Skip to main content

Theory and Modern Applications

Existence of three symmetric positive solutions for a second-order multi-point boundary value problem on time scales

Abstract

In this article, we investigate the existence of at least three symmetric positive solutions of a second-order multi-point boundary value problem on time scales. The ideas involve Bai and Ge’s fixed point theorem. As an application, we give an example to demonstrate our main result.

MSC:34B10, 34B18, 39A10.

1 Introduction

Calculus on time scales was introduced by Hilger [1] as a theory which includes both differential and difference calculus as a special cases. In the past few years, it has found a considerable amount of interest and attracted the attention of many researchers. Time scale calculus would allow the exploration of a variety of situations in economic, biological, heat transfer, stock market, and epidemic models; see the monographs of Aulbach and Hilger [2], Bohner and Peterson [3, 4], and Lakshmikantham et al. [5] and the references therein.

The study of multi-point linear boundary value problems was initiated by II’in and Moiseev [6, 7]. Since then, the more general nonlinear multi-point boundary value problems have been widely studied by many authors. The multi-point boundary value problems arise frequently in applied mathematics and physics, see for instance [816] and the references therein. At the same time, interest in obtaining the solutions on time scales has been on-going for several years.

On the other hand, the existence of symmetric positive solutions of second-order boundary value problems have been studied by some authors, see [17, 18]. Most of the study of the symmetric positive solution is limited to the Dirichlet boundary value problem, the Sturm-Liouville boundary value problem and the Neumann boundary value problem. However, there is not so much work on symmetric positive solutions for second-order m-point boundary value problems; see [1921].

Yao [22] studied the following boundary value problem (BVP):

{ x ( t ) + ω ( t ) f ( x ( t ) ) = 0 , t ( 0 , 1 ) , α x ( 0 ) β x ( 0 ) = 0 , α x ( 1 ) + β x ( 1 ) = 0 .

This author obtained the existence of n symmetric positive solutions and established a corresponding iterative scheme by using a monotone iterative technique.

Kosmatov [23, 24] studied the following BVP:

{ u ( t ) = α ( t ) f ( t , u ( t ) , | u ( t ) | ) , t ( 0 , 1 ) , u ( 0 ) = i = 1 n μ i u ( ξ i ) , u ( t ) = u ( t 1 ) , t [ 0 , 1 ] .

By using the Leggett-Wiliams fixed point theorem and the coincidence degree theorem of Mawhin, he studied the existence of three positive solutions for a multi-point boundary value problem.

Motivated by the results mentioned above, in this paper, we consider the following multi-point BVP:

{ ( p ( t ) y Δ ( t ) ) = f ( t , y ( t ) , y Δ ( t ) ) , t ( a , b ) , α y ( a ) + β y [ Δ ] ( a ) = i = 1 m 2 α i y [ Δ ] ( ξ i ) , α y ( b ) + β y [ Δ ] ( b ) = i = 1 m 2 α i y [ Δ ] ( η i ) ,
(1.1)

where TR be a symmetric bounded time scale, with a=minT, b=maxT, [a,b]T such that [a,b]={tT:atb} and y [ ] (t)=p(t) y (t) is called the quasi-Δ-derivative of y(t).

In the rest of this paper, we make the following assumptions:

  • (C1) p C ([a,b],(0,)), fC([a,b]×(0,)×(,),(0,)), f(t,u,v)=f(b+at,u,v), f(t,u,v)=f(t,u,v), p(t)=p(b+at);

  • (C2) α,β(0,), α i [0,), with β> i = 1 m 2 α i , ξ i , η i (a,b) such that ξ i =b+a η i , for i{1,2,3,,m2}.

By using Bai and Ge’s fixed point theorem [25], we get the existence of at least three symmetric positive solutions for the BVP (1.1). In fact, our results are new when T=R (the differential case) and T=Z. Hence, our new results naturally complement recent advances in the literature.

This paper is organized as follows. In Section 2, we provide some preliminary lemmas which are key tools for our main results. We give and prove our main results in Section 3. Finally, in Section 4, we give an example to demonstrate our results.

2 Preliminaries

In this section, we present auxiliary lemmas which will be used later.

Define by θ(t) and φ(t) the solutions of the corresponding homogeneous equation

( p ( t ) y ( t ) ) =0,t(a,b),
(2.1)

under the initial conditions

{ θ ( a ) = β , p ( a ) θ ( a ) = α , φ ( b ) = β , p ( b ) φ ( b ) = α .
(2.2)

Using the initial conditions (2.2), we can deduce from (2.1) for θ(t) and φ(t), the following equations:

θ(t)=β+α a t τ p ( τ ) ,
(2.3)
φ(t)=β+α t b τ p ( τ ) .
(2.4)

Denote D:=2αβ+ α 2 a b τ p ( τ ) .

Lemma 2.1 Suppose that the condition D0 holds. Then, for fC([a,b]×(0,)×(,),(0,)), the BVP (1.1) has a unique solution

y(t)= a b G(t,s)f ( s , y ( s ) , y ( s ) ) s+ 1 α i = 1 m 2 α i a b G t [ ] ( η i ,s)f ( s , y ( s ) , y ( s ) ) s,

where G(t,s) is the Green function for (1.1) and is given by

G(t,s)= 1 D { θ ( t ) φ ( s ) , a t s b , θ ( s ) φ ( t ) , a s t b ,
(2.5)

where θ(t), φ(t) are given in (2.3) and (2.4), respectively, and G t [ ] (t,s):=p(t) G t (t,s).

Proof Let

y ( t ) = a b G ( t , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s

be a solution of (1.1), then we have

y ( t ) = 1 D a t θ ( s ) φ ( t ) f ( s , y ( s ) , y ( s ) ) s + 1 D t b θ ( t ) φ ( s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s , p ( t ) y ( t ) = 1 D p ( t ) φ ( t ) a t θ ( s ) f ( s , y ( s ) , y ( s ) ) s + 1 D p ( t ) θ ( t ) t b φ ( s ) f ( s , y ( s ) , y ( s ) ) s = a b G t [ ] ( t , s ) f ( s , y ( s ) , y ( s ) ) s ,

and

( p ( t ) y ( t ) ) = 1 D ( p ( t ) φ ( t ) ) a t θ ( s ) f ( s , y ( s ) , y ( s ) ) s + 1 D p ( ρ ( t ) ) φ ( ρ ( t ) ) θ ( t ) f ( t , y ( t ) , y ( t ) ) + 1 D ( p ( t ) θ ( t ) ) t b φ ( s ) f ( s , y ( s ) , y ( s ) ) s 1 D p ( ρ ( t ) ) θ ( ρ ( t ) ) φ ( t ) f ( t , y ( t ) , y ( t ) ) = p ( ρ ( t ) ) D [ φ ( ρ ( t ) ) θ ( t ) + θ ( ρ ( t ) ) φ ( t ) ] f ( t , y ( t ) , y ( t ) ) = f ( t , y ( t ) , y ( t ) ) .

Since

y ( a ) = 1 D a b θ ( a ) φ ( s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s , p ( a ) y ( a ) = p ( a ) θ ( a ) a b 1 D φ ( s ) f ( s , y ( s ) , y ( s ) ) s ,

we have

αy(a)+βp(a)y(a)= i = 1 m 2 α i a b G t [ ] ( η i ,s)f ( s , y ( s ) , y ( s ) ) s.

For t,s[a,b], G t [ ] (t,s)= G t [ ] (b+at,b+as), we get

i = 1 m 2 α i a b G t [ ] ( η i ,s)f ( s , y ( s ) , y ( s ) ) s= i = 1 m 2 α i y [ ] ( ξ i ).

Similarly, we can see that the other boundary condition is satisfied. □

Lemma 2.2 For t,s[a,b], we have G(b+at,b+as)=G(t,s).

Proof In fact, if ts, then 1t1s. In view of (2.5) and the assumption (C1), we get

G ( b + a t , b + a s ) = 1 D ( β + α a b + a s 1 p ( τ ) τ ) ( β + α b + a t b 1 p ( τ ) τ ) = 1 D ( β + α s b 1 p ( τ ) τ ) ( β + α a t 1 p ( τ ) τ ) = G ( t , s ) , a t s b .

Similarly, we can prove that G(b+at,b+as)=G(t,s), astb.

So, we have G(b+at,b+as)=G(t,s) for all (t,s)[a,b]×[a,b], i.e., G(t,s) is a symmetric function on [a,b]×[a,b]. □

Lemma 2.3 Let (C1) and (C2) hold. Then the unique solution y of the BVP (1.1) satisfies

y(t)0for t[a,b].

Proof By using conditions (C1), (C2) and definition of y(t), we get

y ( t ) = 1 D a t θ ( s ) [ φ ( t ) i = 1 m 2 α i ] f ( s , y ( s ) , y ( s ) ) s + 1 D t b φ ( s ) [ θ ( t ) + i = 1 m 2 α i ] f ( s , y ( s ) , y ( s ) ) s 0 .

The proof is complete. □

Lemma 2.4 Suppose that (C1), (C2) hold, then min t [ a , b ] y(t)Γ max t [ a , b ] y(t) where Γ= β β + α a b τ p ( τ ) <1.

Proof We have from (2.5) 0G(t,s)G(s,s) for t,s[a,b].

For atsb,

G ( t , s ) G ( s , s ) = θ ( t ) θ ( s ) θ ( a ) θ ( b ) = β θ ( b ) .

For astb,

G ( t , s ) G ( s , s ) = φ ( t ) φ ( s ) φ ( t ) φ ( b ) = β φ ( a ) .

From the definitions of φ and θ, we obtain min t [ a , b ] G(t,s)ΓG(s,s). Hence,

y ( t ) = a b G ( t , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s a b Γ G ( s , s ) f ( s , y ( s ) , y ( s ) ) s + Γ 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s Γ max t [ a , b ] y ( t ) .

The proof is complete. □

Lemma 2.5 For t,s[a,b], G t [ ] (t,s) α β G(s,s).

Proof One can easily see that the inequality holds. □

Let B=C[a,b] be a Banach space with the norm

y=max { max t [ a , b ] | y ( t ) | , max t [ a , b ] | y [ ] ( t ) | } .

Define the cone PB by

P= { y B : y ( t ) 0 , y  is symmetric on  [ a , b ] , min t [ a , b ] y ( t ) Γ max t [ a , b ] y ( t ) } .

We define an operator T:PB,

( T y ) ( t ) = a b G ( t , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s .
(2.6)

Lemma 2.6 Let (C1), (C2) hold. Then T:PP is completely continuous.

Proof For all yP, by (C1), (C2) and (2.6), (Ty)(t)0, for all t[a,b]. Furthermore, by (2.5) and min t [ a , b ] G(t,s)ΓG(s,s).

T y ( t ) a b Γ G ( s , s ) f ( s , y ( s ) , y Δ ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s Γ ( a b G ( s , s ) f ( s , y ( s ) , y Δ ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s ) Γ max t [ a , b ] ( T y ) ( t ) ,

i.e., min t [ a , b ] (Ty)(t)Γ max t [ a , b ] (Ty)(t).

Noticing that p(t), y(t), f(s,y(s), y (s)) are symmetric on [a,b], and by Lemma 2.2, we have

T y ( b + a t ) = a b G ( b + a t , s ) f ( s , y ( s ) , y Δ ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s = b a ( G ( b + a t , b + a s ) f ( b + a s , y ( b + a s ) , y ( b + a s ) ) ) × ( b + a s ) + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s = T y ( t ) ,

i.e., Ty(b+at)=Ty(t) for t[a,b]. Therefore, Ty(t) is symmetric on [a,b].

So, TyP and then TyP. Next, by standard methods and the Arzela-Ascoli theorem, one can easily prove that the operator T is completely continuous. □

3 Main results

We are now ready to apply the fixed point theorem due to Bai and Ge [25] to the operator T in order to get sufficient conditions for the existence of multiple positive solutions to the problem (1.1).

Suppose that μ,γ:P[0,) are two nonnegative continuous convex functionals satisfying

yMmax { μ ( y ) , γ ( y ) } ,for all yP,
(3.1)

where M is a positive constant, and

Ω= { y P : μ ( y ) < r , γ ( y ) < L } ,for any r>0,L>0.
(3.2)

With (3.1) and (3.2), Ω is a bounded nonempty open subset in P.

Let r>c>0, L>0 be given. Let μ,γ:P[0,) be two nonnegative continuous convex functionals satisfying (3.1) and (3.2), and ρ be a nonnegative continuous concave functional on the cone P. Define bounded convex sets

P ( μ , r ; γ , L ) = { y P : μ ( y ) < r , γ ( y ) < L } , P ¯ ( μ , r ; γ , L ) = { y P : μ ( y ) r , γ ( y ) L } , P ( μ , r ; γ , L ; ρ , c ) = { y P : μ ( y ) < r , γ ( y ) < L , ρ ( y ) > c } , P ¯ ( μ , r ; γ , L ; ρ , c ) = { y P : μ ( y ) r , γ ( y ) L , ρ ( y ) c } .

To prove our results, we need the following fixed point theorem due to Bai and Ge in [25].

Theorem 3.1 [25]

Let B be a Banach space, PB be a cone and r 2 d>e> r 1 >0, L 2 L 1 >0 be given. Assume that μ, γ are nonnegative continuous convex functionals on P, such that (3.1) and (3.2) are satisfied, ρ is a nonnegative continuous concave functional on P, such that ρ(y)μ(y) for all y P ¯ (μ, r 2 ;γ, L 2 ) and let T: P ¯ (μ, r 2 ;γ, L 2 ) P ¯ (μ, r 2 ;γ, L 2 ) be a completely continuous operator. Suppose

  • (A1) {y P ¯ (μ,d;γ, L 2 ;ρ,e):ρ(y)>e}, ρ(Ty)>e for y P ¯ (μ,d;γ, L 2 ;ρ,e),

  • (A2) μ(Ty)< r 1 , γ(Ty)< L 1 , for all y P ¯ (μ, r 1 ;γ, L 1 ),

  • (A3) ρ(Ty)>e, for all y P ¯ (μ, r 2 ;γ, L 2 ;ρ,e) with μ(Ty)>e.

Then T has at least three fixed points y 1 , y 2 , y 3 in P ¯ (μ, r 2 ;γ, L 2 ) with

y 1 P ( μ , r 1 ; γ , L 1 ) , y 2 { P ¯ ( μ , r 2 ; γ , L 2 ; ρ , e ) : ρ ( y ) > e } , y 3 P ¯ ( μ , r 2 ; γ , L 2 ) ( P ¯ ( μ , r 2 ; γ , L 2 ; ρ , e ) P ¯ ( μ , r 1 ; γ , L 1 ) ) .

Define nonnegative continuous functionals μ, γ, and ρ by

μ(y)= max t [ a , b ] |y(t)|,γ(y)= max t [ a , b ] | y [ ] (t)|,ρ(y)= min t [ a , b ] |y(t)|,for yP.

Then on the cone P, ρ is a concave functional, and μ and γ are convex functionals satisfying (3.1) and (3.2).

For the sake of convenience, we introduce the following notations:

A = a b G ( s , s ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) s , B = α β a b G ( s , s ) s .

Theorem 3.2 Assume that (C1), (C2) hold and that there exist constants r 2 e Γ >e> r 1 >0, L 2 L 1 >0 such that e Γ A min{ r 2 A , L 2 B } and the following conditions hold:

  • (S1) f(t,u,v)<min{ r 1 A , L 1 B }, for (t,u,v)[a,b]×[0, r 1 ]×[ L 1 , L 1 ],

  • (S2) f(t,u,v)> e Γ A , for (t,u,v)[a,b]×[e, e Γ ]×[ L 2 , L 2 ],

  • (S3) f(t,u,v)min{ r 2 A , L 2 B }, for (t,u,v)[a,b]×[0, r 2 ]×[ L 2 , L 2 ].

Then the BVP (1.1) has at least three symmetric positive solutions y 1 , y 2 , y 3 satisfying

max t [ a , b ] y 1 ( t ) r 1 , max t [ a , b ] | y 1 ( t ) | L 1 ; e < max t [ a , b ] y 2 ( t ) r 2 , max t [ a , b ] | y 2 ( t ) | L 2 ; max t [ a , b ] y 3 ( t ) e Γ , max t [ a , b ] | y 3 ( t ) | L 2 .

Proof The problem (1.1) has a solution y=y(t) if and only if y satisfies the operator equation y=Ty. Thus we set out to verify that the operator T satisfies all conditions of Theorem 3.1. The proof is divided into four steps.

Step 1. First we show that

T: P ¯ (μ, r 2 ;γ, L 2 ) P ¯ (μ, r 2 ;γ, L 2 ).

In fact, if y P ¯ (μ, r 2 ;γ, L 2 ), then there is μ(y) r 2 , γ(y) L 2 . From assumption (S3),

μ ( T y ) = max t [ a , b ] | a b G ( t , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s | a b G ( s , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s r 2 A [ a b G ( s , s ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) s ] = r 2 .

Similarly,

γ ( T y ) = max t [ a , b ] | a b G t [ ] ( t , s ) f ( s , y ( s ) , y ( s ) ) s | α β a b G ( s , s ) f ( s , y ( s ) , y ( s ) ) s L 2 B α β a b G ( s , s ) s = L 2 .

So T: P ¯ (μ, r 2 ;γ, L 2 ) P ¯ (μ, r 2 ;γ, L 2 ) holds.

Step 2. We show that condition (A1) in Theorem 3.1 holds.

We choose y(t)= e 2 (1+ 1 Γ ). It is easy to see that y(t) P ¯ (μ, e Γ ;γ, L 2 ;ρ,e) and ρ(y)>e and so {y P ¯ (μ, e Γ ;γ, L 2 ;ρ,e):ρ(y)>e}. Hence if y P ¯ (μ, e Γ ;γ, L 2 ;ρ,e), then ey(t) e Γ for t[a,b]. From assumption (S2), we have f(t,y(t), y (t))> e Γ A for t[a,b],

ρ ( T y ) = min t [ a , b ] | a b G ( t , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s | Γ a b G ( s , s ) f ( s , y ( s ) , y ( s ) ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) f ( s , y ( s ) , y ( s ) ) s Γ e Γ A [ a b G ( s , s ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) s ] = e .

Consequently, condition (A1) of Theorem 3.1 is satisfied.

Step 3. We now show that condition (A2) in Theorem 3.1 is satisfied. In the same way as in Step 1, if y P ¯ (μ, r 1 ;γ, L 1 ), then assumption (S1) yields f(t,y(t), y (t))<min( r 1 A , L 1 B ) for (t,u,v)[a,b]×[0, r 1 ]×[ L 1 , L 1 ]. Therefore, condition (A2) of Theorem 3.1 is satisfied.

Step 4. Finally, we show that condition (A3) in Theorem 3.1 is also satisfied. Suppose that y P ¯ (μ, r 2 ;γ, L 2 ;ρ, e Γ ) with μ(Ty)> e Γ . Then

ρ(Ty)= min t [ a , b ] (Ty)(t)Γ max t [ a , b ] (Ty)(t)> Γ e Γ =e.

Consequently, by Theorem 3.1, the problem (1.1) has at least three positive solutions y 1 , y 2 , y 3 in P ¯ (μ, r 2 ;γ, L 2 ) with

y 1 P ( μ , r 1 ; γ , L 1 ) , y 2 { P ¯ ( μ , r 2 ; γ , L 2 ; ρ , e ) : ρ ( y ) > e } , y 3 P ¯ ( μ , r 2 ; γ , L 2 ) ( P ¯ ( μ , r 2 ; γ , L 2 ; ρ , e ) P ¯ ( μ , r 1 ; γ , L 1 ) ) .

The proof is complete. □

4 Example

To illustrate how our main result can be used in practice we present an example.

Example 4.1 Let T=[0,1], a=0, b=1, α 1 = 1 10 , α 2 = 1 5 , α= 1 2 , β= 1 3 , η 1 = 1 3 , η 2 = 3 4 , ξ 1 = 2 3 , ξ 2 = 1 4 p(t)=1, m=4, in the boundary value problem (1.1). Now we consider the following problem:

{ y ( t ) = f ( t , y ( t ) , y ( t ) ) , t ( 0 , 1 ) , 1 2 y ( 0 ) + 1 3 y ( 0 ) = 1 10 y ( 2 3 ) + 1 5 y ( 1 4 ) , 1 2 y ( 1 ) + 1 3 y ( 1 ) = 1 10 y ( 1 3 ) + 1 5 y ( 3 4 ) ,
(4.1)

where

f ( t , y ( t ) , y ( t ) ) = { 1.8 y ( t ) , y [ 0 , 1 ] , 18.2 y ( t ) 16.4 , y ( 1 , 2 ) , 20 , y [ 2 , 10 ) .

Set r 1 =1, e=2, r 2 =10, L 1 =23, L 2 =46, T=[0,1], then Δs=s=ds. We get Γ= 2 5 ; then e Γ =5 and D= 7 12 and by a simple calculation

G ( s , s ) = 1 D θ ( s ) φ ( s ) = 1 D ( β + α a s d τ p ( τ ) ) ( β + α s b d τ p ( τ ) ) = 12 7 ( 1 3 + 1 2 s ) ( 1 3 + 1 2 ( 1 s ) ) , G t [ ] ( η i , s ) = p ( t ) G t ( η i , s ) = G t ( η i , s ) = G t ( η i , s ) , G t ( η i , s ) = 1 D { θ ( t ) φ ( s ) , a η i s b , θ ( s ) φ ( t ) , a s η i b = 1 D { α φ ( s ) , a η i s b , α θ ( s ) , a s η i b .

Thus,

B = α β a b G ( s , s ) s = 3 2 0 1 12 7 ( 1 3 + 1 2 s ) ( 1 3 + 1 2 ( 1 s ) ) d s = 23 28 , A = a b G ( s , s ) s + 1 α i = 1 m 2 α i a b G t [ ] ( η i , s ) s = a b G ( s , s ) d s + 1 α i = 1 m 2 α i a b G t ( η i , s ) d s = a b G ( s , s ) d s + 1 α α 1 0 1 G t ( η 1 , s ) d s + 1 α α 2 0 1 G t ( η 2 , s ) d s = 0 1 12 7 ( 1 3 + 1 2 s ) ( 1 3 + 1 2 ( 1 s ) ) d s + 2 1 10 0 1 G t ( 1 3 , s ) d s + 2 1 5 0 1 G t ( 3 4 , s ) d s = 0 1 12 7 ( 1 3 + 1 2 s ) ( 1 3 + 1 2 ( 1 s ) ) d s + 17 10 [ 0 1 3 1 2 ( 1 3 + s 2 ) d s + 1 3 1 1 2 ( 1 3 + 1 s 2 ) d s ] + 17 5 [ 0 3 4 1 2 ( 1 3 + s 2 ) d s + 3 4 1 1 2 ( 1 3 + 1 s 2 ) d s ] = 101 210 .

Hence we have

f ( t , y ( t ) , y ( t ) ) < 210 101 , for  y [ 0 , 1 ] , f ( t , y ( t ) , y ( t ) ) > 1 , 050 101 , for  y [ 2 , 5 ] , f ( t , y ( t ) , y ( t ) ) < 2 , 100 101 , for  y [ 0 , 10 ] .

Then the conditions of Theorem 3.2 are satisfied. Then by Theorem 3.2, the BVP (1.1) has at least three symmetric positive solutions y 1 , y 2 , y 3 , with

max t [ a , b ] y 1 ( t ) 1 , max t [ a , b ] | y 1 ( t ) | 23 ; 2 < max t [ a , b ] y 2 ( t ) 10 , max t [ a , b ] | y 2 ( t ) | 46 ; max t [ a , b ] y 3 ( t ) 5 , max t [ a , b ] | y 3 ( t ) | 46 .

References

  1. Hilger S: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 1990, 18: 18–56. 10.1007/BF03323153

    Article  MathSciNet  Google Scholar 

  2. Aulbach B, Hilger S: Linear dynamic processes with inhomogeneous time scale. 59. In Nonlinear Dynamics and Quantum Dynamical Systems(Gaussig, 1990). Akademie Verlag, Berlin; 1990:9–20.

    Google Scholar 

  3. Bohner M, Peterson A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston; 2001.

    Book  Google Scholar 

  4. Bohner M, Peterson A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston; 2003.

    Book  Google Scholar 

  5. Lakshmikantham V, Sivasundaram S, Kaymakcalan B: Dynamic Systems on Measure Chains. Kluwer Academic, Dordrecht; 1996.

    Book  Google Scholar 

  6. Il’in VA, Moiseev EI: A nonlocal boundary value problem of the first kind for the Sturm-Liouville operator in differential and difference interpretations. Differ. Uravn. 1987, 23: 1198–1207.

    MathSciNet  Google Scholar 

  7. Il’in VA, Moiseev EI: A nonlocal boundary value problem of the second kind for the Sturm-Liouville operator. Differ. Uravn. 1987, 23: 1422–1431.

    MathSciNet  Google Scholar 

  8. Feng W: On an m -point boundary value problem. Nonlinear Anal. 1997, 30: 5369–5374. 10.1016/S0362-546X(97)00360-X

    Article  MathSciNet  Google Scholar 

  9. Gupta CP: Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J. Math. Anal. Appl. 1992, 168: 540–551. 10.1016/0022-247X(92)90179-H

    Article  MathSciNet  Google Scholar 

  10. Kosmatov N: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 2008, 68: 2158–2171. 10.1016/j.na.2007.01.038

    Article  MathSciNet  Google Scholar 

  11. Ma R: Multiple positive solutions for nonlinear m -point boundary value problems. Appl. Math. Comput. 2004, 148: 249–262. 10.1016/S0096-3003(02)00843-3

    Article  MathSciNet  Google Scholar 

  12. Sedziwy S: Multipoint boundary value problems for a second-order ordinary differential equation. J. Math. Anal. Appl. 1999, 236: 384–398. 10.1006/jmaa.1999.6441

    Article  MathSciNet  Google Scholar 

  13. Sun HR: Triple positive solutions for p -Laplacian m -point boundary value problem on time scales. Comput. Math. Appl. 2009, 58: 1736–1741. 10.1016/j.camwa.2009.07.083

    Article  MathSciNet  Google Scholar 

  14. Su YH: Arbitrary positive solutions to a multi-point p -Laplacian boundary value problem involving the derivative on time scales. Math. Comput. Model. 2011, 53: 1742–1747. 10.1016/j.mcm.2010.12.052

    Article  Google Scholar 

  15. Dogan A: Existence of three positive solutions for an m -point boundary-value problem on time scales. Electron. J. Differ. Equ. 2013., 2013: Article ID 149

    Google Scholar 

  16. Dogan A: Existence of multiple positive solutions for p -Laplacian multipoint boundary value problems on time scales. Adv. Differ. Equ. 2013., 2013: Article ID 238

    Google Scholar 

  17. Avery RI, Henderson J: Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett. 2000, 13: 1–7.

    Article  MathSciNet  Google Scholar 

  18. Henderson J, Thompson HB: Multiple symmetric positive solutions for a second order boundary value problem. Proc. Am. Math. Soc. 2000, 128: 2373–2379. 10.1090/S0002-9939-00-05644-6

    Article  MathSciNet  Google Scholar 

  19. Fang H: Existence of symmetric positive solutions for m -point boundary value problems for second-order dynamic equations on time scales. Math. Theory Appl. 2008, 228: 65–68.

    Google Scholar 

  20. Lui X: Existence and multiplicity of symmetric positive solutions for singular second-order m -point boundary value problem. Int. J. Math. Anal. 2011, 5: 1453–1457.

    Google Scholar 

  21. Sun Y, Zhang X: Existence of symmetric positive solutions for an m -point boundary value problem. Bound. Value Probl. 2007., 2007: Article ID 79090

    Google Scholar 

  22. Yao Q: Existence and iteration of n symmetric positive solutions for a singular two-point boundary value problem. Comput. Math. Appl. 2004, 47: 1195–1200. 10.1016/S0898-1221(04)90113-7

    Article  MathSciNet  Google Scholar 

  23. Kosmatov N: Symmetric solutions of a multi-point boundary value problem. J. Math. Anal. Appl. 2005, 309: 25–36. 10.1016/j.jmaa.2004.11.008

    Article  MathSciNet  Google Scholar 

  24. Kosmatov N: A symmetric solution of a multipoint boundary value problem at resonance. Abstr. Appl. Anal. 2006., 2006: Article ID 54121

    Google Scholar 

  25. Bai Z, Ge W: Existence of three positive solutions for some second-order boundary value problems. Comput. Math. Appl. 2004, 48: 699–707. 10.1016/j.camwa.2004.03.002

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilkay Y Karaca.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Sinanoglu, A., Karaca, I.Y., Tokmak, F. et al. Existence of three symmetric positive solutions for a second-order multi-point boundary value problem on time scales. Adv Differ Equ 2014, 81 (2014). https://doi.org/10.1186/1687-1847-2014-81

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-81

Keywords