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Abstract
In this paper, we consider a nonlinear sequential q-difference equation based on the
Caputo fractional quantum derivatives with nonlocal boundary value conditions
containing Riemann–Liouville fractional quantum integrals in four points. In this
direction, we derive some criteria and conditions of the existence and uniqueness of
solutions to a given Caputo fractional q-difference boundary value problem. Some
pure techniques based on condensing operators and Sadovskii’s measure and the
eigenvalue of an operator are employed to prove the main results. Also, the
Ulam–Hyers stability and generalized Ulam–Hyers stability are investigated. We
examine our results by providing two illustrative examples.
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1 Introduction
In several areas of sciences, such as biology, chemistry, economics, physics, and engineer-
ing, fractional calculus and its relevant differential equations and BVPs have been used
extensively [1–3]. Indeed, fractional derivatives are not only a generalization of ordinary
derivatives, but also they explain dynamical behavior of various physical processes specif-
ically and effectively (real life phenomena) in contrast to integer order derivatives. Refer-
ences [4–18] are available for some improvements on the fractional differential equations
theory.

By virtue of developments in fractional quantum calculus (q-FC), a number of scientists
and researchers [19, 20] were attracted to a study of fractional q-difference equations,
beginning in the nineteenth century, and wide interest lately [21–23].

In 2007, Atici et al. [24] studied some notions in relation to fractional q-calculus on
time scales. Then in 2012, Annaby and Mansour presented their investigations by pub-
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lishing a book on equations and BVPs in the context of fractional q-calculus [25]. Jarad et
al. [26] turned to the stability notion on q-fractional non-autonomous systems and after
that, Abdeljawad et al. [27] introduced Gronwall-type inequality in q-operator settings. By
combining the two above notions, Butt et al. [28] investigated Ulam stability for a Caputo
delay q-difference equation by means of q-Gronwall-type inequality. Also, some fascinat-
ing insights concerning IVPs and BVPs containing q-difference equations can be found
in [29–35] and the references therein. Ahmad, Nieto, Alsaedi and Al-Hutami [36] turned
to the q-difference FBVP with nonlocal integral conditions and implemented an existence
analysis on the solutions of the proposed q-BVP which takes the format

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CDρ

q (CDβ

q + b)u(t) = f (t, u(t)),

u(0) = d1Iγ –1
q u(θ ) = d1

∫ θ

0
(θ–qs)(γ –2)

�q(γ –1) u(s) dqs,

u(1) = d2Iγ –1
q u(π ) = d2

∫ π

0
(π–qs)(γ –2)

�q(γ –1) u(s) dqs, γ > 2, θ > 0,π < 1,

(1)

where f ∈ C([0, 1] × R,R), ρ,β ∈ (0, 1], q ∈ (0, 1), b, d1, d2 ∈ R and CDρ

q , CDβ

q denote the
q-fractional derivatives in Caputo sense of orders ρ and β .

In 2014, Ahmad et al. [37] studied the existence criteria of the following q-difference
equation involving two nonlinear terms and four-point nonlocal boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

CDρ

q (CDβ

q + b)u(t) = mf (t, u(t)) + nIγ
q g(t, u(t)),

w1u(0) – k1(t1–βCD1
qu(0))|t=0 = c1u(r1), 0 < r1 < 1,

w2u(1) + k2
CD1

qu(1) = c2u(r2), 0 < r2 < 1,

(2)

in which f , g ∈ C([0, 1] × R,R), ρ,β ∈ (0, 1], q ∈ (0, 1), b, m, n, w1, w2, k1, k2 ∈ R, c1, c2 ∈
(0, 1) and CDρ

q , CDβ

q denotes the q-fractional derivatives in Caputo sense and Iγ
q denotes

the fractional q-integral in Riemann–Liouville sense of order γ ∈ (0, 1).
In continuation to the investigation of the q-variant of fractional problems and inspired

by the aforementioned work, we aim to examine this area from another angle. Several
known methods of functional analysis are used to establish required results on the exis-
tence of solutions for a class of q-difference problem. More specifically, we consider the
sequential four-point Caputo fractional q-difference boundary value problem (q-CFBVP)
of the format

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dα
q (Dβ

q u(t) – g(t, u(t))) = f (t, u(t)), t ∈ J := [0, T],

a1u(0) + b1Dγ
q u(0) = λ1

∫ η1
0

(η1–qs)(σ1–1)

�q(σ1) u(s) dqs, η1 ∈ (0, T),σ1 > 0,

a2u(T) + b2Dγ
q u(T) = λ2

∫ η2
0

(η2–qs)(σ2–1)

�q(σ2) u(s) dqs, η2 ∈ (0, T),σ2 > 0,

(3)

whereDμ
q is the μth-q-difference derivative in the Caputo structure with μ ∈ {γ ,β ,α} such

that 0 < α,β ≤ 1, 0 < γ ≤ 1 and Iθ
q is the θ th-q-difference integral in the Riemann–Liouville

structure with θ > 0 subject to θ ∈ {σ1,σ2} and also f , g : J ×R −→R are continuous func-
tions. a1, a2, b1, b2, λ1, λ2 are suitably chosen constants in R

+.
Regarding to the novelty of the paper, in comparison to above q-problems, our sup-

posed sequential q-CFBVP is more general. Under the given boundary value conditions,
we have used both Caputo and Riemann–Liouville q-fractional operators in four different
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points of domain of the unknown solution function u simultaneously, in which the lin-
ear combinations of the unknown function and its fractional derivative is corresponding
to a multiple of q-Riemann–Liouville integral in two mid-points. In this paper, we have
designed an extended form of Langevin equations by providing a nonlinear function g in
the left-side hand of the given boundary value problem (3). Also, to prove the existence of
solutions for such an applied q-problem, we shall utilize some pure notions of functional
analysis based on the measure of non-compactness, condensing operators and eigenvalue
of the operator, which have been used in papers limited in this regard so far and this dis-
tinguishes our research from the work of others. Moreover, we here emphasize that this
paper may have useful and effective applications in physics and quantum mechanics such
as Langevin systems in the context of quantum operators.

The remaining part of this paper is organized as follows: Sect. 2 is devoted to the prim-
itive notions of q-FC. At first, in Sect. 3, we give an auxiliary lemma which provides the
solution of the supposed q-CFBVP (3) and then based on the obtained integral equation,
by using fixed point theorems due to Sadovski, Krasnoselskii–Zabreiko and O’Regan, we
establish the existence of solutions for the q-CFBVP (3) and also for its uniqueness, we
utilize the famous Banach principle. In Sect. 4, the stability criteria of Ulam–Hyers type
and its generalized type are checked. Additionally, in Sect. 5, we provide two examples
which ensure the usability of the results presented in Sect. 3. The manuscript is ended by
our conclusions in Sect. 6.

2 Preliminaries regarding q-operators
We collect some important basic notions of q-FC in this section. For details, we refer to
[19, 21, 38, 39]. Let q ∈ (0, 1). A q-real number is denoted by [m]q and is defined as

[m]q =
1 – qm

1 – q
, m ∈R.

The q-power function (m – n)k with m, n ∈R is

(m – n)(0) = 1, (m – n)(k) =
k–1∏

j=0

(
m – nqj), k ∈ N∪ {0},

and, if β ∈ R, then

(m – n)(β) = mβ

∞∏

i=0

m – nqi

m – nqβ+i .

On the other side, [c(m – n)](β) = cβ (m – n)(β) holds for c ∈R and also notice that m(β) = mβ

if n = 0. The q-Gamma function is given by

�q(α) =
(1 – q)(α–1)

(1 – q)α–1 , α ∈ R\{0, –1, . . . },

and satisfies �q(α + 1) = [α]q�q(α).
The 1st-q-derivative of an arbitrary mapping φ is defined by the following rule:

(Dqφ)(x) =
φ(qx) – φ(x)

(1 – q)x
, x �= 0,
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and for the higher orders, it becomes

D0
qφ = φ, Dk

qφ = Dq
(
Dk–1

q φ
)
, k ∈N∪ {0}.

The 1st-q-integral of an arbitrary mapping φ given on the interval [0, n] is given by

(Iqφ)(x) =
∫ x

0
φ(r) dqr = x(1 – q)

∞∑

k=0

φ
(
xqk)qk , x ∈ [0, n].

If m ∈ [0, n], then

∫ n

m
φ(r) dqr =

∫ n

0
φ(r) dqr –

∫ m

0
φ(r) dqr.

Similarly, for the higher orders, it becomes

I0
qφ = φ, Ik

qφ = Iq
(
Ik–1

q φ
)
, k ∈ N∪ {0}.

For two first order q-operators Dq and Iq, we have

DqIqφ(x) = φ(x).

Here, we assemble some definitions about such q-operators from the fractional point of
view.

Definition 1 ([39]) Let α ≥ 0. The αth-q-integral of the Riemann–Liouville type for φ

defined on [0,∞) is given by I0
qφ(t) = φ(t) and

Iα
q φ(t) =

1
�q(α)

∫ t

0
(t – qr)(α–1)φ(t) dqr, α > 0.

Definition 2 ([19]) The Caputo αth-q-derivative for an absolutely continuous mapping
φ is formulated by

Dα
qφ(t) = I[α]–α

q D[α]
q φ(t),

where [α] denotes the integer part of α.

For more information on the fractional q-operators, we refer the reader to [38].

Lemma 3 ([19]) Let α,β ∈R+. Then we have the following formulas:
(1) Iα

q Iβ
q φ(t) = Ia+β

q φ(t);
(2) Dα

q Iα
q φ(t) = φ(t).

Lemma 4 ([40]) Let α ∈R+ and β ∈ (–1,∞). One has

Iα
q tβ =

�q(β + 1)
�q(α + β + 1)

tα+β , t > 0.
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In particular, if φ ≡ 1, then

Iα
q 1(t) =

1
Γq(1 + α)

t(α), for all t > 0.

Lemma 5 ([19]) Let α,σ > 0. Then

Iα
q Dσ

q φ(t) = Dσ
q Iα

q φ(t) –
σ–1∑

j=0

tα–σ+j

�q(α + j – σ + 1)
Dj

qφ(0).

Lemma 6 ([30, 40]) Let k – 1 < α < k. Then

Iα
q Dα

qφ(t) = φ(t) –
k–1∑

j=0

tj

�q(j + 1)
Dj

qφ(0).

For the homogeneous q-difference equation Dα
q φ(t) = 0, the general series solution by

Lemma 6 is given as φ(t) = μ0 + μ1t + μ2t2 + · · · + μk–1tk–1 via μj ∈R and k = [α] + 1 [19].
So, we have

(
Iα

q Dα
q φ

)
(t) = φ(t) + μ0 + μ1t + μ2t2 + · · · + μk–1tk–1.

3 Results regarding existence property
In the present section, before moving to our fundamental results, we define ‖ · ‖ on X =
C(J ,R) as ‖u‖ = supt∈J |u(t)|, which in this phase, X transforms into a Banach space. Now,
in the first place, we provide the next auxiliary lemma.

Lemma 7 Let ψ ∈ C(J,R), α,β ,γ ∈ (0, 1), σ1,σ2 > 0, a1, a2, b1, b2,λ1,λ2 ∈ R
+ and gu(t) =

g(t, u(t)). Then the solution of the linear sequential four-point q-CFBVP defined by

⎧
⎪⎪⎨

⎪⎪⎩

Dα
q (Dβ

q u(t) – gu(t)) = ψ(t), t ∈ J := [0, T],

a1u(0) + b1Dγ
q u(0) = λ1Iσ1

q u(η1), 0 < η1 < T ,σ1 > 0,

a2u(T) + b2Dγ
q u(T) = λ2Iσ2

q u(η2), 0 < η2 < T ,σ2 > 0,

(4)

is given by

u(t) = Iβ
q gu(t) + Iα+β

q ψ(t)

+ μ1(t)
[
Iβ+σ1

q gu(η1) + Iα+β+σ1
q ψ(η1)

]

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu(η2) + Iα+β+σ2
q ψ(η2)

)

– b2
(
Iβ–γ

q gu(T) + Iα+β–γ
q ψ(T)

)
– a2

(
Iβ

q gu(T) + Iα+β
q ψ(T)

)]
, (5)
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where

μ1(t) = λ1

(
(� – �2�3)�q(β + 1) – tβ�1�3

��1�q(β + 1)

)

,

μ2(t) =
�1tβ + �2�q(β + 1)

��q(β + 1)
,

�1 = a1 –
λ1η

σ1
1

�q(σ1 + 1)
, �2 =

λ1η
β+σ1
1

�q(β + σ1 + 1)
,

�3 = a2 –
λ2η

σ2
2

�q(σ2 + 1)
,

�4 =
a2Tβ

�q(β + 1)
+

b2Tβ–γ

�q(β – γ + 1)
–

λ2η
β+σ2
2

�q(β + σ2 + 1)
,

(6)

and � is given by

� =
(

a2Tβ

�q(β + 1)
+

b2Tβ–γ

�q(β – γ + 1)
–

λ2η
β+σ2
2

�q(β + σ2 + 1)

)(

a1 –
λ1η

σ1
1

�q(σ1 + 1)

)

+
λ1η

β+σ1
1

�q(β + σ1 + 1)

(

a2 –
λ2η

σ2
2

�q(σ2 + 1)

)

= �4�1 + �2�3 �= 0. (7)

Proof By using Lemma 6, we obtain the integral equation corresponding to (4):

u(t) = Iβ
q gu(t) + Iα+β

q ψ(t) +
tβ

�q(β + 1)
k0 + k1, k0, k1 ∈R. (8)

Using the given boundary conditions in (4), we may obtain

Iσi
q u(t) = Iσi+β

q gu(t) + Iσi+α+β
q ψ(t) + k0

tβ+σi

�q(β + σi + 1)
+ k1

tσi

�q(σi + 1)

for i = 1, 2 and

Dγ
q x(t) = Iβ–γ

q gu(t) + Iα+β–γ
q ψ(t) + k0

tβ–γ

�q(β – γ + 1)
.

By categorizing similar terms, we obtain the expressions

�1k1 – �2k0 = λ1Iσ1+β
q gu(η1) + λ1Iσ1+β+α

q ψ(η1) (9)

and

�3k1 + �4k0 = λ2
(
Iσ2+β

q gu(η2) + Iσ2+β+α
q ψ(η2)

)

– a2
(
Iβ

q gu(T) + Iβ+α
q ψ(T)

)
– b2

(
Iβ–γ

q gu(T) + Iβ+α–γ
q ψ(T)

)
. (10)

Therefore, from (9) and (10), we get

k0 = –
�3

�

(
λ1Iσ1+β

q gu(η1) + λ1Iσ1+β+α
q ψ(η1)

)
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+
�1

�

[
λ2

(
Iσ2+β

q gu(η2) + Iσ2+β+α
q ψ(η2)

)

– a2
(
Iβ

q gu(T) + Iβ+α
q ψ(T)

)
– b2

(
Iβ–γ

q gu(T) + Iβ+α–γ
q ψ(T)

)]
,

and, by inserting k0 into (9), we obtain

k1 =
� – �2�3

�1�

(
λ1Iσ1+β

q gu(η1) + λ1Iσ1+β+α
q ψ(η1)

)

+
�2

�

[
λ2

(
Iσ2+β

q gu(η2) + Iσ2+β+α
q ψ(η2)

)
– a2

(
Iβ

q gu(T) + Iβ+α
q ψ(T)

)

– b2
(
Iβ–γ

q gu(T) + Iβ+α–γ
q ψ(T)

)]
.

Substituting the value of k0, k1 in (8), we get (5), which completes the proof. �

Note that, for simplicity, we set g(t, u(t)) = gu(t) and f (t, u(t)) = fu(t) throughout the
manuscript.

3.1 The first existence criterion
In this subsection, we prove an existence result for the sequential four-point q-CFBVP (3)
by making use of Sadovskii’s fixed-point theorem. Before moving towards it, we would like
to recall several auxiliary facts which are our main tools. X is supposed as a Banach space.

Definition 8 Consider a bounded subset M of (X, d). The Kuratowski measure of non-
compactness, denoted by α(M), is defined by

α(M) := inf

{

ε > 0 : ∃ finitely many sets Mi s.t. M =
n⋃

i=1

Mi and D(Mi) ≤ ε

}

,

where D(Mi) = sup{|u – ũ| : u, ũ ∈ Mi}.

Definition 9 ([41]) Consider a bounded and continuous function � : Dom(�) ⊆ X → X
on X. For an arbitrary bounded set M ⊂ Dom(�), the map � is condensing if

α
(
�(M)

)
< α(M),

in which α is introduced above.

Lemma 10 ([42]) Let K1,K2 : E ⊆ X → X. The operator K1 + K2 is condensing if
i. K1 is k-contraction; that is, ∀u, v ∈ E and ∃k ∈ (0, 1), so that

‖K1u – K1v‖ ≤ k‖u – v‖;

ii. K2 is compact.

Theorem 11 ([43]) Consider the bounded, closed and convex subset B of X and the con-
densing mapping � : B → B. Then � has a fixed point.
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From now on, we put

�1 =
Tα+β

�q(α + β + 1)
+

∣
∣μ1(T)

∣
∣ η

α+β+σ1
1

�q(α + β + σ1 + 1)

+
∣
∣μ2(T)

∣
∣

(

λ2
η

α+β+σ2
2

�q(α + β + σ2 + 1)
+ b2

Tα+β–γ

�q(α + β – γ + 1)

+ a2
Tα+β

�q(α + β + 1)

)

(11)

and

�2 =
Tβ

�q(β + 1)
+

∣
∣μ1(T)

∣
∣ η

β+σ1
1

�q(β + σ1 + 1)

+
∣
∣μ2(T)

∣
∣

(

λ2
η

β+σ2
2

�q(β + σ2 + 1)
+ b2

Tβ–γ

�q(β – γ + 1)
+ a2

Tβ

�q(β + 1)

)

. (12)

Theorem 12 Consider the following assertions:
(B1) ∃L > 0 so that |fu(t) – fv(t)| ≤ L|u(t) – v(t)|, ∀t ∈ J , u, v ∈ R;
(B2) |fu(t)| ≤ σ (t) and |gu(t)| ≤ ρ(t), where σ ,ρ ∈ C(J ,R+).

Then the sequential four-point q-CFBVP (3) has a solution on J if Q := L�1 < 1, by intro-
ducing �1 as (11).

Proof Consider a bounded, closed and convex subset Br = {u ∈ X : ‖u‖ ≤ r} of X = C(J ,R)
for a fixed constant r. With regard to Lemma 7, define K : X → X as follows:

Ku(t) = Iβ
q gu(t) + Iα+β

q fu(t)

+ μ1(t)
[
Iβ+σ1

q gu(η1) + Iα+β+σ1
q fu(η1)

]

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu(η2) + Iα+β+σ2
q fu(η2)

)

– b2
(
Iβ–γ

q gu(T) + Iα+β–γ
q fu(T)

)
– a2

(
Iβ

q gu(T) + Iα+β
q fu(T)

)]
. (13)

We split the operator K on the set Br into K = K1 + K2, where

K1u(t) = Iα+β
q fu(t) + μ1(t)

(
Iα+β+σ1

q fu(η1)
)

+ μ2(t)
[
λ2

(
Iα+β+σ2

q fu(η2)
)

– b2
(
Iα+β–γ

q fu(T)
)

– a2
(
Iα+β

q fu(T)
)]

(14)

and

K2u(t) = Iβ
q gu(t) + μ1(t)

(
Iβ+σ1

q gu(η1)
)

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu(η2)
)

– b2
(
Iβ–γ

q gu(T)
)

– a2
(
Iβ

q gu(T)
)]

. (15)

We want to prove that the operators K1 and K2 follow all the assertions of Theorem 11.
We proceed to implement the proof in four steps.
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Step 1: KBr ⊂ Br

Let us select r so that r ≥ ‖σ‖�1 + ‖ρ‖�2, where �2, �1 are given by (11) and (12) and
‖σ‖ = supt∈J |σ (t)| and ‖ρ‖ = supt∈J |ρ(t)|. For any u ∈ Br , we have

∣
∣(Ku)(t)

∣
∣ ≤ sup

t∈J

{
Iβ

q
∣
∣gu(t)

∣
∣ + Iα+β

q
∣
∣fu(t)

∣
∣

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q
∣
∣gu(η1)

∣
∣ + Iα+β+σ1

q
∣
∣fu(η1)

∣
∣
]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣

+ Iα+β+σ2
q

∣
∣fu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣ + Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣

+ Iα+β
q

∣
∣fu(T)

∣
∣
)]} ≤ �2‖ρ‖ + �1‖σ‖ < r,

which implies that KBr ⊂ Br .
Step 2: K2 is compact
In view of Step 1, we observe that the operator K2 is uniformly bounded; indeed for any

u ∈ Br :

∣
∣(K2u)(t)

∣
∣ ≤ Iβ

q
∣
∣gu(t)

∣
∣ +

∣
∣μ1(t)

∣
∣
(
Iβ+σ1

q
∣
∣gu(η1)

∣
∣
)

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣
)]

≤ ‖ρ‖
[

Tβ

�q(β + 1)
+

∣
∣μ1(T)

∣
∣ η

β+σ1
1

�q(β + σ1 + 1)

+
∣
∣μ2(T)

∣
∣

(

λ2
η

β+σ2
2

�q(β + σ2 + 1)
+ b2

Tβ–γ

�q(β – γ + 1)
+ a2

Tβ

�q(β + 1)

)]

≤ �2‖ρ‖.

Now, take t1, t2 ∈ J by assuming t1 < t2 and u ∈ Br . Hence we have

∣
∣K2u(t2) – K2u(t1)

∣
∣

≤ Iβ
q
∣
∣gu(t2) – gu(t1)

∣
∣ +

∣
∣μ1(t2) – μ1(t1)

∣
∣
(
Iβ+σ1

q
∣
∣gu(η1)

∣
∣
)

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣
)]

≤ ‖ρ‖
�q(β + 1)

[
tβ
2 – tβ

1 + 2(t2 – t1)β
]

+
∣
∣μ1(t2) – μ1(t1)

∣
∣
(
Iβ+σ1

q ‖ρ‖)

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
(
λ2

(
Iβ+σ2

q ‖ρ‖) + b2
(
Iβ–γ

q ‖ρ‖) + a2
(
Iβ

q ‖ρ‖)). (16)

The right-hand side of (16) tends to zero (not depending upon u) as t2 → t1. This shows
that K2 is equicontinuous. From the above reasons, it is clear that K2 is relatively compact
on Br . Application of the Arzelà–Ascoli theorem proves the compactness of K2 on Br .

Step 3: K1 is Q-contractive.
From (B1) and (B2) and for each u, v ∈ Br , we have

∣
∣K1u(t) – K1v(t)

∣
∣ ≤ sup

t∈J

{
Iα+β

q |fu – fv|(t) +
∣
∣μ1(t)

∣
∣
(
Iα+β+σ1

q |fu – fv|(η1)
)

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iα+β+σ2

q |fu – fv|(η2)
)

+ b2
(
Iα+β–γ

q |fu – fv|(T)
)
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+ a2
(
Iα+β

q |fu – fv|(T)
)]}

≤ L�1‖u – v‖.

So, ‖K1u – K1v‖ ≤ L�1‖u – v‖. Thus K1 is Q-contractive because of Q := L�1 < 1.
Step 4: K is condensing.
As K1 and K2 are continuous Q–contraction and compact, respectively, thus by

Lemma 10, K : Br → Br with K = K1 + K2 is a condensing map on Br . From the above
arguments, by Theorem 11, we conclude that the map K has a fixed point, which leads to
the existence of at least one solution for the sequential four-point q-CFBVP (3) in X. �

3.2 The second existence criterion
We now use another fixed point result due to Krasnoselskii–Zabreiko to demonstrate the
following existence criterion for the sequential four-point q-CFBVP (3).

Theorem 13 ([44]) Consider a completely continuous map K on a Banach space X. If a
bounded linear map L exists on X so that 1 is not an eigenvalue of it and

lim‖u‖→∞
‖K(u) – L(u)‖

‖u‖ = 0,

then K has a fixed point in X.

Theorem 14 Consider the following assertions:
(H1) f : J ×R →R is continuous and for some t ∈ J , f (t, 0) �= 0 and

lim‖u‖→∞
f (t, u)

u
= λ(t). (17)

(H2) The function g : J ×R →R is continuous and ∃A ∈R+ so that

∣
∣g

(
t, u(t)

)∣
∣ ≤ A

∣
∣u(t)

∣
∣.

Then there exists at least one solution for the sequential four-point q-CFBVP (3) on J such
that

λmax := max
t∈J

∣
∣λ(t)

∣
∣ <

1 – A�2

�1
, (18)

where �1 and �2 are, respectively, given by (11) and (12).

Proof Consider a sequence {un} ⊂ Br which converges to u. We know that f and g are
continuous, so, by letting n → ∞, we get

|fun – fu|(t) → 0, |gun – gu|(t) → 0.

Thus, for t ∈ J , we write

∣
∣(Kun)(t) – (Ku)(t)

∣
∣ ≤ Iβ

q |gun – gu|(t) + Iα+β
q |fun – fu|(t)
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+ μ1(t)
(
Iβ+σ1

q |gun – gu|(η1) + Iα+β+σ1
q |fun – fu|(η1)

)

+ μ2(t)
(
λ2

(
Iβ+σ2

q |gun – gu|(η2) + Iα+β+σ1
q |fun – fu|(η2)

)

+ b2
(
Iβ–γ

q |gun – gu|(T) + Iα+β–γ
q |fun – fu|(T)

)

+ a2
(
Iβ

q |gun – gu|(T) + Iα+β
q |fun – fu|(T)

)) → 0. (19)

Therefore the right-hand side of (19) tends to zero. Therefore, the continuity of K is es-
tablished. Now, for r > 0, we set N = {u ∈ C(J ,R);‖u‖ ≤ r} and ‖f ∗‖ = sup(t,u)∈J×N |fu(t)|.
Thus,

∣
∣(Ku)(t)

∣
∣ ≤ Iβ

q
∣
∣gu(t)

∣
∣ + Iα+β

q
∣
∣fu(t)

∣
∣

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q
∣
∣gu(η1)

∣
∣ + Iα+β+σ1

q
∣
∣fu(η1)

∣
∣
]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣ + Iα+β+σ2

q
∣
∣fu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣ + Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣ + Iα+β

q
∣
∣fu(T)

∣
∣
)]

≤ {
Iα+β

q 1(t) +
∣
∣μ1(t)

∣
∣
[
Iα+β+σ1

q 1(η1)
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iα+β+σ2

q 1(η2)

+ b2Iα+β–γ
q 1(T) + a2Iα+β

q 1(T)
]}∥

∥f ∗∥∥

+
{

Iβ
q 1(t) +

∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q 1(η1)
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iβ+σ2

q 1(η2) + b2Iβ–γ
q 1(T)

+ a2Iβ
q 1(T)

]}
Ar ≤ �1

∥
∥f ∗∥∥ + �2Ar,

which yields ‖Ku‖ ≤ �1‖f ∗‖ + A�2r. This shows the uniformly boundedness of K. We
now claim that K is equicontinuous.

Let t1, t2 ∈ J via t1 < t2. Then, by setting ‖f ∗‖ = sup(t,u)∈J×N |fu(t)|, we obtain

∣
∣Ku(t2) – Ku(t1)

∣
∣

≤ Iβ
q
∣
∣gu(t2) – gu(t1)

∣
∣ + Iα+β

q
∣
∣fu(t2) – fu(t1)

∣
∣

+
∣
∣μ1(t2) – μ1(t1)

∣
∣
[
Iβ+σ1

q
∣
∣gu(η1)

∣
∣ + Iα+β+σ1

q
∣
∣fu(η1)

∣
∣
]

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣ + Iα+β+σ2

q
∣
∣fu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣ + Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣ + Iα+β

q
∣
∣fu(T)

∣
∣
)]

≤ Ar
�q(β + 1)

[
tβ
2 – tβ

1 + 2(t2 – t1)β
]

+
‖f ∗‖

�q(α + β + 1)
[
tα+β
2 – tα+β

1 + 2(t2 – t1)α+β
]

+
∣
∣μ1(t2) – μ1(t1)

∣
∣
[
Iβ+σ1

q 1(η1)Ar + Iα+β+σ1
q 1(η1)

∥
∥f ∗∥∥]

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
[
λ2

(
Iβ+σ2

q 1(η2)Ar + Iα+β+σ2
q 1(η2)

∥
∥f ∗∥∥)

+ b2
(
Iβ–γ

q 1(T)Ar + Iα+β–γ
q 1(T)

∥
∥f ∗∥∥)

+ a2
(
Iβ

q 1(T)Ar + Iα+β
q 1(T)

∥
∥f ∗∥∥)]

.

It is clear that |Ku(t2)–Ku(t1)| → 0 as t2 → t1 independent of u. In consequence, from the
above arguments, K is relatively compact on N . Application of the Arzelà–Ascoli theorem
proves the compactness of K on N .



Boutiara et al. Advances in Difference Equations        (2021) 2021:367 Page 12 of 23

Now, by considering the sequential four-point q-CFBVP (3) to be linear by taking fu(t) =
f (t, u(t)) = λ(t)u(t), the operator L, by Lemma 7, is formulated by

Lu(t) = Iβ
q gu(t) + Iα+β

q λ(t)u(t)

+ μ1(t)
[
Iβ+σ1

q gu(η1) + Iα+β+σ1
q λ(η1)u(η1)

]

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu(η2) + Iα+β+σ2
q λ(η2)u(η2)

)

– b2
(
Iβ–γ

q gu(T) + Iα+β–γ
q λ(T)u(T)

)

– a2
(
Iβ

q gu(T) + Iα+β
q λ(T)u(T)

)]
.

Our next claim is that 1 is not an eigenvalue of L. If it is so, by (18), we estimate

‖u‖ = sup
t∈J

∣
∣(Lu)(t)

∣
∣

≤ sup
t∈J

{
Iβ

q
∣
∣gu(t)

∣
∣ + Iα+β

q
∣
∣λ(t)

∣
∣
∣
∣u(t)

∣
∣

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q
∣
∣gu(η1)

∣
∣ + Iα+β+σ1

q
∣
∣λ(η1)

∣
∣
∣
∣u(η1)

∣
∣
]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣ + Iα+β+σ2

q
∣
∣λ(η2)

∣
∣
∣
∣u(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣ + Iα+β–γ

q
∣
∣λ(T)

∣
∣
∣
∣u(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣ + Iα+β

q
∣
∣λ(T)

∣
∣
∣
∣u(T)

∣
∣
)]}

≤ (λmax�1 + A�2)‖u‖ < ‖u‖,

which is not possible. Hence we established our claim.
Finally, we show that ‖K(u) –L(u)‖/‖u‖ vanishes as ‖u‖ → ∞. For t ∈ J , one may write

∣
∣(Ku)(t) – (Lu)(t)

∣
∣

≤ Iα+β
q

∣
∣fu(t) – λ(t)u(t)

∣
∣

+
∣
∣μ1(t)

∣
∣
[
Iα+β+σ1

q
∣
∣fu(η1) – λ(η1)u(η1)

∣
∣
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iα+β+σ2

q
∣
∣fu(η2) – λ(η2)u(η2)

∣
∣

+ b2Iα+β–γ
q

∣
∣fu(T) – λ(T)u(T)

∣
∣ + a2Iα+β

q
∣
∣fu(T) – λ(T)u(T)

∣
∣
]

≤ Iα+β
q

(∣
∣
∣
∣
fu(t)
u(t)

– λ(t)
∣
∣
∣
∣

∣
∣u(t)

∣
∣

)

+
∣
∣μ1(t)

∣
∣

[

Iα+β+σ1
q

(∣
∣
∣
∣
fu(η1)
u(η1)

– λ(η1)
∣
∣
∣
∣

∣
∣u(η1)

∣
∣

)]

+
∣
∣μ2(t)

∣
∣

[

λ2

(

Iα+β+σ2
q

(∣
∣
∣
∣
fu(η2)
u(η2)

– λ(η2)
∣
∣
∣
∣

∣
∣u(η2)

∣
∣

))

+ b2

(

Iα+β–γ
q

(∣
∣
∣
∣
fu(T)
u(T)

– λ(T)
∣
∣
∣
∣

∣
∣u(T)

∣
∣

))

+ a2

(

Iα+β
q

(∣
∣
∣
∣
fu(T)
u(T)

– λ(T)
∣
∣
∣
∣

∣
∣u(T)

∣
∣

))]

.

This means that

‖Ku – Lu‖
‖u‖ ≤ Iα+β

q

(∣
∣
∣
∣
fu(t)
u(t)

– λ(t)
∣
∣
∣
∣

)
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+
∣
∣μ1(t)

∣
∣

[

Iα+β+σ1
q

(∣
∣
∣
∣
fu(η1)
u(η1)

– λ(η1)
∣
∣
∣
∣

)]

+
∣
∣μ2(t)

∣
∣

[

λ2

(

Iα+β+σ2
q

(∣
∣
∣
∣
fu(η2)
u(η2)

– λ(η2)
∣
∣
∣
∣

))

+ b2

(

Iα+β–γ
q

(∣
∣
∣
∣
fu(T)
u(T)

– λ(T)
∣
∣
∣
∣

))

+ a2

(

Iα+β
q

(∣
∣
∣
∣
fu(T)
u(T)

– λ(T)
∣
∣
∣
∣

))]

.

By (17) and letting ‖u‖ → ∞, it is concluded that | fu(·)
u – λ(·)| → 0. Thus we obtain

lim‖u‖→∞
‖K(u) – L(u)‖

‖u‖ = 0.

Consequently, by Theorem 13, the supposed sequential four-point q-CFBVP (3) admits a
solution in X. The proof is ended. �

3.3 The third existence criterion
We now present our last existence criterion based on the O’Regan theorem [45].

Theorem 15 ([45]) Consider a closed and convex set E �= ∅ belonging to a Banach space X
containing an open set O. Define K : Ō → E as K = K1 +K2 subject to K(Ō) being bounded.
Moreover, K1 : Ō → E is continuous and completely continuous, K2 : O → E is nonlinear
contraction (i.e, a nonnegative nondecreasing function ϒ : [0,∞) → [0,∞) exists which
satisfies ϒ(t) < t for t > 0, and ‖K2u – K2u′‖ ≤ ϒ(‖u – u′‖), ∀u, u′ ∈ O.) Then either

(C1) K has a fixed point u ∈ Ō;
or

(C2) there exist u ∈ ∂O and μ ∈ (0, 1) such that u = μK(u).

Theorem 16 Let f , g ∈ C(J ×R,R) and assume that:
(D1) there exist a nonnegative mapping b ∈ C(J , [0,∞)) and a nondecreasing function

T : [0,∞) → (0,∞) such that

∣
∣f (t, u)

∣
∣ ≤ b(t)T

(‖u‖), ∀(t, u) ∈ J ×R;

(D2) there exist a continuous function φ1 : [0,∞) → [0,∞) and κ > 0 such that

∣
∣g(t, u) – g(t, v)

∣
∣ ≤ φ1

(‖u – v‖) and φ1
(|u|) ≤ κ|u|, ∀t ∈ J , u, v ∈R;

(D3) there exists ε > 0 such that supε∈(0,∞)[ ε
�1b∗T(ε)+l�2

] > 1
1–κ�2

, where l = supt∈J |g(t, 0)|
and κ�2 < 1.

Then there exists a solution for the supposed sequential four-point q-CFBVP (3) on J .

Proof We consider K : X → X defined by (13) as

Ku(t) = K1u(t) + K2u(t), t ∈ J ,

where the operators K1 and K2 are, respectively, given in (14) and (15). By (D3), ∃ε > 0 so
that

ε

�1b∗T(ε) + l�2
>

1
1 – k�2

,



Boutiara et al. Advances in Difference Equations        (2021) 2021:367 Page 14 of 23

and take Bε = {u ∈ X : ‖u‖ < ε}. We demonstrate the continuity and complete continuity
of K1. Before this, we prove the uniform boundedness of K1. Taking any u ∈ B̄ε , we have

∣
∣(K1u)(t)

∣
∣ ≤ Iα+β

q
∣
∣fu(t)

∣
∣ +

∣
∣μ1(t)

∣
∣
(
Iα+β+σ1

q
∣
∣fu(η1)

∣
∣
)

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iα+β+σ2

q
∣
∣fu(η2)

∣
∣
)

+ b2
(
Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iα+β

q
∣
∣fu(T)

∣
∣
)]

≤ �1b∗
T(ε),

in which b∗ = supt∈J |b(t)|. Thus K1 is uniformly bounded. Let t1, t2 ∈ J such that t1 < t2.
Then

∣
∣(K1u)(t2) – (K1u)(t1)

∣
∣

≤ Iα+β
q

∣
∣fu(t2) – fu(t1)

∣
∣ +

∣
∣μ1(t2) – μ1(t1)

∣
∣
(
Iα+β+σ1

q
∣
∣fu(η1)

∣
∣
)

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
[
λ2

(
Iα+β+σ2

q
∣
∣fu(η2)

∣
∣
)

+ b2
(
Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iα+β

q
∣
∣fu(T)

∣
∣
)]

≤ b∗
T(ε)

�q(α + β + 1)
[
tα+β
2 – tα+β

1 + 2(t2 – t1)α+β
]

+
∣
∣μ1(t2) – μ1(t1)

∣
∣
[
Iα+β+σ1

q 1(η1)b∗
T(ε)

]

+
∣
∣μ2(t2) – μ2(t1)

∣
∣
[
λ2Iα+β+σ2

q 1(η2)b∗
T(ε)

+ b2Iα+β–γ
q 1(T)b∗

T(ε) + a2Iα+β
q 1(T)b∗

T(ε)
]
,

which tends to zero as t2 → t1 free of u. This gives the equicontinuity of K1. Application
of the Arzelà–Ascoli theorem proves the compactness of K1 and consequently its com-
plete continuity. Furthermore, the continuity of K1 can be deduced from that of f by the
hypothesis.

We now show that K2 is a nonlinear contraction. By (D2) and for u, v ∈ Bε , we have

∣
∣(K2u)(t) – (K2v)(t)

∣
∣

≤ Iβ
q |gu – gv|(t) +

∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q |gu – gv|(η1)
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iβ+σ2

q |gu – gv|(η2) + b2Iβ–γ
q |gu – gv|(T) + a2Iβ

q |gu – gv|(T)
]

≤ �2φ1
(∥
∥u(t) – v(t)

∥
∥
)

≤ �2κ
∥
∥u(t) – v(t)

∥
∥.

By setting ϒ(u) = �2κu, note that ϒ(0) = 0 and ϒ(u) = �2κu < u for u > 0 since κ�2 < 1.
Thus

‖K2u – K2v‖ ≤ ϒ
(‖u – v‖).

Hence K2 is a nonlinear contraction. Now again, by (D2), for arbitrary u ∈ Bε , we estimate

∣
∣gu(t)

∣
∣ =

∣
∣g(t, u)

∣
∣ ≤ ∣

∣g(t, u) – g(t, 0)
∣
∣ +

∣
∣g(t, 0)

∣
∣ ≤ φ1

(‖u‖) +
∣
∣g(t, 0)

∣
∣ ≤ κε + l.
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where l = supt∈J |g(t, 0)|. Hence, we get

‖K2u‖ ≤ �2(κε + l),

which confirms the boundedness of K2. Thus, K = K1 + K2 is bounded.
In the final step, we prove that the assumption (C2) of Theorem 15 does not hold. To

prove this, consider the existence of μ ∈ (0, 1) and u ∈ ∂Bε such that u = μKu. So ‖u‖ = ε

and

∣
∣u(t)

∣
∣ = μ

∣
∣(Ku)(t)

∣
∣

= μ
∣
∣K1u(t) + K2u(t)

∣
∣

≤ ∣
∣K1u(t)

∣
∣ +

∣
∣K2u(t)

∣
∣

≤ �1b∗
T(ε) + �2(κε + 1).

Taking the supremum for all t ∈ J yields

‖u‖ ≤ �1b∗
T(ε) + (κε + l)�2.

Hence, we get

ε

�1b∗T(ε) + l�2
≤ 1

1 – κ�2
,

which contradicts (D3). Thus K1 and K2 satisfy all the assertions of Theorem 15. There-
fore, a fixed-point of K in Bε exists, which is the same solution of the sequential four-point
q-CFBVP (3). The proof is finished. �

3.4 The uniqueness property
Finally, we investigate the uniqueness property for the solutions of the sequential four-
point q-CFBVP (3) by referring to the Banach principle.

Theorem 17 Let
(H4) ∃a > 0 satisfying

∣
∣gu(t) – gv(t)

∣
∣ ≤ a

∣
∣u(t) – v(t)

∣
∣, ∀t ∈ J , u, v ∈R;

(H5) ∃� > 0 satisfying

∣
∣fu(t) – fv(t)

∣
∣ ≤ �

∣
∣u(t) – v(t)

∣
∣, ∀t ∈ J , u, v ∈ R.

Then the sequential four-point q-CFBVP (3) has a unique solution on J if

��1 + a�2 < 1, (20)

where �1, �2 are given in (11) and (12), respectively.
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Proof To prove the relevant result, define the ball Br = {u ∈ X : ‖u‖ ≤ r} for some r > 0
satisfying

r ≥ �1f ∗
0 + �2g∗

0
1 – ��1 – a�2

,

where g∗
0 = supt∈J |g(t, 0)| and f ∗

0 = supt∈J |f (t, 0)| and �1 and �2 are, respectively, given by
(11) and (12). Now, we prove KBr ⊂ Br in which the operator K : X → X is illustrated as
(13). Similar to Step 1 in Theorem 12, for u ∈ Br , we get

∣
∣(Ku)(t)

∣
∣ ≤ Iβ

q
∣
∣gu(t)

∣
∣ + Iα+β

q
∣
∣fu(t)

∣
∣

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q
∣
∣gu(η1)

∣
∣

+ Iα+β+σ1
q

∣
∣fu(η1)

∣
∣
]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q
∣
∣gu(η2)

∣
∣ + Iα+β+σ2

q
∣
∣fu(η2)

∣
∣
)

+ b2
(
Iβ–γ

q
∣
∣gu(T)

∣
∣ + Iα+β–γ

q
∣
∣fu(T)

∣
∣
)

+ a2
(
Iβ

q
∣
∣gu(T)

∣
∣ + Iα+β

q
∣
∣fu(T)

∣
∣
)]

≤ (
�‖u‖ + f ∗

0
)

sup
t∈J

{
Iα+β

q 1(t) +
∣
∣μ1(t)

∣
∣
[
Iα+β+σ1

q 1(η1)
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iα+β+σ2

q 1(η2) + b2Iα+β–γ
q 1(T) + a2Iα+β

q 1(T)
]}

+
(
a‖u‖ + g∗

0
)

sup
t∈J

{
Iβ

q 1(t) +
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q 1(η1)
]

+
∣
∣μ2(t)

∣
∣
[
λ2Iβ+σ2

q 1(η2)

+ b2Iβ–γ
q 1(T) + a2Iβ

q 1(T)
]}

≤ �1
(
�r + f ∗

0
)

+ �2
(
ar + g∗

0
)

< r,

which implies ‖K(u)‖ ≤ r. Thus, K maps Br into itself. Next, we prove that K is a contrac-
tion. For u, v ∈ X, and applying (11) and (12), we have

∣
∣(Ku)(t) – (Kv)(t)

∣
∣ ≤ Iβ

q |gu – gv|(t) + Iα+β
q |fu – gv|(t)

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q |gu – gv|(η1) + Iα+β+σ1
q |fu – fv|(η1)

]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q |gu – gv|(η2) + Iα+β+σ2
q |fu – fv|(η2)

)

+ b2
(
Iβ–γ

q |gu – gv|(T) + Iα+β–γ
q |fu – fv|(T)

)

+ a2
(
Iβ

q |gu – gv|(T) + Iα+β
q |fu – fv|(T)

)]

≤ (��1 + a�2)‖u – v‖.

Consequently, we get

∥
∥K(u)(t) – K(v)(t)

∥
∥ ≤ (��1 + a�2)‖u – v‖.

Since ��1 + a�2 < 1, the above inequality proves that K is a contraction. Thus application
of the Banach principle shows that K has a unique fixed point, corresponding to unique
solution of the sequential four-point q-CFBVP (3) on J . This ends the proof. �

4 The criterion of Ulam–Hyers stability
Due to the importance of the notion of stability for possible solutions of different dynam-
ical systems, in this section, we review two Ulam–Hyers and generalized Ulam–Hyers
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stabilities for solutions of the sequential four-point q-CFBVP (3). For more information,
see [46–48].

Definition 18 ([49]) The sequential four-point q-CFBVP (3) is Ulam–Hyers stable if ∃c∗ ∈
R+ such that ∀ε > 0 and ∀u∗(t) ∈ C(J ,R) as a solution function satisfying

∣
∣Dα

q
(
Dβ

q u∗(t) – g
(
t, u∗(t)

))
– f

(
t, u∗(t)

)∣
∣ < ε, (21)

∃u(t) ∈ C(J ,R) as the solution of the sequential four-point q-CFBVP (3) with

∣
∣u∗(t) – u(t)

∣
∣ ≤ εc∗, t ∈ J .

Definition 19 ([49]) The sequential four-point q-CFBVP (3) is generalized Ulam–Hyers
stable if ∃H ∈ C(R+,R+) with H(0) = 0 such that ∀ε > 0 and ∀u∗(t) ∈ C(J ,R) as a solution
of

∣
∣Dα

q
(
Dβ

q u∗(t) – g
(
t, u∗(t)

))
– f

(
t, u∗(t)

)∣
∣ < ε,

∃u(t) ∈ C(J ,R) as a solution of the sequential four-point q-CFBVP (3) with

∣
∣u∗(t) – u(t)

∣
∣ ≤ H(ε), t ∈ J .

Remark 1 ([49]) It is evident that Def. 18 ⇒ Def. 19.

Remark 2 ([49]) It is notable that u∗(t) ∈ C(J ,R) is a solution for (21) iff ∃G ∈ C(J ,R) de-
pending on u∗ such that

(1) |G(t)| < ε, t ∈ J .
(2) Dα

q (Dβ
q u∗(t) – g(t, u∗(t))) = f (t, u∗(t)) + G(t), t ∈ J .

Now, we can discuss the above stabilities for solutions to the sequential four-point q-
CFBVP (3).

Theorem 20 If (H4) and (H5) are fulfilled, then the sequential four-point q-CFBVP (3) is
Ulam–Hyers stable on J and accordingly is generalized Ulam–Hyers stable whenever

��1 + a�2 < 1,

where �1, �2 are in the same forms given in (11) and (12), respectively.

Proof For each ε > 0 and each function u∗(t) ∈ C(J ,R) as a solution of the inequality

∣
∣Dα

q
(
Dβ

q u(t) – g
(
t, u(t)

))
– f

(
t, u(t)

)∣
∣ < ε,

a function G(t) exists which satisfies

Dα
q
(
Dβ

q u(t) – g
(
t, u(t)

))
= f

(
t, u(t)

)
+ G(t)
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with |G(t)| ≤ ε. It gives

u∗(t) = Iβ
q gu∗ (t) + Iα+β

q fu∗ (t) + Iα+β
q G(t)

+ μ1(t)
[
Iβ+σ1

q gu∗ (η1) + Iα+β+σ1
q fu∗ (η1)

]

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu∗ (η2) + Iα+β+σ2
q fu∗ (η2)

)

– b2
(
Iβ–γ

q gu∗ (T) + Iα+β–γ
q fu∗ (T)

)
– a2

(
Iβ

q gu∗ (T) + Iα+β
q fu∗ (T)

)]
.

On the other side, let a unique function u(t) ∈ C(J ,R) be the solution of (3). Then u(t) is
written by

u(t) = Iβ
q gu(t) + Iα+β

q fu(t)

+ μ1(t)
[
Iβ+σ1

q gu(η1) + Iα+β+σ1
q fu(η1)

]

+ μ2(t)
[
λ2

(
Iβ+σ2

q gu(η2) + Iα+β+σ2
q fu(η2)

)

– b2
(
Iβ–γ

q gu(T) + Iα+β–γ
q fu(T)

)
– a2

(
Iβ

q gu(T) + Iα+β
q fu(T)

)]
.

We estimate

∣
∣u∗(t) – u(t)

∣
∣ ≤ Iα+β

q
∣
∣G(t)

∣
∣ + Iβ

q |gu∗ – gu|(t) + Iα+β
q |fu∗ – gu|(t)

+
∣
∣μ1(t)

∣
∣
[
Iβ+σ1

q |gu∗ – gu|(η1) + Iα+β+σ1
q |fu∗ – fu|(η1)

]

+
∣
∣μ2(t)

∣
∣
[
λ2

(
Iβ+σ2

q |gu∗ – gu|(η2) + Iα+β+σ2
q |fu∗ – fu|(η2)

)

+ b2
(
Iβ–γ

q |gu∗ – gu|(T) + Iα+β–γ
q |fu∗ – fu|(T)

)

+ a2
(
Iβ

q |gu∗ – gu|(T) + Iα+β
q |fu∗ – fu|(T)

)]

≤ εTα+β

�q(α + β + 1)
+ (��1 + a�2)

∥
∥u∗ – u

∥
∥.

Hence

∥
∥u∗ – u

∥
∥ ≤ εTα+β

�q(α + β + 1)
+ (��1 + a�2)

∥
∥u∗ – u

∥
∥,

where �1, �2 are the same constants as represented in (11) and (12), respectively. In con-
sequence,

∥
∥u∗ – u

∥
∥ ≤ εTα+β

�q(α + β + 1)[1 – (��1 + a�2)]
.

By assuming c∗ = Tα+β

�q(α+β+1)[1–(��1+a�2)] , the Ulam–Hyers stability for q-system (3) is satis-
fied. Also, for

H(ε) =
εTα+β

�q(α + β + 1)[1 – (��1 + a�2)]

with H(0) = 0, the condition of the generalized Ulam–Hyers stability is fulfilled for solu-
tions of the q-system (3). This completes the proof. �
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Figure 1 Graphs of the functions f (t,u) and g(t,u)

5 Two examples
Here, we aim to present some examples to examine the obtained results.

Example 1 Let us consider the sequential four-point q-CFBVP with the following data:

⎧
⎪⎪⎨

⎪⎪⎩

D1/3
1/4[D2/3

1/4u(t) – g(t, u(t))] = f (t, u(t)), t ∈ J = [0, 1],

u(0) + 2D1/2
1/4u(0) = 2/5I3/4

1/4 u(1/2),

2u(1) + D1/2
1/4u(1) = 3/7I1/4

1/4 u(3/4),

(22)

where α = 1/3, β = 2/3, q = 1/4, T = 1, γ = 1/2, a1 = b2 = 1, a2 = b1 = 2, σ1 = 3/4, σ2 = 1/4,
λ1 = 2/5, λ2 = 3/7, η1 = 1/2, η2 = 3/4 and g(t, u), f (t, u) are defined by

f (t, u) =
tu

56(1 + t)5

( |u| + 2
|u| + 1

)

+
1
2

and g(t, u) =
3t2

6

( |u|
3(|u| + 1)

)

.

The continuity of f is obvious and we reach f (t, 0) = 1
2 (see Fig. 1). Now, we divide f (t, u)

by u and we get

f (t, u)
u

=
t

56(1 + t)5

(

1 +
1

|u| + 1

)

+
1

2u
.

Hence

lim‖u‖→∞
f (t, u)

u
=

t
56(1 + t)5 .

Setting λ(t) = t
56(1+t)5 , we get λmax = 0.0179. On the other side,

∣
∣g(t, u)

∣
∣ ≤ 1

6
|u|.

Letting A = 1/6, we obtain �1 = 3.5597 and �2 = 4.8600. since (1 – A�2)/�1 = 0.0548 >
λmax, where �1 and �2 are, respectively, given by Eqs. (11) and (12). therefore, by Theo-
rem 14, the sequential four-point q-CFBVP (22) has a solution on [0, 1].

Example 2 By considering α = 1/3, β = 2/3, q = 1/4, T = 1, γ = 1/2, a1 = b2 = 1, a2 = b1 = 2,
σ1 = 3/4, σ2 = 1/4, λ1 = 2/5, λ2 = 3/7, η1 = 1/2, η2 = 3/4 the sequential four-point q-CFBVP
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Figure 2 Graphs of the functions f (t,u) and g(t,u)

is then given by

⎧
⎪⎪⎨

⎪⎪⎩

D1/3
1/4[D2/3

1/4u(t) – g(t, u(t))] = f (t, u(t)), t ∈ J = [0, 1],

u(0) + 2D1/2
1/4u(0) = 2/5I3/4

1/4 u(1/2),

2u(1) + D1/2
1/4u(1) = 3/7I1/4

1/4 u(3/4),

(23)

where f (t, u) and g(t, u) are given by (see Fig. 2)

f (t, u) =
1

3
√

900 + t2

(
arctan u + e–t) and g(t, u) =

1
100(1 + t2)

sin u +
cos t
25

.

By usual computations, we obtain �1 = 3.5597 and �2 = 4.8600. Taking a = 1/100 and
� = 1/90, it is clear that (H4) and (H5) are verified. Moreover, ��1 +a�2 ≈ 0.8775 < 1. Thus,
Theorem 17 is fulfilled and hence based on it, one can find that a unique solution exists
for the sequential four-point q-CFBVP (23) on [0, 1]. On the other side, as ��1 + a�2 < 1
is valid, so, by Theorem 20, the given sequential four-point q-CFBVP (23) is Ulam–Hyers
and also generalized Ulam–Hyers stable on J .

6 Conclusions
In the present research, we considered a new boundary problem in the context of the
quantum fractional operators. In other words, we defined a sequential q-fractional sys-
tem of q-difference equation in which boundary conditions are designed as a linear com-
bination of an unknown function and its q-derivative corresponding to a multiple of q-
integrals in four points. The main focus of this research is on the solution’s existence and
its uniqueness with the help of some methods inspired by several pure concepts in func-
tional analysis. We used three different fixed-point methods for this aim relying on the
measure of non-compactness and condensing operators and compact operators. The ex-
istence of a unique solution is investigated based on the Banach criterion. The investi-
gation of stability of the given q-CFBVP system in two formats based on Ulam–Hyers’
conditions is implemented. Lastly, two examples are provided to ensure the findings. It
is evident that this structure is more general and has many special applied cases. By as-
suming g(t, u(t)) = –μ ∈ R and a1 = b1 = a2 = b2 = 1 and σ1 = σ2 = 1 and by letting q → 1,
our proposed sequential four-point q-CFBVP (3) is transformed into a fractional Langevin
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equation with integral conditions

⎧
⎪⎪⎨

⎪⎪⎩

Dα
q (Dβ

q u(t) + μ)) = f (t, u(t)), t ∈ J := [0, T],

u(0) + Dγ u(0) = λ1
∫ η1

0 u(s) ds, η1 ∈ (0, T),

u(T) + Dγ u(T) = λ2
∫ η2

0 u(s) ds, η2 ∈ (0, T),

which is considered as one of the most important equations in mathematical physics.
Therefore, one can observe that the research study presented in the manuscript is not
only new in the existing structure, but will also lead to other various quantum fractional
problems as special cases. In future studies, we can generalize our boundary conditions to
multi-point ones and investigate similar results in the context of newly-defined fractional
(p, q)-operators in both cases of difference equations and inclusions.
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