Skip to main content

Theory and Modern Applications

  • Research Article
  • Open access
  • Published:

Variationally Asymptotically Stable Difference Systems

Abstract

We characterize the h-stability in variation and asymptotic equilibrium in variation for nonlinear difference systems via n-summable similarity and comparison principle. Furthermore we study the asymptotic equivalence between nonlinear difference systems and their variational difference systems by means of asymptotic equilibria of two systems.

[1234567891011121314151617181920]

References

  1. Conti R: Sulla t -similitudine tra matrici e la stabilità dei sistemi differenziali lineari. Atti della Accademia Nazionale dei Lincei. Rendiconti. Classe di Scienze Fisiche, Matematiche e Naturali 1955, 19: 247–250.

    MATH  MathSciNet  Google Scholar 

  2. Choi SK, Koo N, Dontha S: Asymptotic property in variation for nonlinear differential systems. Applied Mathematics Letters 2005,18(1):117–126. 10.1016/j.aml.2003.07.019

    Article  MATH  MathSciNet  Google Scholar 

  3. Trench WF: On t quasisimilarity of linear systems. Annali di Matematica Pura ed Applicata 1985, 142: 293–302. 10.1007/BF01766598

    Article  MATH  MathSciNet  Google Scholar 

  4. Trench WF: Linear asymptotic equilibrium and uniform, exponential, and strict stability of linear difference systems. Computers & Mathematics with Applications 1998,36(10–12):261–267.

    Article  MATH  MathSciNet  Google Scholar 

  5. Choi SK, Koo N: Variationally stable difference systems by n -similarity. Journal of Mathematical Analysis and Applications 2000,249(2):553–568. 10.1006/jmaa.2000.6910

    Article  MATH  MathSciNet  Google Scholar 

  6. Choi SK, Koo N, Goo YH: Variationally stable difference systems. Journal of Mathematical Analysis and Applications 2001,256(2):587–605. 10.1006/jmaa.2000.7330

    Article  MATH  MathSciNet  Google Scholar 

  7. Choi SK, Koo N, Ryu HS: Asymptotic equivalence between two difference systems. Computers & Mathematics with Applications 2003,45(6–9):1327–1337.

    Article  MATH  MathSciNet  Google Scholar 

  8. Galescu G, Talpalaru P: Stability results for perturbed difference equations of Volterra type. Libertas Mathematica 2003, 23: 95–109.

    MATH  MathSciNet  Google Scholar 

  9. Choi SK, Koo N: Asymptotic property of linear Volterra difference systems. Journal of Mathematical Analysis and Applications 2006,321(1):260–272. 10.1016/j.jmaa.2005.08.028

    Article  MATH  MathSciNet  Google Scholar 

  10. Lakshmikantham V, Trigiante D: Theory of Difference Equations: Numerical Methods and Applications, Mathematics in Science and Engineering. Volume 181. Academic Press, Boston, Mass, USA; 1988:x+242.

    Google Scholar 

  11. Medina R: Asymptotic behavior of nonlinear difference systems. Journal of Mathematical Analysis and Applications 1998,219(2):294–311. 10.1006/jmaa.1997.5798

    Article  MATH  MathSciNet  Google Scholar 

  12. Medina R: Stability of nonlinear difference systems. Dynamic Systems & Applications 2000,9(1):1–13.

    MATH  MathSciNet  Google Scholar 

  13. Medina R, Pinto M: Stability of nonlinear difference equations. In Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA, 1995), 1996, Atlanta, Ga, USA. Dynamic; 397–404.

  14. Agarwal RP: Difference Equations and Inequalities, Monographs and Textbooks in Pure and Applied Mathematics. Volume 228. 2nd edition. Marcel Dekker, New York, NY, USA; 2000:xvi+971.

    Google Scholar 

  15. Sheng Q, Agarwal RP: On nonlinear variation of parameter methods for summary difference equations. Dynamic Systems & Applications 1993,2(2):227–242.

    MATH  MathSciNet  Google Scholar 

  16. Pinto M: Discrete dichotomies. Computers & Mathematics with Applications 1994,28(1–3):259–270.

    Article  MATH  MathSciNet  Google Scholar 

  17. Medina R, Pinto M: Asymptotic equivalence and asymptotic behavior of difference systems. Communications in Applied Analysis 1997,1(4):511–523.

    MathSciNet  Google Scholar 

  18. Medina R: Asymptotic properties of solutions of nonlinear difference equations. Journal of Computational and Applied Mathematics 1996,70(1):57–66. 10.1016/0377-0427(95)00139-5

    Article  MATH  MathSciNet  Google Scholar 

  19. Morchało J: Asymptotic equivalence of difference equations. Mathematica Slovaca 1998,48(1):57–68.

    MATH  MathSciNet  Google Scholar 

  20. Zafer A: On asymptotic equivalence of linear and quasilinear difference equations. Applicable Analysis 2005,84(9):899–908. 10.1080/00036810500048350

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Kyu Choi.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Choi, S.K., Goo, Y.H. & Koo, N. Variationally Asymptotically Stable Difference Systems. Adv Differ Equ 2007, 035378 (2007). https://doi.org/10.1155/2007/35378

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/35378

Keywords