i (ti – σ (s))αi–2

}
.

Then

max
(ti ,s)∈Nαi–3,T+αi ×N0,T

Gi(ti, s) = Gi(s + α – 1, s).
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Proposition 2.3 ([13]) For i = 1, 2, let Gi(ti, s) be Green’s function given in (2.12)–(2.13).
Then

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

Gi(ti, s) ≥ θi max
(ti ,s)∈Nαi–3,T+αi ×N0,T

Gi(ti, s) = θiGi(s + α – 1, s),

where

θi := min

{ ( 1
4 (T + αi))αi–1

(T + αi)αi–1 ,

1
( 3

4 (T + αi))αi–1

[(
3
4

(T + αi)
)αi–1

–
( 3

4 (T + αi))αi–1(T + αi)αi–1

(T + αi)αi–1

]}
, (2.14)

and θi satisfy the inequality 0 < θi < 1.

3 Existence and uniqueness of solution
In this section, we apply the Banach fixed point theorem to prove the existence and unique-
ness result for problem (1.1)–(1.2). For each i, j ∈ {1, 2}, we let Ei = C(Nαi–3,T+αi ,R) be the
Banach space for all functions on Nαi–3,T+αi with the norm ‖ui‖ = maxti∈Nαi–3,T+αi

|ui(ti)|.
The product space U = E1 × E2 is a Banach space with the norm

∥
∥(u1, u2)

∥
∥
U = ‖u1‖ + ‖u2‖.

Next, define the operator T : U → U by

(
T (u1, u2)

)
(t1, t2) :=

((
T1(u1, u2)

)
(t1, t2),

(
T2(u1, u2)

)
(t1, t2)

)
, (3.1)

and for i, j ∈ {1, 2}, i 
= j,

(
Ti(u1, u2)

)
(t1, t2)

:=
t
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]Γ (αi)

×
{ T∑

s=0

(
T + αi – σ (s)

)αi–1Fi
[
s + αi – 1, tj, ui(s + αi – 1), uj(tj)

]

– χi

ηi–αi∑

s=0

(
ηi – σ (s)

)αi–1Fi
[
s + αi – 1, tj, ui(s + αi – 1), uj(tj)

]
}

–
1

Γ (αi)

ti–α1∑

s=0

(
ti – σ (s)

)αi–1Fi
[
s + αi – 1, tj, ui(s + αi – 1), uj(tj)

]
(3.2)

for ti ∈ Nαi–3,T+αi and tj ∈ Nαj–1,T+αj–1. Obviously, problem (1.1)-(1.2) has a solution if and
only if the operator T has a fixed point.

Theorem 3.1 Suppose that (A1)–(A4) hold. In addition, suppose there exist constants
Mi, Ni > 0 for i = 1, 2 such that

∣∣Fi[t1, t2, u1, u2] – Fi[t1, t2, v1, v2]
∣∣ ≤ Mi|u1 – v1| + Ni|u2 – v2| (3.3)
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for all ti ∈ Nαi–1,T+αi–1 and (u1, u2), (v1, v2) ∈ U . If

L1Ω1 + L2Ω2 < 1, (3.4)

where

Li = max{Mi, Ni},

Ωi =
λi

Γ (αi + 1)

[∣
∣∣
∣

(T + αi)αi – χiη
αi
i

(T + αi)αi–1 – χiη
αi–1
i

∣
∣∣
∣(T + αi)αi–1 + (T + αi)αi

]
,

then problem (1.1)–(1.2) has a unique solution.

Proof Let us prove that T is a contraction mapping. For i, j ∈ {1, 2}, i 
= j, denote

Fi|u – v|(s, tj) :=
∣
∣Fi

[
s + αi – 1, tj, ui(s + αi – 1), uj(tj)

]

– Fi
[
s + αi – 1, tj, vi(s + αi – 1), vj(tj)

]∣∣.

For ti ∈Nαi–3,T+αi , tj ∈Nαj–1,T+αj–1, and (u1, u2), (v1, v2) ∈ U , we find that

∣
∣(Ti(u1, u2)

)
(t1, t2) –

(
Ti(v1, v2)

)
(t1, t2)

∣
∣

≤ λit
αi–1
i

[(T + αi)αi–1 – χiη
αi–1
i ]Γ (αi)

∣∣
∣∣∣

T∑

s=0

(
T + αi – σ (s)

)αi–1Fi|u – v|(s, tj)

– χi

ηi–αi∑

s=0

(
ηi – σ (s)

)αi–1Fi|u – v|(s, tj)

∣
∣∣
∣∣

+
λi

Γ (αi)

ti–α1∑

s=0

(
ti – σ (s)

)αi–1Fi|u – v|(s, tj)

≤ λi[Mi|u1 + v1| + Ni|u2 – v2|]
Γ (αi)

[
(T + αi)αi–1

t
αi–1
i – χiη

αi–1
i

×
∣∣
∣∣
∣

T∑

s=0

(
T + αi – σ (s)

)αi–1 – χi

ηi–αi∑

s=0

(
ηi – σ (s)

)αi–1

∣∣
∣∣
∣

+
ti–α1∑

s=0

(
ti – σ (s)

)αi–1
]

≤ λiLi[|u1 + v1| + |u2 – v2|]
Γ (αi + 1)

[∣∣
∣∣

(T + αi)αi – χiη
αi
i

(T + αi)αi–1 – χiη
αi–1
i

∣∣
∣∣(T + αi)αi–1 + (T + αi)αi

]

≤ LiΩi
∥
∥(u1, v – 1, u2 – v2)

∥
∥
U .

Therefore

∥∥(
T (u1, u2)

)
–

(
T (v1, v2)

)∥∥
U =

∥∥(
T1(u1, u2) – T1(v1, v2),T2(u1, u2) – T2(v1, v2)

)∥∥
U

=
∥∥T1(u1, u2) – T1(v1, v2)

∥∥ +
∥∥T2(u1, u2) – T2(v1, v2)

∥∥

≤ (L1Ω1 + L2Ω2)
∥∥(u1, v – 1, u2 – v2)

∥∥
U .

By (3.4) we find that T is a contraction. Therefore by the Banach fixed point theorem T
has a fixed point, which is a unique solution of problem (1.1)–(1.2). �
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4 Existence and multiplicity of positive solutions
In this section, we apply the Krasnoselskii fixed point theorem for a cone map to prove the
existence and multiplicity of positive solutions for problem (1.1)–(1.2). The product space
U and the norm ‖(u1, u2)‖U are defined in Sect. 3. Moreover, we define the cone P ⊂ U as

P :=
{

(u1, u2) ∈ U : u1, u2 ≥ 0 and min
ti∈Nαi–3,T+αi

[
u1(t1) + u2(t2)

] ≥ θ
∥
∥(u1, u2)

∥
∥
U

}
,

where θ := min{θ1, θ2} with θ1, θ2 defined in (2.14).
Next, by Corollary 2.1 we also define the operator T : U → U by

(
T (u1, u2)

)
(t1, t2) =

((
T1(u1, u2)

)
(t1, t2),

(
T2(u1, u2)

)
(t1, t2)

)
(4.1)

and for i, j ∈ {1, 2}, i 
= j,

(
Ti(u1, u2)

)
(t1, t2) :=λi

T∑

s=0

Gi(ti, s)Fi
[
s + αi – 1, tj, ui(s + αi – 1), uj(tj)

]
(4.2)

for ti ∈ Nαi–3,T+αi and tj ∈ Nαj–1,T+αj–1. The positive solutions of problem (1.1)–(1.2) and
the fixed points of the operator T in the cone P coincide.

Lemma 4.1 If (A1)–(A4) hold, then T (P) ⊂P , and T : P →P is a completely continuous
operator.

Proof The continuity of T is obvious. To prove T (P) ⊂P , we choose (u1, u2) ∈P . Since,
for i = 1, 2, Gi(ti, s) ≤ Gi(s + αi – 1, s) for s ∈ N0,T and Gi(ti, s) ≥ θiGi(s + α – 1, s) for ti ∈
[ 1

4 (T + αi), 3
4 (T + αi)], we have

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T1(u1, u2)(t1, t2)

≥ λ1θ1

T∑

s=0

Gi(s + αi – 1, s)F1
[
s + αi – 1, t2, u1(s + αi – 1), u2(t2)

]

≥ θ1
∥∥T1(u1, u2)

∥∥.

Similarly, minti∈[ 1
4 (T+αi), 3

4 (T+αi)] T2(u1, u2)(t1, t2) ≥ θ2‖T2(u1, u2)‖.
Thus

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

(
T1(u1, u2)(t1, t2) + T2(u1, u2)(t1, t2)

)

≥ min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T1(u1, u2)(t1, t2) + min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T2(u1, u2)(t1, t2)

≥ θ
∥∥(
T1(u1, u2),T2(u1, u2)

)∥∥
U .

Since Gi(ti, s) ≥ 0 for all (ti, s) ∈ Nαi–3,T+αi × N0,T and (A1)–(A4) hold, we conclude that
T (P) ⊂P . It is easy to show that T is uniformly bounded. By the Arzelá–Ascoli theorem
we can conclude that T : P →P is a completely continuous operator. �
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Theorem 4.1 Suppose assumptions (A1)–(A4) hold. Then for λ1,λ2 > 0, problem (1.1)–
(1.2) has at least one positive solution in the following cases:

(a) F0
1 = F0

2 = 0, and either F∞
1 = ∞ or F∞

2 = ∞ (superlinear);

(b) F∞
1 = F∞

2 = 0, and either F0
1 = ∞ or F0

2 = ∞ (sublinear).

Proof (a) Since, F0
i = 0, i = 1, 2, we choose K1 > 0 such that Fi[t1, t2, u1, u2] ≤ ε(u1 + u2) for

0 < u1 + u2 ≤ K1 and ti ∈Nαi–1,T+αi–1, where the constant ε > 0 satisfies

2ελi

T∑

s=0

Gi(s + αi – 1, s) ≤ 1.

Set Ω1 = {(u1, u2) ∈ U : ‖(u1, u2)‖U < K1}. If (u1, u2) ∈ P ∩ ∂Ω1 and ‖(u1, u2)‖U = K1, then
we have

T1(u1, u2)(t1, t2) ≤ λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]

≤ ελ1

T∑

s=0

G1(s + αi – 1, s)(u1 + u2)

≤ ελ1
(‖u1‖ + ‖u2‖

) T∑

s=0

G1(s + αi – 1, s)

≤ 1
2
∥∥(u1, u2)

∥∥
U .

Similarly, T2(u1, u2)(t1, t2) ≤ 1
2‖(u1, u2)‖U . Therefore

∥
∥T (u1, u2)

∥
∥
U =

∥
∥(
T1(u1, u2),T2(u1, u2)

)∥∥
U =

∥
∥T1(u1, u2)

∥
∥ +

∥
∥T2(u1, u2)

∥
∥ ≤ ∥

∥(u1, u2)
∥
∥
U

for (u1, u2) ∈P ∩ ∂Ω1.
If F∞

1 = ∞, then there exists K̂ > 0 such that F1[t1, t2, u1, u2] ≥ ε̂(u1 + u2) for u1 + u2 ≥ K̂1

and ti ∈Nαi–1,T+αi–1, where the constant ε̂ > 0 satisfies

ε̂λ1

T∑

s=0

G1(s + α1 – 1, s) ≥ 1.

Let K2 = max{2K1, K̂
θ1

} and set Ω2 = {(u1, u2) ∈ U : ‖(u1, u2)‖U < K2}. For (u1, u2) ∈ P ∩
∂Ω2, we have minti∈[ 1

4 (T+αi), 3
4 (T+αi)]((u1(t1) + u2(t2)) ≥ θi‖(u1, u2)‖U ≥ K̂ . For all ti ∈ [ 1

4 (T +
αi), 3

4 (T + αi)], we get

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T1(u1, u2)(t1, t2)

≥ min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]
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≥ ε̂λ1

T∑

s=0

G1(s + αi – 1, s)(u1 + u2)

≥ ε̂λ1θ1
∥∥(u1, u2)

∥∥
U

T∑

s=0

G1(s + αi – 1, s)

≥ ∥∥(u1, u2)
∥∥
U .

Therefore

∥∥T (u1, u2)
∥∥
U =

∥∥(
T1(u1, u2),T2(u1, u2)

)∥∥
U =

∥∥T1(u1, u2)
∥∥ +

∥∥T2(u1, u2)
∥∥ ≥ ∥∥(u1, u2)

∥∥
U

for (u1, u2) ∈P ∩ ∂Ω2. An analogous estimate holds for F∞
2 = ∞.

By Theorem 1.1(i), T has a fixed point (u1, u2) ∈ P ∩ ∂(Ω̄2 \ Ω1) such that K1 ≤
‖(u1, u2)‖U ≤ K2 and problem (1.1)–(1.2) has a positive solution.

(b) If F0
1 = ∞, then we choose K1 > 0 such that F1[t1, t2, u1, u2] ≥ ε̃(u1 + u2) for 0 < u1 +

u2 ≤ K2 and ti ∈Nαi–1,T+αi–1, where the constant ε̃ > 0 satisfies

ε̃λ1θ1

T∑

s=0

G1(s + α1 – 1, s) ≥ 1.

If (u1, u2) ∈P ∩ ∂Ω1 and ‖(u1, u2)‖U = K1, then for all ti ∈ [ 1
4 (T + αi), 3

4 (T + αi)], we have

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T1(u1, u2)(t1, t2)

≥ min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]

≥ ε̃λ1

T∑

s=0

G1(s + αi – 1, s)(u1 + u2)

≥ ε̃λ1θ1
∥∥(u1, u2)

∥∥
U

T∑

s=0

G1(s + αi – 1, s)

≥ ∥
∥(u1, u2)

∥
∥
U .

Therefore

∥∥T (u1, u2)
∥∥
U =

∥∥(
T1(u1, u2),T2(u1, u2)

)∥∥
U =

∥∥T1(u1, u2)
∥∥ +

∥∥T2(u1, u2)
∥∥ ≥ ∥∥(u1, u2)

∥∥
U

for (u1, u2) ∈P ∩ ∂Ω2. An analogous estimate holds for F0
2 = ∞.

For i = 1, 2, set F∗
i (ti) = max0≤u1+u2≤ti Fi[t1, t2, u1, u2]. Then F∗

i are nondecreasing in their
respective arguments. In addition, from F∞

i = 0 we see that limti→∞
F∗

i (ti)
ti

= 0. Hence there
exist K2 > 2K1 such that F∗

i (ti) ≤ εti, where the constant ε > 0 satisfies

2ελi

T∑

s=0

Gi(s + αi – 1, s) ≤ 1.
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If (u1, u2) ∈P ∩ ∂Ω2 and ‖(u1, u2)‖U = K2, then we have

T1(u1, u2)(t1, t2) ≤ λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]

≤ λ1

T∑

s=0

G1(s + αi – 1, s)F∗
1 (K2)

≤ ελ1K2

T∑

s=0

G1(s + αi – 1, s)

≤ 1
2
∥∥(u1, u2)

∥∥
U .

Similarly, T2(u1, u2)(t1, t2) ≤ 1
2‖(u1, u2)‖U . Therefore

∥
∥T (u1, u2)

∥
∥
U =

∥
∥(
T1(u1, u2),T2(u1, u2)

)∥∥
U =

∥
∥T1(u1, u2)

∥
∥ +

∥
∥T2(u1, u2)

∥
∥ ≤ ∥

∥(u1, u2)
∥
∥
U

for (u1, u2) ∈P ∩ ∂Ω2.
By Theorem 1.1(ii), T has a fixed point, and thus problem (1.1)–(1.2) has a positive

solution (u1, u2) ∈P ∩ ∂(Ω̄2 \ Ω1). �

Theorem 4.2 Suppose assumptions (A1)–(A4) hold.
(a) If F0

1 = F0
2 = F∞

1 = F∞
2 = 0, then there exists δ1 > 0 such that problem (1.1)–(1.2) has at

least two positive solutions for all λ1,λ2 ≥ δ1.
(b) If either F0

1 = ∞ or F0
2 = ∞ and either F∞

1 = 0 or F∞
2 = 0, then there exists δ2 > 0 such

that problem (1.1)–(1.2) has at least two positive solutions for all λ1,λ2 ≤ δ2.

Proof (a) For (u1, u2) ∈P such that ‖(u1, u2)‖U = �, let

m(�) = min

{

λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]
,

λ2

T∑

s=0

G2(t1, s)F2
[
t1, s – α2 – 1, u1(t1), u2(s – α2 – 1)

]
}

.

By assumption m(�) > 0 for � > 0. Choose two numbers 0 < K3 < K4, and let

δ1 = max

{
K3

2m(K3)
,

K4

2m(K4)

}
,

Ωi =
{

(u1, u2) ∈ U :
∥∥(u1, u2)

∥∥
U < Ki

}
(i = 1, 2, 3, 4).

Then, for λ1,λ2 ≥ δ1 and (u1, u2) ∈P ∩ ∂Ωi (i = 3, 4) such that ‖(u1, u2)‖U = Ki, we have

min
ti∈[ 1

4 (T+αi), 3
4 (T+αi)]

T1(u1, u2)(t1, t2)

≥ ε̃λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]
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≥ λ1m(Ki)

≥ Ki

2
(i = 3, 4).

Similarly, minti∈[ 1
4 (T+αi), 3

4 (T+αi)] T2(u1, u2)(t1, t2) ≥ Ki
2 (i = 3, 4).

This implies that

∥∥T (u1, u2)
∥∥
U =

∥∥T1(u1, u2)
∥∥ +

∥∥T2(u1, u2)
∥∥ ≥ Ki =

∥∥(u1, u2)
∥∥
U

for (u1, u2) ∈P ∩ ∂Ωi (i = 3, 4).
Since F0

1 = F0
2 = F∞

1 = F∞
2 = 0, it follows from the proof of Theorem 4.1(a,b) that we can

choose K1 < K3
2 and K2 > 2K4 such that

∥∥T (u1, u2)
∥∥
U ≤ ∥∥(u1, u2)

∥∥
U

for (u1, u2) ∈P ∩ ∂Ωi (i = 1, 2).
Applying Theorem 1.1 to Ω1, Ω3 and Ω3, Ω4, we have a positive solution (u1, u2)

such that K1 ≤ ‖(u1, u2)‖U ≤ K3, and another positive solution (v1, v2) such that K4 ≤
‖(v1, v2)‖U ≤ K2. Since K3 < K4, these two solutions are distinct.

(b) For (u1, u2) ∈P and ‖(u1, u2)‖U = L, let

M(L) = max

{

λ1

T∑

s=0

G1(t1, s)F1
[
s – α1 – 1, t2, u1(s – α1 – 1), u2(t2)

]
,

λ2

T∑

s=0

G2(t1, s)F2
[
t1, s – α2 – 1, u1(t1), u2(s – α2 – 1)

]
}

.

By assumption M(L) > 0 for L > 0. Choose two numbers 0 < K3 < K4, and let

δ2 = max

{
K3

2M(K3)
,

K4

2M(K4)

}
.

Then, for λ1,λ2 ≤ δ2 and (u1, u2) ∈P ∩ ∂Ωi (i = 3, 4) such that ‖(u1, u2)‖U = Ki, we have

T1(u1, u2)(t1, t2 ≤ λ1M(Hi) ≤ Ki

2
and T2(u1, u2)(t1, t2) ≤ λ2M(Hi) ≤ Ki

2
(i = 3, 4).

This implies that

∥∥T (u1, u2)
∥∥
U ≤ Ki =

∥∥(u1, u2)
∥∥
U

for (u1, u2) ∈P ∩ ∂Ωi (i = 3, 4).
Since either F0

1 = ∞ or F0
2 = ∞ and either F∞

1 = 0 or F∞
2 = 0, it follows from the proof of

Theorem 4.1(a,b) that we can choose K1 < K3
2 and K2 > 2K4 such that

∥∥T (u1, u2)
∥∥
U ≥ ∥∥(u1, u2)

∥∥
U

for (u1, u2) ∈P ∩ ∂Ωi (i = 1, 2).
Once again, we obtain the existence of two distinct positive solutions. �
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By the same arguments as in Theorem 4.2 we obtain the following theorem.

Theorem 4.3 Suppose assumptions (A1)–(A4) hold.
(a) If F0

1 = F0
2 = 0 or F∞

1 = F∞
2 = 0, then there exists δ3 > 0 such that problem (1.1)–(1.2)

has at least two positive solutions for all λ1,λ2 ≥ δ3.
(b) If F0

1 = ∞ or F0
2 = ∞, or if F∞

1 = ∞ or F∞
2 = ∞, then there exists δ4 > 0 such that

problem (1.1)–(1.2) has at least two positive solutions for all λ1,λ2 ≤ δ2.

5 Examples
In this section, we provide some examples to illustrate our main results.

Example 1 Consider the following system of fractional difference equations with param-
eters:

–�
5
2 u1(t) =

e–(t+ 4
3 )(|u2| + 1)

400(t + 34
3 )2(1 + sin2 u2π )

+
e–(t+ 3

2 )π u1(t + 3
2 )

100e + 20 sin2(t + 3
2 )π

,

–
1
2
�

7
3 u2(t) =

e–(t+ 3
2 )(|u1| + e– sin2(t+ 3

2 )π )
1000(et+ 3

2 + 10)2(|u1| + cos2(t + 3
2 )π )

+
arctan(sin2(t + 4

3 )π )u2(t + 4
3 )

100π (t + 13
3 )2

(5.1)

for t ∈N0,5, subject to nonlocal fractional difference-sum conditions

�– 1
3 u1

(
–

1
6

)
= �

1
5 u1

(
3

10

)
= 0,

�– 1
4 u2

(
–

5
12

)
= �

2
5 u2

(
–

1
15

)
= 0,

u1

(
15
2

)
=

1
2

u1

(
9
2

)
,

u2

(
22
3

)
=

3
4

u2

(
13
3

)
.

(5.2)

Here α1 = 5
2 , α2 = 7

3 , β1 = 1
3 , β2 = 1

4 , γ1 = 1
5 , γ2 = 2

5 , λ1 = 1, λ2 = 2, χ1 = 1
2 , χ2 = 3

4 , η1 = 9
2 ,

η2 = 13
3 , T = 5, and for t1 ∈ N– 1

2 , 15
2

and t2 ∈ N– 2
3 , 22

3
,

F1[t1, t2, u1, u2] =
e–t2 (|u2| + 1)

400(t2 + 10)2(1 + sin2 u2π )
+

e–t1π u1(t1)
100e + 20 sin2 t1π

,

F2[t1, t2, u1, u2] =
e–t1 (|u1| + e– sin2 t1π )

1000(et1 + 10)2(|u1| + cos2 t1π )
+

arctan(sin2 t2π )u2(t2)
100π (t2 + 3)2 .

We get that

∣∣F1[t1, t2, u1, u2] – F1[t1, t2, v1, v2]
∣∣

≤ e–t2

400(t2 + 10)2

∣∣
∣∣

|u2| + 1
1 + sin2 u2π

–
|v2| + 1

1 + sin2 v2π

∣∣
∣∣ +

e–t1π

100e + 20 sin2 t1π

∣
∣�

1
3 u1 – �

1
3 v1

∣
∣
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≤ 1
45,511

|u2 – v2| +
1

100e
|u1 – v1|,

∣∣F2[t1, t2, u1, u2] – F2[t1, t2, v1, v2]
∣∣

≤ e–t1

1000(et1 + 10)2

∣
∣∣∣

|u1|
1 + |u1| –

|v1|
1 + |v1|

∣
∣∣∣ +

arctan(1)
100π (t2 + 3)2 |u2 – v2)|

≤ 1
12,100

|u1 – v1| +
9

19,600
|u2 – v2|.

So, (3.3) holds with M1 = 0.00002197, M2 = 0.00008264, N1 = 0.00368, and N2 = 0.000459.
Finally, we find that

L1 = max{M1, N1} = 0.00368, L2 = max{M2, N2} = 0.000459 and

Ω1 = 75.4559, Ω2 = 136.2638.

Therefore we obtain

L1Ω1 + L2Ω2 = 0.3402 < 1.

Hence, by Theorem 3.1, problem (5.1)–(5.2) has a unique solution.

Example 2 Consider the following system of fractional difference equations with param-
eters:

–�
5
2 u1(t) =

[
u1

(
t +

3
2

)
+ u1

(
t +

4
3

)]6

,

–
1
2
�

7
3 u2(t) =

[
u1

(
t +

3
2

)
+ u1

(
t +

4
3

)]4

, t ∈N0,5,

(5.3)

for t ∈N0,5, subject to nonlocal fractional difference-sum conditions (5.2).
For all t1 ∈ N– 1

2 , 15
2

, t2 ∈ N– 2
3 , 22

3
, u1, u2 > 0, we have F1[t1, t2, u1u2] = [u1(t1) + u1(t2)]6 > 0

and F2[t1, t2, u1u2] = [u1(t1) + u1(t2)]4 > 0. We find that

0 < 4.3619 = χ1η
α1–1
1 < (T + α1)α1–1 = 19.4922,

0 < 5.0162 = χ2η
α2–1
2 < (T + α2)α2–1 = 13.8057.

By direct calculation we have F0
1 = F0

2 = 0 and F∞
1 = F∞

2 = ∞. Then, by Theorem 4.1(a),
problem (5.3) and (5.2) has at least one positive solution.

Example 3 Consider the following system of fractional difference equations with param-
eters:

–�
5
2 u1(t) =

[
u1

(
t +

3
2

)
+ u1

(
t +

4
3

)] 1
3

,

–
1
2
�

7
3 u2(t) =

[
u1

(
t +

3
2

)
+ u1

(
t +

4
3

)] 1
4

, t ∈N0,5,

(5.4)

for t ∈N0,5, subject to nonlocal fractional difference-sum conditions (5.2).
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For all t1 ∈ N– 1
2 , 15

2
, t2 ∈ N– 2

3 , 22
3

, u1, u2 > 0, we have F1[t1, t2, u1u2] = [u1(t1) + u1(t2)] 1
3 > 0

and F2[t1, t2, u1u2] = [u1(t1) + u1(t2)] 1
4 > 0.

By the same argument as in Example 2 we have that χiη
αi–1
i < (T + αi)αi–1, i = 1, 2.

By direct calculation we have F0
1 = F0

2 = ∞ and F∞
1 = F∞

2 = 0. Then, by Theorem 4.1(b),
problem (5.4) and (5.2) has at least one positive solution.
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