Skip to main content

Theory and Modern Applications

q-Fractional calculus for Rubin’s q-difference operator

Abstract

In this paper we introduce a fractional q-integral operator and derivative as a generalization of Rubin’s q-difference operator. We also reformulate the definition of the q 2 -Fourier transform and the q-analogue of the Fourier multiplier introduced by Rubin in (J. Math. Anal. Appl. 212(2):571-582, 1997; Proc. Am. Math. Soc. 135(3):777-785, 2007). As applications, we give summation formulas for ϕ 1 2 finite series, we also use the q 2 -Fourier transform and Hahn q-Laplace transform to solve a fractional q-diffusion equation.

MSC:39A12, 33D15, 42A38, 35R11.

1 Introduction and preliminaries

Let q be a positive number, 0<q<1. In the following, we follow the notations and notions of q-hypergeometric functions, the q-gamma function Γ q (x), Jackson q-exponential functions E q (x), and the q-shifted factorial as in [1, 2]. The q-difference operator is defined by

D q f(z):= f ( z ) f ( q z ) z q z (z0).
(1.1)

Jackson [3] introduced an integral denoted by

a b f(x) d q x

as a right inverse of the q-derivative. It is defined by

a b f(t) d q t:= 0 b f(t) d q t 0 a f(t) d q t(a,bC),
(1.2)

where

0 x f(t) d q t:=(1q) n = 0 x q n f ( x q n ) (xC),
(1.3)

provided that the series on the right-hand side of (1.3) converges at x=a and b.

There is no unique canonical choice for the q-integration over [0,). In [4], Hahn defined the q-integration for a function f over [0,) by

0 f(t) d q t=(1q) n = q n f ( q n ) ,

while in [5] Matsuo defined q-integrations on the interval [0,) and (,) by

0 / b f(t) d q t:= 1 q b n = q n f ( q n / b ) (b>0),
(1.4)
/ b / b f(t) d q t= 1 q b q n ( f ( q n / b ) + f ( q n / b ) ) ,
(1.5)

respectively, provided that the series converges absolutely. For any q(0,1) and 0<b<, we define the spaces

L p ( R b , q ) : = { f : / b / b | f ( x ) | p d q x < , p 1 } , R b , q : = { ± q n / b : n Z } , L ( R b , q ) : = { f : f : = sup { f ( ± q n / b ) n Z } < } .

We shall use the particular notation R q , R ˜ q and R ˜ q , + to denote R 1 , q , R 1 q , q and { q k 1 q ,kZ}, respectively. One can verify that L 2 ( R b , q ) associated with the inner product

f,g:= / b / b f(t) g ( t ) ¯ d q t,f,g L 2 ( R b , q ),

is a Hilbert space. The Riemann-Liouville fractional q-integral operator is introduced by Al-Salam in [6] and later by Agarwal in [7] and defined by

I q α f(x):= x α 1 Γ q ( α ) 0 x ( q t / x ; q ) α 1 f(t) d q t,α{1,2,}.
(1.6)

Using (1.3), (1.6) reduces to

I q α f(x)= x α ( 1 q ) α n = 0 q n ( q α ; q ) n ( q ; q ) n f ( x q n ) ,
(1.7)

which is valid for all α. The Riemann-Liouville fractional q-derivative of order α, α>0, is defined by

D q α = D q k I q k α ( k = α ) .

Rubin in [8, 9] introduced the q-difference operator

q f(z)= f ( q 1 z ) + f ( q 1 z ) f ( q z ) + f ( q z ) 2 f ( z ) 2 ( 1 q ) z (z0).
(1.8)

It is straightforward to prove that if a function f is differentiable at a point z, then

lim q 1 q f(z)= f (z).

Also,

δ q f(z)={ D q f ( z ) if  f  is odd , 1 q D q 1 f ( z ) if  f  is even .

Let f and g be functions defined on a set A, where A satisfies

zA± q ± 1 zA,

and let f e and f o be the even and odd parts of f, respectively. The following properties of the q operator are from [9, 10] and hold for all zA{0}.

  1. (i)

    q f(z)= 1 q D q 1 f e (z)+ D q f o (z).

  2. (ii)

    For two functions f and g,

  • if f is even and g is odd, then

    q (fg)(z)=qg(z)( q f)(qz)+f(qz) q g(z);
  • if f and g are even, then

    q (fg)(z)= q f(z)g(z)+f(z/q) q g(z);
  • if f and g are odd, then

    q (fg)(z)= 1 q ( f ( z ) ( q g ) ( z / q ) + ( q f ) ( z / q ) g ( z / q ) ) .

The q-translation ε y is introduced by Ismail in [2] and is defined on monomials by

ε y x n := x n ( y / x ; q ) n ,
(1.9)

and it is extended to polynomials as a linear operator. Thus

ε y ( n = 0 m f n x n ) := n = 0 m f n x n ( y / x ; q ) n .
(1.10)

The q-translation operator is defined for x a , a>0, to be

ε y x a := x a ( y / x ; q ) a .
(1.11)

In [4], Hahn defined the following q-analogue of the Laplace transform:

L s q f(x)=ϕ(s)= 1 1 q 0 s 1 E q (qsx)f(x) d q x ( Re ( s ) > 0 ) .
(1.12)

Abdi [11] studied certain properties of these q-transforms. In [12], he used these analogues to solve linear q-difference equations with constant coefficients and certain allied equations. In [[4], equation (9.5)], Hahn defined the convolution of two functions F, G to be

(FG)(x)= x 1 q 0 1 F(tx)G[xtqx] d q t,
(1.13)

where G[xy], for

G(x):= n = 0 a n x n ,

is defined to be

G[xy]:= n = 0 a n [ x y ] n ,with  [ x y ] n := x n ( y / x ; q ) n .

Using the definition of q-integration, (FG) is nothing but

(FG)(x)= 1 1 q 0 x F(t) ε q t G(x) d q t,
(1.14)

where ε is the translation operator (1.10). It is remarked by Hahn [[4], p.373] that the convolution theorem

L s q (FG) = q L s F q L s G
(1.15)

holds. One can verify that if Φ(s): = q L s F(x) and 0<α<1, then

L s q D q α F(x)= s α ( 1 q ) α Φ(s) I q 1 α F ( 0 + ) 1 ( 1 q ) ;
(1.16)

see [13].

2 Orthogonality relations and completeness criteria

Koornwinder and Swarttouw introduced a q-analogue of the cosine and sine Fourier transform in [14] with the functions Cos(z; q 2 ) and Sin(z; q 2 ) defined by

Cos ( z ; q 2 ) = k = 0 ( 1 ) k q k ( k + 1 ) ( z ( 1 q ) ) 2 k ( q ; q ) 2 k Cos ( z ; q 2 ) = 1 ϕ 1 ( 0 ; q ; q 2 , q 2 z 2 ( 1 q ) 2 ) , Sin ( z ; q 2 ) = k = 0 ( 1 ) k q k ( k + 1 ) ( z ( 1 q ) ) 2 k + 1 ( q ; q ) 2 k + 1 Sin ( z ; q 2 ) = z 1 ϕ 1 ( 0 ; q 3 ; q 2 , q 2 z 2 ( 1 q ) 2 ) .
(2.1)

A q-analogue of the exponential function is introduced in [8, 9] and defined by

e ( z ; q 2 ) :=Cos ( i z ; q 2 ) iSin ( i z ; q 2 ) .

Straightforward calculations give

δ q Cos ( λ x ; q 2 ) =λSin ( λ x ; q 2 ) , δ q Sin ( λ x ; q 2 ) =λCos ( λ x ; q 2 )

and

δ q e ( λ x ; q 2 ) =λe ( λ x ; q 2 ) ,

where xC and λ is a fixed complex number. Fitouhi et al. in [15] proved that

| ( z ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z , q , q 1 + n ) | ( | z | , q ; q ) ( q ; q ) { 1 if  n 0 , | z | n q n ( n + 1 ) 2 if  n < 0 .

Hence,

| Sin ( q n 1 q ; q 2 ) | ( q 2 ; q 2 ) ( q ; q 2 ) { 1 if  n 0 , q n 2 if  n < 0
(2.2)

and

| Cos ( q n 1 q ; q 2 ) | ( q 2 ; q 2 ) ( q ; q 2 ) { 1 if  n 0 , q n 2 2 n if  n < 0 .
(2.3)

Consequently,

| e ( q n 1 q ; q 2 ) | 2 ( q 2 ; q 2 ) ( q ; q 2 ) { 1 , n 0 , q n 2 , n < 0 .
(2.4)

The following orthogonality relation is proved in [14].

Theorem 2.1 Let |z|<1 and n, m be integers. Then

δ m n = k = z k + n ( z 2 ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z 2 ; q , q n + k + 1 ) z k + m ( z 2 ; q ) ( q ; q ) 1 ϕ 1 ( 0 ; z 2 ; q , q m + k + 1 ) ,
(2.5)

where the sum converges absolutely and uniformly on compact subsets of the open unit disc.

The following identity, which follows from (2.5) when we replace q by q 2 and z by q α , α>0, is essential in our investigations.

q α ( n + m ) ( q 2 ; q 2 ) 2 ( q 2 α ; q 2 ) 2 δ m n = k = q 2 k α 1 ϕ 1 ( 0 ; q 2 α ; q 2 , q 2 n + 2 k + 2 ) 1 ϕ 1 ( 0 ; q 2 α ; q 2 , q 2 m + 2 k + 2 ) .
(2.6)

Theorem 2.2 For 0<q<1,

0 / 1 q Sin ( q n z 1 q ; q 2 ) Sin ( q m z 1 q ; q 2 ) d q z= 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m ,
(2.7)
0 / 1 q Cos ( q n z 1 q ; q 2 ) Cos ( q m z 1 q ; q 2 ) d q z= 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m
(2.8)

and

/ 1 q / 1 q e ( i q n z 1 q ; q 2 ) e ( i q m z 1 q ; q 2 ) d q z=4 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 q n δ n , m .
(2.9)

Proof We start with proving (2.7). Since

0 / 1 q Sin ( q n 1 q z ; q 2 ) Sin ( q m 1 q z ; q 2 ) d q z = k = q k 1 q Sin ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 ) = q n + m ( 1 q ) 3 / 2 q 3 k 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 n + 2 k ) 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 m + 2 k ) .
(2.10)

In (2.6), set α=3/2 to obtain

q 3 k 1 ϕ 1 ( 0 ; q 3 ; q 2 , q 2 + 2 n + 2 k ) 1 ϕ 1 ( 0 ; q 3 , q 2 ; q 2 + 2 m + 2 k ) = q 3 ( n + m ) / 2 ( q 2 ; q 2 ) 2 ( q 3 ; q 2 ) 2 δ n , m .
(2.11)

Combining (2.10) and (2.11) yields (2.7). The proof of (2.8) follows similarly and the proof of (2.9) follows by combining (2.7) and (2.8). □

Theorem 2.3 For any q(0,1),

  1. (a)

    the set {e(± q n 1 q x; q 2 ),nZ} is a complete orthogonal set in L q 2 ( R ˜ q ),

  2. (b)

    both of the sets {Cos( x q n 1 q ; q 2 ),nZ} and {Sin( x q n 1 q ; q 2 ),nZ} are complete orthogonal sets in L q 2 ( R ˜ q , + ).

Proof We only proove (a). The proof of (b) is similar and is omitted. From Theorem 2.2, it remains only to prove that the set {e(± q n 1 q x; q 2 ),nZ} is complete in L q 2 ( R ˜ q ). This is equivalent to proving that if there exists a function f L 2 ( R ˜ q ) such that

f , e ( ± q n 1 q x ; q 2 ) =0(nZ),
(2.12)

then

f ( ± q n 1 q ) =0(nZ).

From (2.12) we deduce

0 / 1 q f e ( t ) Cos ( q n 1 q t ; q 2 ) d q t = 0 ( n Z ) , 0 / 1 q f o ( t ) Sin ( q n 1 q t ; q 2 ) d q t = 0 ( n Z ) ,

where f e and f o are the even and odd parts of the function f. Then from (3.8)-(3.9) we obtain f e (t)= f o (t)=f(t)=0 for all t R ˜ q . Hence {e(± q n 1 q x; q 2 ),nZ} is a complete orthogonal set in L 2 ( R ˜ q ). □

Theorem 2.4

  1. (1)

    If f L 2 ( R ˜ q ), then

    f(x)= c n e ( i x q n 1 q ; q 2 ) + d n e ( i x q n 1 q ; q 2 ) (x R ˜ q ),
    (2.13)

where

c n = q n C / 1 q / 1 q f ( t ) e ( i t q n 1 q ; q 2 ) d q t ( n Z ) , d n = q n C / 1 q / 1 q f ( t ) e ( i t q n 1 q ; q 2 ) d q t ( n Z ) ,

and C:= 4 1 q ( q 2 ; q 2 ) 2 ( q ; q 2 ) 2 .

  1. (2)

    If f L 2 ( R ˜ q ), then

    f(x)= n = a n Cos ( x q n 1 q ; q 2 ) + n = b n Sin ( x q n 1 q ; q 2 ) (x R ˜ q ),
    (2.14)

where

a n = 4 C 0 / 1 q f e (t)Cos ( t q n 1 q ; q 2 ) d q t(nZ)

and

b n = 4 C 0 / 1 q f o (t)Sin ( t q n 1 q ; q 2 ) d q t(nZ).

Proof The proof of (1) follows directly from Theorem 2.3 and the orthogonality relations (2.9). In the following we give in detail the proof of (2). Let f= f e + f o be any function in L 2 ( R ˜ q ). Clearly both f e and f o belong to L 2 ( R ˜ q ). The restriction of f e to R ˜ q , + can be represented in the complete orthogonal set {Cos( x q n 1 q ),nZ} as

f e (x)= n = a n Cos ( x q n 1 q ; q 2 ) (x R ˜ q , + ),
(2.15)

where

a n = 4 C 0 / 1 q f e (t)Cos ( t q n 1 q ; q 2 ) d q t(nZ).

The orthogonal set {Sin( x q n 1 q ),nZ} also spans L 2 ( R ˜ q , + ), hence

f o (x)= n = b n Sin ( x q n 1 q ; q 2 ) (x R ˜ q , + ),
(2.16)

where

b n = 4 C 0 / 1 q f o (t)Sin ( t q n 1 q ; q 2 ) d q t(nZ).

Because both sides of (2.15) are even functions on R ˜ q , the equality extends on R ˜ q ; and similarly the two sides of (2.16). Hence we have the representation (2.14) of any f L 2 ( R ˜ q ). □

3 Rubin’s q 2 -Fourier transform

Koornwinder and Swarttouw [14] introduced the pair of q-transforms

g ( q n ) = ( q ; q 2 ) ( q 2 ; q 2 ) k = q k { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) f ( q k ) , f ( q k ) = ( q ; q 2 ) ( q 2 ; q 2 ) n = q n { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) g ( q n ) ,
(3.1)

where 0<q<1 and f, g are in the space L 2 ( R q ). Now assume that log ( 1 q ) log q 2Z or, equivalently,

q { q ( 0 , 1 ) : 1 q = q 2 m  for some integer  m } .
(3.2)

Then, by replacing q k and q n in (3.1) by q k 1 q and q n 1 q , and then f( q k 1 q ) and g( q n 1 q ) by f( q k ) and g( q k ), Koornwinder and Swarttouw obtained the following q-analogue of the cosine and sine Fourier transforms:

g ( λ ) = 1 + q Γ q 2 ( 1 / 2 ) 0 f ( t ) { Cos ( t λ ; q 2 ) or Sin ( t λ ; q 2 ) d q t , f ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 f ( t ) { Cos ( x λ ; q 2 ) or Sin ( x λ ; q 2 ) d q λ .
(3.3)

Therefore, if we let q 1 for such q’s that satisfy (3.2), we obtain the cosine and sine Fourier transforms

g(λ)= 2 π 0 f(t)cos(λt)dt,f(t)= 2 π 0 g(λ)cos(tλ)dλ,
(3.4)
g(λ)= 2 π 0 f(t)sin(λt)dt,f(t)= 2 π 0 g(λ)sin(tλ)dλ.
(3.5)

The pair of functions Cos(λx; q 2 ) and Sin(λx; q 2 ) satisfy

1 q D q 1 D q y(x)={ λ 2 y ( x ) if  y ( x ) = Sin ( λ x ; q 2 ) , q λ 2 y ( x ) if  y ( x ) = Cos ( λ x ; q 2 ) .

Therefore, the eigenfunctions {Cos(λx; q 2 ),Sin(λx; q 2 )} have two different eigenvalues. Consequently, as remarked by Koornwinder and Swarttouw in [14], no q-exponential functions built from {Cos(x; q 2 ),Sin(x; q 2 )} will satisfy an eigenfunction problem. This motivated Rubin [8] to define the q-difference operator (1.8) since for this operator, the functions {Cos(λx; q 2 ),Sin(λx; q 2 )} are solutions of the eigenvalue problem

δ q 2 y(x)= λ 2 y(x).

Rubin [8] introduced a q 2 -analogue of the Fourier transform in the form

f ˆ ( x ; q 2 ) := F q (f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) f(t)e ( i t x ; q 2 ) d q t,
(3.6)

where f L 1 ( R q ) and q satisfies condition (3.2).

Remark 3.1 Rubin [9] proved that

  1. (1)

    the q 2 -Fourier transform defines a bounded linear operator from L 1 ( R q ) to L ( R q ),

  2. (2)

    the q 2 -Fourier transform is defined and bounded on L 1 ( R q ) L 2 ( R q ),

  3. (3)

    L 1 ( R q ) L 2 ( R q ) is dense in L 2 ( R q ) (consider the functions with finite support).

Consequently, the q 2 -Fourier transform defines a bounded extension to L 2 ( R q ).

Koornwinder and Swarttouw introduced the q-Hankel transforms (3.1) which can be written in the form (3.3) only if q satisfies condition (3.2). In fact, we can write the q-transforms in (3.1) as q-integral on (,) by using Matsuo definition (1.4) as in the following. Rewrite the transform pair in (3.1) as

g ( q n 1 q ) = ( q ; q 2 ) ( q 2 ; q 2 ) k = q k { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) f ( q k 1 q ) , f ( q k 1 q ) = ( q ; q 2 ) ( q 2 ; q 2 ) n = q n { Cos ( q k + n 1 q ; q 2 ) or Sin ( q k + n 1 q ; q 2 ) g ( q n 1 q ) ,
(3.7)

where we assume that the functions f and g are in the space L 1 ( R ˜ q ) L 2 ( R ˜ q ). Using Matsuo definition of the q-integration on (0,), (1.4) with b= 1 q , the transformations in (3.7) can be written as

g ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q f ( t ) Cos ( x t ; q 2 ) d q t , f ( t ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q g ( x ) Cos ( x t ; q 2 ) d q x
(3.8)

and

g ( x ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q f ( t ) Sin ( x t ; q 2 ) d q t , f ( t ) = 1 + q Γ q 2 ( 1 / 2 ) 0 / 1 q g ( x ) Sin ( x t ; q 2 ) d q x ,
(3.9)

where x,t R ˜ q and f, g are in L 1 ( R ˜ q ) L 2 ( R ˜ q ). This is similar to Rubin’s work in [9]. Consequently, we set the following reformulation of Rubin’s definition of the q 2 -Fourier transform (3.6).

Definition 3.2 Let 0<q<1. We define the q 2 -Fourier transform for any function f L 1 ( R ˜ q ) to be

f ˆ ( x ; q 2 ) := F q (f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q f(t)e ( i t x ; q 2 ) d q t.
(3.10)

It is clear that Rubin’s definition of the q 2 -Fourier transform is a special case of (3.2) because if 1q= q 2 m for some mZ, then

0 / 1 q f(t) d q t= 0 / q m f(t) d q t= 0 f(t) d q t.

However, we get the classical Fourier transform only when q 1 and q satisfies (3.2). Similar to Rubin’s results mentioned in Remark 3.1, we can prove that the q 2 -Fourier transform defines a bounded linear operator from L 1 ( R ˜ q ) to L ( R ˜ q ), and L 1 ( R ˜ q ) L 2 ( R ˜ q ) is dense in L 2 ( R ˜ q ). Therefore, the q 2 -Fourier transform in (3.2) defines a bounded extension to L 2 ( R ˜ q ).

The proofs of the following results, which are valid for any q(0,1), are similar to the proofs in [8]. Therefore, we state them without proofs.

  1. (1)

    If f L 2 ( R ˜ q ), then

    f(t)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q F(f)(x)e ( i t x ( 1 q ) ; q 2 ) d q x,t R ˜ q .
    (3.11)
  2. (2)

    If f(u) and uf(u) L q 1 ( R ˜ q ), then

    q ( F q f)(x)= F q ( i u f ( u ) ) (x).
  3. (3)

    If f and q f L q 1 ( R ˜ q ), then

    F q ( q f)(x)=ix F q (f)(x).
    (3.12)

We reformulate the definitions of q 2 -Fourier multiplier and the q 2 -Fourier convolution formula introduced by Rubin in [9] with the restriction (3.2) to any q(0,1).

Definition 3.3 Let q(0,1). We define the q 2 -Fourier multiplier operator corresponding to translation by y to be

( T y f)(x)= 1 + q 2 Γ q 2 ( 1 / 2 ) / 1 q / 1 q e ( i t y ; q 2 ) ( F q f)(t)e ( i t x ; q 2 ) d q t,
(3.13)

whenever the q-integral makes sense. If f L 2 ( R ˜ q ) and g L 1 ( R ˜ q ), we define the multiplier corresponding to Fourier convolution of f with g to be

(fg)(z)= / 1 q / 1 q [ T λ f](z)g(λ) d q λ.
(3.14)

Theorem 3.4 Let f and g be two functions in ( L 1 L 2 )( R ˜ q ). Then

F q (fg)(x)= F q (f)(x) F q (g)(x)(x R ˜ q ).
(3.15)

Proof The proof of (3.15) is completely similar to the proof of [[9], Theorem 8] and is omitted. □

4 Fractional q-operator as a generalization of a q-difference operator

Let f be an integrable function of period 2π. Weyl, see Zygmund’s book [16], introduced a fractional operator which is more convenient for trigonometric series than the Riemann-Liouville fractional operator. This operator is defined by

( I α f)(x) n = c n e i n x ( i n ) α if f(x) c n e i n x , c 0 =0,
(4.1)

where i α = e i α π / 2 . Zygmund [[16], p.133] pointed out that

I α f(x)= 1 2 π 0 2 π f(t) Ψ α (xt)dt, Ψ α (x)= n 0 e i n x ( i n ) α .

He also proved the semigroup identity

I α I β = I α + β ,α,β>0.

In [17], Ismail and Rahman defined a q-analogue of the fractional operator I α , so that α=1 represents a right inverse of the Askey-Wilson operator D q which is defined by

( D q f)(x):= f ˘ ( q 1 / 2 e i θ ) f ˘ ( q 1 / 2 e i θ ) ( q 1 / 2 q 1 / 2 ) sin θ ,x=cosθ,

where f(x)= f ˘ (z) with x=(z+1/z)/2.

In this section, we introduce a q-analogue of the fractional operator (4.1) as a generalization of the q-difference operator defined by Rubin in [8]. From Theorem 2.3, consequently,

f(x)= / 1 q / 1 q f(t) Ψ 0 (x,t) d q t,

where

Ψ 0 ( x , t ) = q n e ( i x q n 1 q ) e ( i t q n 1 q ) + q n e ( i x q n 1 q ) e ( i t q n 1 q ) = q n Cos ( x q n 1 q ; q 2 ) Cos ( t q n 1 q ) + q n Sin ( x q n 1 q ; q 2 ) Sin ( t q n 1 q ; q 2 ) .

Lemma 4.1 The series

n = q n ( 1 α ) e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) (x,t R ˜ q )
(4.2)

is absolutely convergent only when Reα<1.

Proof The series in (4.2) can be written as

( n = 1 + n = 0 ) q n ( 1 α ) e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) .

From (2.4), the series n = 0 q n ( 1 α ) e(ix q n 1 q ; q 2 )e(it q n 1 q ; q 2 ) is absolutely convergent for Reα<1 and diverges for Reα1, while the series n = 1 q n ( 1 α ) e(ix q n 1 q ; q 2 )e(it q n 1 q ; q 2 ) is absolutely convergent for all αC. □

Set

Ψ α ( x , t ) : = ( 1 q ) α / 2 n = q n e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) ( i q n ) α + ( 1 q ) α / 2 n = q n e ( i x q n 1 q ; q 2 ) e ( i t q n 1 q ; q 2 ) ( i q n ) α ,

where x,t R ˜ q and i α is defined with respect to the principal branch, i.e., i α = e i π 2 α .

Lemma 4.2 For kN and Reα<1,

δ q , x k Ψ α (x,t)= Ψ α k (x,t).

Proof The proof follows directly by using that

δ q , x k e ( i x q n 1 q ; q 2 ) = ( i q n 1 q ) k e ( i x q n 1 q ; q 2 ) .

 □

A direct calculation yields the following identity, which holds for Reα<1,

( 1 q ) α / 2 Ψ α (x,t)=2cos ( π 2 α ) A α (x,t)+2sin ( π 2 α ) B α (x,t),
(4.3)

where

A α ( x , t ) : = k = q k ( 1 α ) Cos ( q n + k 1 q ; q 2 ) Cos ( q m + k 1 q ; q 2 ) + q k ( 1 α ) Sin ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 )
(4.4)

and

B α ( x , t ) : = k = q k ( 1 α ) Cos ( q m + k 1 q ; q 2 ) Sin ( q n + k 1 q ; q 2 ) q k ( 1 α ) Cos ( q n + k 1 q ; q 2 ) Sin ( q m + k 1 q ; q 2 ) .
(4.5)

Theorem 4.3 For Re(α)<1,

( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] ,
(4.6)

where τ r ={ q r 2 q 1 α 2 , r is odd , q r 2 , r is even .

Moreover,

( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r + 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r + 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] ,
(4.7)
( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] ,
(4.8)
( 1 q ) α / 2 Ψ α ( q n 1 q , q m 1 q ) = { 2 cos ( π 2 α ) q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r + 2 sin ( π 2 α ) q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r if n > m + [ 1 Re α 2 ] , 2 cos ( π 2 α ) q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r + 2 sin ( π 2 α ) q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r if m > n + [ 1 Re α 2 ] .
(4.9)

Proof Using the following formula from [[14], p.455]

k = s k y n + k ( y 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; y 2 ; q 2 , q 2 n + 2 k + 2 ) x m + k ( x 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; x 2 ; q 2 , q 2 m + 2 k + 2 ) = s m y n m ( s 1 x y 1 , y 2 ; q 2 ) ( s x y , q 2 ; q 2 ) 2 ϕ 1 ( q 2 s x 1 y , s x y ; y 2 ; q 2 , q 2 n 2 m s 1 x y 1 ) = s n x m n ( s 1 y x 1 , x 2 ; q 2 ) ( s x y , q 2 ; q 2 ) 2 ϕ 1 ( q 2 s x y 1 , s x y ; x 2 ; q 2 , q 2 m 2 n s 1 y x 1 ) ,

where |sxy|<1, we can prove that

k = q k ( 1 α ) Cos ( q m + k 1 q ; q 2 ) Cos ( q n + k 1 q ; q 2 ) = { q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 1 α ; q ; q 2 , q 2 n 2 m + α ) , n m + [ Re α / 2 ] , q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 1 α ; q ; q 2 , q 2 m 2 n + α ) , m n + [ Re α / 2 ] ,

where Re(1α)>0 and

k = q k ( 1 α ) Sin ( q m + k 1 q ; q 2 ) Sin ( q n + k 1 q ; q 2 ) = { q n m q m ( 1 α ) 1 q ( q α , q 2 ; q 2 ) ( q 3 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 n 2 m + α ) , n > m + [ Re α / 2 ] , q m n q n ( 1 α ) 1 q ( q α , q 2 ; q 2 ) ( q 3 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 m 2 n + α ) , m > n + [ Re α / 2 ] .

Also,

k = q k ( 1 α ) Sin ( q m + k 1 q ; q 2 ) Cos ( q n + k 1 q ; q 2 ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) 2 ϕ 1 ( q 1 α , q 2 α ; q ; q 2 , q 2 n 2 m + α + 1 ) , q m n q n ( 1 α ) 1 q ( q α 1 , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) 2 ϕ 1 ( q 2 α , q 3 α ; q 3 ; q 2 , q 2 m 2 n + α 1 ) .

Hence, if x:= q n 1 q and t:= q m 1 q , then

A α ( x , t ) = { t ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( x t ) r , n > m + [ Re α / 2 ] , x ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( t x ) r , m > n + [ Re α / 2 ] .
(4.10)

Also,

A α ( x , t ) = { t ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( x t ) r , n > m + [ Re α / 2 ] , x ( 1 α ) ( 1 q ) ( 1 α ) / 2 ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) r = 0 ( 1 ) r q α [ r 2 ] ( q 1 α ; q ) r ( q ; q ) r ( t x ) r , m > n + [ Re α / 2 ] ,
(4.11)
B α ( x , t ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n m + [ 1 Re α 2 ] , q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] ,
(4.12)
B α ( x , t ) = { q m ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( n m ) r , n m + [ 1 Re α 2 ] , q n ( 1 α ) ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) r = 0 ( 1 ) r q α r 2 τ r ( q 1 α ; q ) r ( q ; q ) r q ( m n ) r , m > n + [ 1 Re α 2 ] .
(4.13)

Substituting from (4.10)-(4.13) into (4.3) yields the values Ψ α (±x,±t) and the theorem follows. □

Remark 4.4 In the previous theorem, we calculated the value of Ψ α (x,t), x,t R ˜ q and for specific values of x, t. We can calculate the values of Ψ α (x,t) for all x, t by using the identity

s k + m y k + n ( y 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; y 2 ; q 2 , q 2 k + 2 n + 2 ) x k + m ( x 2 ; q 2 ) ( q 2 ; q 2 ) 1 ϕ 1 ( 0 ; x 2 ; q 2 , q 2 k + 2 m + 2 ) = y n m ( s 1 x y 1 , q 2 n 2 m + 2 ; q 2 ) ( q 2 n 2 m s 1 x y 1 , q 2 ; q 2 ) 2 ϕ 1 ( q 2 n 2 m s 1 x y 1 , s 1 y x 1 ; q 2 n 2 m + 2 ; q 2 , s x y )

for |sxy|<1. See Proposition 4.1 of [14].

In this case we have

CC α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Cos ( q n + r 1 q ; q 2 ) Cos ( q m + r 1 q ; q 2 ) = q m ( 1 α ) ( q α , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α , q α ; q 2 n 2 m + 2 ; q 2 , q 1 α ) ,
(4.14)
SS α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q n + r 1 q ; q 2 ) Sin ( q m + r 1 q ; q 2 ) = q n m q m ( 1 α ) ( q α , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α , q α ; q 2 n 2 m + 2 ; q 2 , q 3 α ) , SC α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q n + r 1 q ; q 2 ) Cos ( q m + r 1 q ; q 2 ) = q n m q m ( 1 α ) ( q α 1 , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α 1 , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α 1 , q α + 1 ; q 2 n 2 m + 2 ; q 2 , q 2 α ) , CS α ( q n 1 q , q m 1 q ) : = r = q r ( 1 α ) Sin ( q m + r 1 q ; q 2 ) Cos ( q n + r 1 q ; q 2 ) = q m ( 1 α ) ( q α + 1 , q 2 n 2 m + 2 , q 2 ; q 2 ) ( q 2 n 2 m + α + 1 , q , q ; q 2 ) 2 ϕ 1 ( q 2 n 2 m + α + 1 , q α 1 ; q 2 n 2 m + 2 ; q 2 , q 2 α ) .
(4.15)

Corollary 4.5 For each fixed x,t R ˜ q , the function Ψ α (x,t) as a function of α can be extended to an entire function on .

Proof If α is a positive integer, then the series on the right-hand sides of (4.6)-(4.9) are finite sums and hence are convergent. Since the zeros of the function cos( π 2 α) are the poles of the function ( q 1 α ; q 2 ) with the same orders. In fact

lim α ( 2 j + 1 ) cos π 2 α ( q 1 α ; q 2 ) = π 2 ln q q j 2 + j ( q 2 ; q 2 ) j ( q 2 ; q 2 ) (j N 0 ).

Similarly, the zeros of the function sin( π 2 α) are the poles of the function ( q 2 α ; q 2 ) with the same orders and

lim α ( 2 j ) sin π 2 α ( q 2 α ; q 2 ) = π 2 ln q q j 2 j ( q 2 ; q 2 ) j 1 ( q 2 ; q 2 ) (jN).

Then the left-hand sides of equations (4.6)-(4.9) are entire functions. Hence, as a function of α, the functions Ψ α (x,t) (x,t R ˜ q ) can be analytically extended by defining its values when α1 by the left-hand sides of (4.6)-(4.9). □

It also should be noted that for Re(α)1, the left-hand sides of (4.6) and (4.7) determine Ψ α (x,t) for all x,t R ˜ q , which is different from the case of Re(α)<1; see Remark 4.4.

Definition 4.6 For Reα>0, we define a fractional q-integral operator J q α on L 2 ( R ˜ q ) L 1 ( R ˜ q ) by

J q α f(x):= 1 C / 1 q / 1 q f(t) Ψ α (x,t) d q t.

The following properties follow at once from (4.3) and their analytic continuation on .

  • If f L 2 ( R ˜ q )L( R ˜ q ) and f is even, then

    J q α f(x)=2 0 / 1 q f(t) φ α (x,t) d q t,

where

( 1 q ) α / 2 φ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 n 2 m + α ) 2 q n m ( m + 1 ) ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α 1 ) , 2 q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α ) + 2 q n ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α + 1 )

and

( 1 q ) α / 2 φ α ( q n 1 q , q m 1 q ) = { 2 q m ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q α + 1 ; q ) 2 j ( q ; q ) 2 j q i ( 2 n 2 m + α ) + 2 q n m m ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α , q ; q 2 ) j = 0 ( q 1 α ; q ) 2 j + 1 ( q ; q ) 2 j + 1 q j ( 2 n 2 m + α 1 ) , 2 q n ( 1 α ) ( q α , q 2 ; q 2 ) ( q 1 α , q ; q 2 ) cos π 2 α j = 0 ( q 1 α ; q ) 2 j ( q ; q ) 2 j q j ( 2 m 2 n + α ) 2 q n ( 1 α ) sin π 2 α ( q 1 + α , q 2 ; q 2 ) ( q 2 α