- Research Article
- Open access
- Published:
Solutions of 2
th-Order Boundary Value Problem for Difference Equation via Variational Method
Advances in Difference Equations volume 2009, Article number: 730484 (2009)
Abstract
The variational method and critical point theory are employed to investigate the existence of solutions for 2th-order difference equation
for
with boundary value condition
by constructing a functional, which transforms the existence of solutions of the boundary value problem (BVP) to the existence of critical points for the functional. Some criteria for the existence of at least one solution and two solutions are established which is the generalization for BVP of the even-order difference equations.
1. Introduction
Difference equations have been applied as models in vast areas such as finance insurance, biological populations, disease control, genetic study, physical field, and computer application technology. Because of their importance, many literature deals with its existence and uniqueness problems. For example, see [1–10].
We notice that the existing results are usually obtained by various analytical techniques, for example, the conical shell fixed point theorem [1, 6], Banach contraction map method [7], Leray-Schauder fixed point theorem [2, 10], and the upper and lower solution method [3]. It seems that the variational technique combining with the critical point theory [11] developed in the recent decades is one of the effective ways to study the boundary value problems of difference equations. However because the variational method requires a "symmetrical'' functional, it is hard for the odd-order difference equations to create a functional satisfying the "symmetrical'' property. Therefore, the even-order difference equations have been investigated in most references.
Let ,
be integers, and
,
be a discrete interval in
. Inspired by [5, 8], in this paper, we try to investigate the following
th-order boundary value problem (BVP) of difference equation via variational method combining with some traditional analytical skills:


where is the forward difference operator;
for
and
A variational functional for BVP (1.1)-(1.2) is constructed which transforms the existence of solutions of the boundary value problem (BVP) to the existence of critical points of this functional. In order to prove the existence criteria of critical points of the functional, some lemmas are given in Section 2. Two criteria for the existence of at least one solution and two solutions for BVP (1.1)-(1.2) are established in Section 3 which is the generalization for BVP of the even-order difference equations. The existence results obtained in this paper are not found in the references, to the best of our knowledge.
For convenience, we will use the following notations in the following sections:

2. Variational Structure and Preliminaries
We need two lemmas from [12] or [11].
Lemma 2.1.
Let be a real reflexive Banach space with a norm
, and let
be a weakly lower (upper) semicontinuous functional, such that

then there exists such that

Furthermore, if has bounded linear Gâteaux derivative, then
Lemma 2.2 (mountain-pass lemma).
Let be a real Banach space, and let
be continuously differential, satisfying the P-S condition. Assume that
and
is an open neighborhood of
, but
If
then
is the critical value of
where

This means that there exists , s.t.
,
The following lemma will be used in the proof of Lemma 2.4.
Lemma 2.3.
If is a symmetric and positive-defined real matrix,
is a real matrix,
is the transposed matrix of
Then
is positive defined if and only if
Proof.
Since is positive defined, then

Let be a Hilbert space defined by

with the norm

Hence is an
-dimensional Hilbert space. For any
, let
then one can show that there exist constants
s.t.
; that is,
is an equivalent norm of
(see [9, page 68]).
Lemma 2.4.
There is

Proof.
Since ,
,
By using the inequality
,
, we have

Repeating the above process, we obtain

On the other hand, define ,
where
is the combination number, then we can rewrite
in a vector form, that is,
where
,
, and

where Hence
Note that

and by Lemma 2.3 with , we know that
is positive defined. Hence all eigenvalues of
are real and positive. Let
be the minimal eigenvalue of these
eigenvalues, then
Therefore
that is,
However, how to find the in Lemma 2.4 is a skillful and challenging task. The following lemma from [13] offers some help for the estimation of
.
Lemma 2.5 (Brualdi [13]).
If is weak irreducible, then each eigenvalue is contained in the set

In Lemma 2.5, is the complex number set, and the denotations
,
,
,
can be found in [13]. Since
is positive defined, all eigenvalues are positive real numbers. Therefore, by Lemma 2.5, let

where .
is a subset of
and can be calculated directly from
Define
If
, we can use this
as
in Lemma 2.4. If
, then one needs to calculate the eigenvalues directly.
Define the functional on
by

Then is
with

where and
is the inner product in
. In fact, we have

The continuity of and the right-hand side of the inequality in Lemma 2.4 lead to (2.15).
Furthermore, for any we have
,
By using the following formula (e.g., see [14, page 28]):

we have

Repeating the above process, we obtain

Let , that is,

Since is arbitrary, we know that the solution of BVP (1.1)-(1.2) corresponds to the critical point of
3. Main Results
Now we present our main results of this paper.
Theorem 3.1.
If there exist ,
,
, and
s.t.

then BVP (1.1)-(1.2) has at least one solution.
Proof.
In fact, we can choose a suitable such that

Since there exists with
we have

Then by Lemma 2.4, we obtain

Noticing that we have
From Lemma 2.1, the conclusion of this lemma follows.
Corollary 3.2.
If there exists s.t.
for all
, and

where ,
satisfy either
,
or
, then BVP (1.1)-(1.2) has at least one solution.
Proof.
Assume that ,
Then for
there exists
such that
as
. We have from the continuity of
that there is a
such that
for all
,
. When
, one has
for
then

when , one has
for
then

Let , then we have
for
Therefore, we have

which implies and by Lemma 2.1, the conclusion of this lemma follows.
Assume that ,
Then for
there exists
such that
as
. We have from the continuity of
that there is a
such that
for all
,
. When
, one has
,
then we have

when , one has
,
then we have

Let , then we have
for
Therefore, by Theorem 3.1, the conclusion of this lemma follows.
Theorem 3.3.
Assume that ,
and
-
(i)
,
is defined in Lemma 2.4;
-
(ii)
satisfies (3.1) in Theorem 3.1 or
satisfies the assumptions in Corollary 3.2.
Then BVP (1.1)-(1.2) has at least two solutions.
Proof.
We first show that satisfies the P-S condition. Let
satisfy that
is bounded and
If
is unbounded, it possesses a divergent subseries, say
as
. However from (ii), we get (3.4) or (3.8), hence
as
, which is contradictory to the the fact that
is bounded.
Next we use the mountain-pass lemma to finish the proof. By (i), for , there exists
such that
for
. Then
for
. Now together with Lemma 2.3
we have

which implies that

where is the zero element in
, and
Since we have from (3.4) or (3.8) that
there exists
with
that is,
but
Using Lemma 2.2, we have shown that
is the critical value of
with
defined as

We denote as its corresponding critical point.
On the other hand, by Theorem 3.1 or Corollary 3.2, we know that there exists s.t.
If
the theorem is proved. If on the contrary,
, that is,
that implies for any
,
Taking
in
with
, by the continuity of
there exist
s.t.
,
Hence
,
are two different critical points of
that is, BVP (1.1)-(1.2) has at least two different solutions.
4. An Example
Consider the 6th-order boundary value problem for difference equation

Let , we have
,
Hence
satisfies the conditions in Theorem 3.3, the boundary value problem (4.1) has at least two solutions.
References
Agarwal RP, Henderson J: Positive solutions and nonlinear eigenvalue problems for third-order difference equations. Computers & Mathematics with Applications 1998,36(10–12):347-355.
Agarwal RP, O'Regan D:Singular discrete
boundary value problems. Applied Mathematics Letters 1999,12(8):113-119. 10.1016/S0893-9659(99)00131-7
Agarwal RP, Wong F-H: Upper and lower solutions method for higher-order discrete boundary value problems. Mathematical Inequalities & Applications 1998,1(4):551-557.
Agarwal RP, Perera K, O'Regan D: Multiple positive solutions of singular and nonsingular discrete problems via variational methods. Nonlinear Analysis: Theory, Methods & Applications 2004,58(1-2):69-73. 10.1016/j.na.2003.11.012
Guo ZM, Yu JS: Existence of periodic and subharmonic solutions for two-order superlinear difference equations. Science in China Series A 2003, 33: 226-235.
Jiang D, Chu J, O'Regan D, Agarwal RP:Positive solutions for continuous and discrete boundary value problems to the one-dimension
-Laplacian. Mathematical Inequalities & Applications 2004,7(4):523-534.
Li LT, Weng PX: Boundary value problems of second order functional difference equation. Journal of South China Normal University Natural Science Edition 2003, (3):20-24.
Liang HH, Weng PX: Existence and multiple solutions for a second-order difference boundary value problem via critical point theory. Journal of Mathematical Analysis and Applications 2007,326(1):511-520. 10.1016/j.jmaa.2006.03.017
Liang HH, Weng PX: Existence of solutions for a fourth-order difference boundary value problem and a critical point method. Applied Mathematics A Journal of Chinese Universities, Series A 2008,23(1):67-72.
Wong PJY, Agarwal RP:Existence theorems for a system of difference equations with
-type conditions. Applied Mathematics and Computation 2001,123(3):389-407. 10.1016/S0096-3003(00)00078-3
Rabinowitz PH: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Volume 65. American Mathematical Society, Providence, RI, USA; 1986:viii+100.
Ambrosetti A, Rabinowitz PH: Dual variational methods in critical point theory and applications. Journal of Functional Analysis 1973, 14: 349-381. 10.1016/0022-1236(73)90051-7
Horn RA, Johnson CR: Matrix Analysis. Cambridge University Press, Cambridge, UK; 1985:xiii+561.
Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Application. Birkhäuser, Boston, Mass, USA; 2001:x+358.
Acknowledgments
This research is partially supported by the NSF of China and NSF of Guangdong Province.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Zou, Q., Weng, P. Solutions of 2th-Order Boundary Value Problem for Difference Equation via Variational Method.
Adv Differ Equ 2009, 730484 (2009). https://doi.org/10.1155/2009/730484
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2009/730484