- Research
- Open Access
- Published:
Oscillation criteria for certain third-order delay dynamic equations
Advances in Difference Equations volume 2013, Article number: 178 (2013)
Abstract
This paper is concerned with the oscillatory behavior of a certain class of third-order nonlinear variable delay neutral functional dynamic equations,
on a time scale T with , where , , . By using the generalized Riccati transformation and a lot of inequality techniques, some new oscillation criteria for the equations are established, results are presented that not only complement and improve those related results in the literature, but also improve some known results for a third-order delay dynamic equation with a neutral term. Further, the main results improve some related results for third-order neutral differential equations. Some examples are given to illustrate the importance of our results.
MSC:34K11, 34C10, 39A10.
1 Introduction
Consider a third-order nonlinear variable delay dynamic equation
where , , . Throughout this article, we assume that:
(H1): T is an arbitrary time scale with , and with , we define the time scale interval by . , i.e., are rd-continuous functions. are continuous functions with () and ().
(H2): are delay functions with , and , .
(H3): , , and , and .
(H4): There exist constants and , such that (), ().
(H5): , .
We recall that a solution of equation (1.1) is said to be oscillatory on if it is neither eventually positive nor eventually negative; otherwise, the solution is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory. Our attention is restricted to those solutions of (1.1) where is not eventually identically zero.
Note that if , , , , , in equation (1.1), then (1.1) is simplified to the equation
In equation (1.1), if , , , and λ is the ratio of positive odd integers, then (1.1) is simplified to the Emden-Fowler type equation
In equation (1.1), if , , (where γ is the ratio of positive odd integers), then (1.1) is simplified to the equation
And it is easy to see that (1.1) can be transformed into the third-order nonlinear delay dynamic equations
and
Equations of this type arise in a number of important applications such as problems in biological population dynamics, in neural network, in quantum theory, in computer science and in control theory. Hence, it is important and useful to study the oscillatory properties of solutions of equation (1.1). Recently, there has been an increasing interest in studying the oscillatory behavior of first and second-order dynamic equations on time scales (see [1–7]). However, there are very few results regarding the oscillation of third-order equations. Among these papers dealing with the subject, we refer in particular to [8–17], the monographs [1, 2] and the references therein. Our concern is especially motivated by several recent papers such as [9–13].
Erbe et al. [9] studied equation (1.2) and they established Hille and Nehari-type oscillation criteria for the equation. After that, in [10] and [11], the author discussed oscillatory criteria of equations (1.3) and (1.4), respectively, under the condition
and got the result that every solution of equations (1.3) and (1.4) oscillates or converges to zero, where the Taylor monomials are defined as follows:
In [12], the author discussed oscillatory criteria of equation (1.5) under the conditions
and got the result that every solution of equation (1.5) oscillates or converges to zero. Moreover, in [13], the author considered the oscillation for equation (1.6) under the conditions
and obtained the result that every solution of equation (1.6) oscillates or converges to zero.
Obviously, the results in [9–13] are inapplicable for the following differential equation
Therefore, this topic is fairly new for dynamic equations on time scales. The purpose of this article is to obtain new oscillation criteria for the oscillation of (1.1), these criteria can improve the restriction of the conditions for the equation, which promote some existing results. We should note that many of our results of this article are new for the corresponding third-order nonlinear differential and difference equations. In fact, the obtained results extend, unify and correlate many of the existing results in the literature.
2 Preliminaries
We shall employ the following lemmas.
Lemma 2.1 [1]
Suppose that is delta-differentiable and eventually positive or eventually negative, then
Lemma 2.2 [3]
Assume that:
-
(1)
, where , .
-
(2)
, , , .
Then, for every , there exists a constant , , such that ().
Lemma 2.3 [2]
Suppose that a and b are nonnegative real numbers, then for all , where the equality holds if and only if .
Lemma 2.4 [8]
Assume that , , , , then
Lemma 2.5 Let be an eventually position solution of equation (1.1). Then there exists , for all , such that either
-
(i)
, , , ,
or
-
(ii)
, , , .
Proof Since is an eventually position solution of (1.1), then there exists such that , , for all , thus, . From (1.1), we obtain
Hence, is decreasing and, therefore, eventually of one sign, so is either eventually positive or eventually negative. We assert that for all . Assume that eventually, then there exists , such that . Then for all , we obtain
where . By (2.3), we obtain
Integrating this inequality from to t () provides
Then there exists , such that . Similarly, we can get
which contradicts with . So, , this implies that or . This completes the proof. □
Lemma 2.6 Assume that is a solution of equation (1.1), which satisfies the case (ii) in Lemma 2.5, if either
or
holds, then .
Proof Since is a solution of equation (1.1), which satisfies the case (ii) in Lemma 2.5, i.e.,
Therefore, it follows that . If , then in view of and , it is easy to see that there exists such that for all . Therefore, from (2.2), we obtain
If (2.4) holds, then integrating (2.6) from to t () provides
which contradicts with . So , in view of , hence .
If (2.5) holds, then integrating (2.6) from t to T (, ) provides
i.e., , letting , we have , this implies that , . In view of , similarly, we can get
Integrating the above inequality from to t (), we obtain
which contradicts with . So, , further, . This completes the proof. □
Due to the above reasons, in the next section, we assume that either (2.4) or (2.5) holds.
Lemma 2.7 [17] (Hölder’s inequality)
Let and . For rd-continuous functions , we have , where and .
3 Main results
In this section, we establish some sufficient conditions which guarantee that every solution of (1.1) either oscillates on or converges as .
Theorem 3.1 If there exists a function with , such that
where , then every solution of equation (1.1) is either oscillatory or .
Proof Suppose that equation (1.1) has a nonoscillatory solution on . We may assume without loss of generality that and , for all , . Then, by Lemma 2.5, we see that satisfies either case (i) or case (ii).
If case (i) in Lemma 2.5 holds, then in view of , we have
i.e.,
Now define the function by
Then (). In view of (2.2) and (3.3), we obtain for ,
Now, let , then from (i) in Lemma 2.5, we have , . In view of that
and , it is not difficult to see that . Therefore, by Lemma 2.2, , with , such that for all , this implies that
From (2.1), we get , therefore,
Using (3.2), (3.5), and (3.6) in (3.4), we find
On the other hand, let (), similarly, it is easy to see that , , , . Therefore, by Lemma 2.4, , such that for all . Then we see that
From , we get . In view of (3.8), we then obtain
Therefore, by (3.5) and (3.9), with , such that
for all . Using the above inequality in (3.7), we obtain for all ,
i.e.,
In Lemma 2.3, we let
From Lemma 2.3, we then obtain
Using the above inequality in (3.10), we find
Integrating inequality (3.11) from to provides
Consequently,
Taking limsup on both sides of the above inequality as , we obtain a contradiction to condition (3.1).
If case (ii) in Lemma 2.5 holds, then by Lemma 2.6, we have . This completes the proof. □
Remark 3.1 From Theorem 3.1, we can obtain different conditions for oscillation of all solutions of (1.1) with different choices of . For example, (where M is a constant) or (). Then we have the following results respectively.
Corollary 3.2 If , then every solution of equation (1.1) is either oscillatory or .
Corollary 3.3 If , then every solution of equation (1.1) is either oscillatory or .
Theorem 3.4 If there exists a function and constant , such that
for some constant , where the function is defined as in Theorem 3.1, then every solution of equation (1.1) is either oscillatory or .
Proof Suppose that equation (1.1) has a nonoscillatory solution on . We may assume without loss of generality that and , for all , . By Lemma 2.5 there are two possible cases. If case (ii) in Lemma 2.5 holds, then clearly . If case (i) in Lemma 2.5 holds, we proceed as in the proof of Theorem 3.1 to obtain (3.10). Then from (3.10), we have
for all . Multiplying both sides of the above inequality by , and integrating with respect to s from to t (), we can obtain
Now, in Lemma 2.3, we let
From Lemma 2.3, we then obtain
Hence, (3.13) implies
and, therefore,
Taking the limit superior as in the above inequality, we find
contradicting (3.12). This completes the proof. □
Remark 3.2 From Theorem 3.4, we can obtain different conditions for oscillation of all solutions of (1.1) with different choices of . For example, (where M is a constant) or (), then we have the following results, respectively.
Corollary 3.5 If there exists a constant , such that
for some constant , then every solution of equation (1.1) is either oscillatory or .
Corollary 3.6 If there exists a constant , such that
for some constant , then every solution of equation (1.1) is either oscillatory or .
Remark 3.3 Clearly, Kamenev-type oscillation criteria for second-order linear differential equation was extended to third-order nonlinear variable delay dynamic equations on time scales. One can easily see that the recent results cannot be applied in equation (1.1), so our results are new ones.
If (3.12) does not hold, then we have the following result.
Theorem 3.7 If there exist functions , and a constant , such that
for some constant , where , is defined as in Theorem 3.1, then every solution of equation (1.1) is either oscillatory or .
Proof Suppose that equation (1.1) has a nonoscillatory solution on . We may assume without loss of generality that and , for all , . By Lemma 2.5, there are two possible cases. If case (ii) in Lemma 2.5 holds, then clearly . If case (i) in Lemma 2.5 holds, we proceed as in the proof of Theorem 3.4 to obtain (3.13) and (3.14). Then from (3.14), for , , we have
In view of (3.16), we can get
From (3.13), we obtain for all ,
Next, in the above inequality, we set
in view of the second inequality in (3.18), then, it is not difficult to see that
Now we claim that
Suppose to the contrary that
Let be arbitrary. Then it follows from the above formula that there exists such that
Therefore (use the integration by parts formula ),
Now, taking , then for , . Since M is arbitrary,
Next, we consider a sequence with satisfying
Then there exists a constant such that
for all sufficiently large positive integer n. Since (3.21) ensures that
(3.22) implies that
Furthermore, (3.22) and (3.23) lead to the inequality
for large enough positive integer n, which together with (3.24) implies
On the other hand, by Lemma 2.7, we find that
and accordingly,
So, because of (3.25), we can obtain
contradicting (3.15). Therefore, (3.19) holds. Now, from the first formula of (3.18) and (3.19), we get
which contradicts (3.17). This completes the proof. □
Obviously, our results in this paper not only extend and improve some known results, and show some results of [3–8, 10, 14, 15] to be special examples of our results, but also unify the oscillation of the third-order nonlinear variable delay differential equations and the third-order nonlinear variable delay difference equations with a nonlinear neutral term. The theorems in this paper are new even for the cases and .
4 Applications and examples
In this section, we give some examples to illustrate our main results.
Example 4.1 Consider third-order delay differential equation
It is easy to verify that all conditions of Corollary 3.3 are satisfied. Hence, every solution of equation (4.1) is oscillatory or tends to zero as . For example, it is not difficult to verify that is a solution of equation (4.1). The important point to note here is that the recent results due to [9–13, 15] do not apply to equation (4.1) for the condition (1.7) or (1.8) can be a restrictive condition.
Example 4.2 Consider third-order variable delay dynamic equations on time scales
This is a third-order 2-difference equation, here , , . Now, pick , , , , , , then
and so
Hence, conditions (H1)-(H5) are clearly satisfied. Let , in view of , , then we have
This implies
and so conditions of Corollary 3.6 are satisfied as well. Altogether, by Corollary 3.6, we have that every solution of equation (4.2) is oscillatory or tends to zero as . But the results in [9–16] are inapplicable for equation (4.2).
References
Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.
Agarwal RP, Bohner M, Li WT: Nonoscillation and Oscillation: Theory for Functional Differential Equations. Dekker, New York; 2004.
Sahiner Y: Oscillation of second order delay differential equations on time scales. Nonlinear Anal. TMA 2005, 63: e1073-e1080.
Agarwal RP, Bohner M, Saker SH: Oscillation of second order delay dynamic equations. Can. Appl. Math. Q. 2005, 13(1):1-18.
Zhang QX, Gao L, Liu SH: Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales (II). Sci. Sin. Math. 2011, 41(10):885-896.
Zhang CH, Agarwal RP, Bohner M, et al.: New oscillation results for second-order neutral delay dynamic equations. Adv. Differ. Equ. 2012., 2012: Article ID 227
Hassan TS: Oscillation criteria for second-order nonlinear dynamic equations. Adv. Differ. Equ. 2012., 2012: Article ID 171
Erbe L, Peterson A, Saker SH: Hille and Nehari type criteria for third-order dynamic equations. J. Math. Anal. Appl. 2007, 329(1):112-131.
Erbe L, Hassan TS, Peterson A: Oscillation of third order nonlinear functional dynamic equations on time scales. Differ. Equ. Dyn. Syst. 2010, 18: 199-227.
Han Z, Li T, Sun S, Cao F: Oscillation criteria for third order nonlinear delay dynamic equations on time scales. Ann. Pol. Math. 2010, 99(2):143-156.
Han Z, Li T, Sun S, Zhang C: Oscillation behavior of third-order neutral Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010., 2010: Article ID 586312
Han ZL, Li TX, Sun SR, et al.: Oscillation behavior of solutions of third-order nonlinear delay dynamic equations on time scales. Commun. Korean Math. Soc. 2011, 26(3):499-513.
Hassan TS: Oscillation of third order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 2009, 49: 1573-1586.
Li T, Han Z, Sun Y, Zhao Y: Asymptotic behavior of solutions for third-order half-linear delay dynamic equations on time scales. J. Appl. Math. Comput. 2011, 36: 333-346.
Li TX, Han ZL, Zhang CH, et al.: Oscillation criteria for third-order Emden-Fowler delay dynamic equations on time scales. Acta Math. Sci. 2012, 32(1):222-232.
Yang J, Sun LJ, Xu LH: Asymptotic and oscillatory behavior for third-order nonlinear neutral variable delay dynamic equations. Math. Appl. 2010, 23(3):508-515.
Tuna A, Kutukcu S: Some integral inequalities on time scales. Appl. Math. Mech. 2008, 29(1):23-29.
Acknowledgements
This work was supported by the Natural Science Foundation of Hunan Province (12JJ6006) and Hunan Province Science and Technology Project (2012FJ3107) and Scientific Research Fund of Hunan Provincial Education Department (09A082).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that he has no competing interests.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Yang, J. Oscillation criteria for certain third-order delay dynamic equations. Adv Differ Equ 2013, 178 (2013). https://doi.org/10.1186/1687-1847-2013-178
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/1687-1847-2013-178
Keywords
- oscillation
- delay dynamic equations
- Riccati transformation
- inequality techniques
- time scales