Skip to main content

Theory and Modern Applications

Separated boundary value problems for second-order impulsive q-integro-difference equations

Abstract

This article studies the existence and uniqueness of solutions for a boundary value problem of nonlinear second-order impulsive q k -integro-difference equations with separated boundary conditions. Several new results are obtained by applying a variety of fixed point theorems. Some examples are presented to illustrate the results.

MSC:26A33, 39A13, 34A37.

1 Introduction

In this paper, we study the separated boundary value problem for impulsive q k -integro-difference equation of the following form:

{ D q k 2 x ( t ) = f ( t , x ( t ) , ( S q k x ) ( t ) ) , t J : = [ 0 , T ] , t t k , Δ x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , D q k x ( t k + ) D q k 1 x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , x ( 0 ) + D q 0 x ( 0 ) = 0 , x ( T ) + D q m x ( T ) = 0 ,
(1.1)

where 0= t 0 < t 1 < t 2 << t k << t m < t m + 1 =T, f:J× R 2 R,

( S q k x)(t)= t k t ϕ(t,s)x(s) d q k s,t( t k , t k + 1 ],k=0,1,2,,m,
(1.2)

ϕ:J×J[0,) is a continuous function, I k , I k C(R,R), Δx( t k )=x( t k + )x( t k ) for k=1,2,,m, x( t k + )= lim h 0 x( t k +h) and 0< q k <1 for k=0,1,2,,m.

The notions of q k -derivative and q k -integral on finite intervals were introduced in [1]. For a fixed kN{0} let J k :=[ t k , t k + 1 ]R be an interval and 0< q k <1 be a constant. We define q k -derivative of a function f: J k R at a point t J k as follows.

Definition 1.1 Assume f: J k R is a continuous function and let t J k . Then the expression

D q k f(t)= f ( t ) f ( q k t + ( 1 q k ) t k ) ( 1 q k ) ( t t k ) ,t t k , D q k f( t k )= lim t t k D q k f(t)
(1.3)

is called the q k -derivative of function f at t.

We say that f is q k -differentiable on J k provided D q k f(t) exists for all t J k . Note that if t k =0 and q k =q in (1.3), then D q k f= D q f, where D q is the well-known q-derivative of the function f(t) defined by

D q f(t)= f ( t ) f ( q t ) ( 1 q ) t .
(1.4)

In addition, we should define the higher q k -derivative of functions.

Definition 1.2 Let f: J k R be a continuous function, we call the second-order q k -derivative D q k 2 f provided D q k f is q k -differentiable on J k with D q k 2 f= D q k ( D q k f): J k R. Similarly, we define higher order q k -derivative D q k n : J k R.

The q k -integral is defined as follows.

Definition 1.3 Assume f: J k R is a continuous function. Then the q k -integral is defined by

t k t f(s) d q k s=(1 q k )(t t k ) n = 0 q k n f ( q k n t + ( 1 q k n ) t k )
(1.5)

for t J k . Moreover, if a( t k ,t) then the definite q k -integral is defined by

a t f ( s ) d q k s = t k t f ( s ) d q k s t k a f ( s ) d q k s = ( 1 q k ) ( t t k ) n = 0 q k n f ( q k n t + ( 1 q k n ) t k ) ( 1 q k ) ( a t k ) n = 0 q k n f ( q k n a + ( 1 q k n ) t k ) .

Note that if t k =0 and q k =q, then (1.5) reduces to q-integral of a function f(t), defined by 0 t f(s) d q s=(1q)t n = 0 q n f( q n t) for t[0,).

For the basic properties of q k -derivative and q k -integral we refer to [1].

The book by Kac and Cheung [2] covers many of the fundamental aspects of the quantum calculus. In recent years, the topic of q-calculus has attracted the attention of several researchers and a variety of new results can be found in the papers [315] and the references cited therein.

Impulsive differential equations serve as basic models to study the dynamics of processes that are subject to sudden changes in their states. Recent development in this field has been motivated by many applied problems, such as control theory, population dynamics and medicine. For some recent works on the theory of impulsive differential equations, we refer the interested reader to the monographs [1618].

In this paper we prove an existence and uniqueness result for the impulsive boundary value problem (1.1) by using Banach’s contraction mapping principle and three existence results by applying Schaefer’s, Krasnoselskii’s fixed point theorems and the Leray-Schauder Nonlinear Alternative. The rest of this paper is organized as follows: In Section 2 we present an auxiliary lemma which is used to convert the impulsive boundary value problem (1.1) into an equivalent integral equation. The main results are given in Section 3, while examples illustrating the results are presented in Section 4.

2 An auxiliary lemma

Let J=[0,T], J 0 =[ t 0 , t 1 ], J k =( t k , t k + 1 ] for k=1,2,,m. Let PC(J,R) = {x:JR:x(t) is continuous everywhere except for some t k at which x( t k + ) and x( t k ) exist and x( t k )=x( t k ), k=1,2,,m}. PC(J,R) is a Banach space with the norm x P C =sup{|x(t)|;tJ}.

We now consider the following linear case:

{ D q k 2 x ( t ) = h ( t ) , t J , t t k , Δ x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , D q k x ( t k + ) D q k 1 x ( t k ) = I k ( x ( t k ) ) , k = 1 , 2 , , m , x ( 0 ) + D q 0 x ( 0 ) = 0 , x ( T ) + D q m x ( T ) = 0 ,
(2.1)

where h:JR is a continuous function.

Lemma 2.1 The unique solution of problem (2.1) is given by

x ( t ) = ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + ( 1 t T ) k = 1 m ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + ( 1 t T ) t m T t m s h ( r ) d q m r d q m s + ( 1 t T ) t m T h ( s ) d q m s + 0 < t k < t ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s h ( r ) d q k r d q k s ,
(2.2)

with i = a b ()=0 for a>b.

Proof Taking the q 0 -integral for the first equation of (2.1), for t J 0 , we have

D q 0 x(t)= D q 0 x(0)+ 0 t h(s) d q 0 s,
(2.3)

which leads to

D q 0 x( t 1 )= D q 0 x(0)+ 0 t 1 h(s) d q 0 s.
(2.4)

For t J 0 we get by q 0 -integrating (2.3),

x ( t ) = x ( 0 ) + D q 0 x ( 0 ) t + 0 t 0 s h ( r ) d q 0 r d q 0 s : = A + B t + 0 t 0 s h ( r ) d q 0 r d q 0 s , if  A = x ( 0 ) , B = D q 0 x ( 0 ) .

In particular, for t= t 1 , we obtain

x( t 1 )=A+B t 1 + 0 t 1 0 s h(r) d q 0 r d q 0 s.
(2.5)

For t J 1 =( t 1 , t 2 ], q 1 -integrating (2.1), we have

D q 1 x(t)= D q 1 x ( t 1 + ) + t 1 t h(s) d q 1 s.

Using the third condition of (2.1) with (2.4), it follows that

D q 1 x(t)=B+ 0 t 1 h(s) d q 0 s+ I 1 ( x ( t 1 ) ) + t 1 t h(s) d q 1 s.
(2.6)

Taking q 1 -integral to (2.6) for t J 1 , we obtain

x ( t ) = x ( t 1 + ) + [ B + 0 t 1 h ( s ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s h ( r ) d q 1 r d q 1 s .
(2.7)

Applying the second equation of (2.1) with (2.5) and (2.7), we get

x ( t ) = A + B t 1 + 0 t 1 0 s h ( r ) d q 0 r d q 0 s + I 1 ( x ( t 1 ) ) + [ B + 0 t 1 h ( s ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s h ( r ) d q 1 r d q 1 s = A + B t + 0 t 1 0 s h ( r ) d q 0 r d q 0 s + I 1 ( x ( t 1 ) ) + [ 0 t 1 h ( s ) d q 0 s + I 1 ( x ( t 1 ) ) ] ( t t 1 ) + t 1 t t 1 s h ( r ) d q 1 r d q 1 s .

Repeating the above process, for t J k , we get

x ( t ) = A + B t + 0 < t k < t ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s h ( r ) d q k r d q k s .
(2.8)

From the first boundary condition of (2.1) (i.e. x(0)+ D q 0 x(0)=0) and (2.8), we have

A+B=0.
(2.9)

Also, the second boundary condition of (2.1) (i.e. x(T)+ D q m x(T)=0) and (2.8), yields

A + B ( T + 1 ) + k = 1 m ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + k = 1 m ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + t m T t m s h ( r ) d q m r d q m s + t m T h ( s ) d q m s = 0 .
(2.10)

From (2.9) and (2.10), we have that

B = 1 T k = 1 m ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) 1 T i = 1 m ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) 1 T t m T t m s h ( r ) d q m r d q m s 1 T t m T h ( s ) d q m s ,

which implies

A = 1 T k = 1 m ( t k 1 t k t k 1 s h ( r ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + 1 T k = 1 m ( t k 1 t k h ( s ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + 1 T t m T t m s h ( r ) d q m r d q m s + 1 T t m T h ( s ) d q m s .

Substituting constants A and B into (2.8), we obtain (2.2) as requested. □

3 Main results

In view of Lemma 2.1, we define an operator A:PC(J,R)PC(J,R) by

( A x ) ( t ) = ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + ( 1 t T ) k = 1 m ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + ( 1 t T ) t m T t m s f ( r , x ( r ) , ( S q m x ) ( r ) ) d q m r d q m s + ( 1 t T ) t m T f ( s , x ( s ) , ( S q m x ) ( s ) ) d q m s + 0 < t k < t ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s f ( r , x ( r ) , ( S q k x ) ( r ) ) d q k r d q k s .
(3.1)

It should be noticed that problem (1.1) has solutions if and only if the operator A has fixed points.

Our first result is an existence and uniqueness result for the impulsive boundary value problem (1.1) by using the Banach contraction mapping principle.

Let ϕ 0 =max{ϕ(t,s):(t,s)J×J}. Further, for convenience we set

ω = 1 + 2 T T k = 1 m + 1 [ L 1 ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 L 2 ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 ] + 1 + T T k = 1 m + 1 [ L 1 ( t k t k 1 ) + ϕ 0 L 2 ( t k t k 1 ) 2 1 + q k 1 ] + 1 + 2 T T k = 1 m ( T t k ) [ L 1 ( t k t k 1 ) + ϕ 0 L 2 ( t k t k 1 ) 2 1 + q k 1 ] + m L 3 ( 1 + 2 T ) T + m L 4 ( 1 + T ) T + L 4 ( 1 + 2 T ) T k = 1 m ( T t k ) ,
(3.2)

and

λ 0 = M 1 ( 1 + 2 T ) T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + M 1 ( 1 + T ) T k = 1 m + 1 ( t k t k 1 ) + M 1 ( 1 + 2 T ) T k = 1 m ( T t k ) ( t k t k 1 ) + m M 2 ( 1 + 2 T ) T + m M 3 ( 1 + T ) T + M 3 ( 1 + 2 T ) T k = 1 m ( T t k ) .
(3.3)

Theorem 3.1 Assume that:

(H1) The function f:J× R 2 R is continuous and there exist constants L 1 , L 2 >0 such that

| f ( t , x , ( S q k x ) ) f ( t , y , ( S q k y ) ) | L 1 |xy|+ L 2 ( S q k | x y | ) ,

for each tJ and x,yR, k=0,1,2,,m.

(H2) The functions I k , I k :RR are continuous and there exist constants L 3 , L 4 >0 such that

| I k ( x ) I k ( y ) | L 3 |xy|and | I k ( x ) I k ( y ) | L 4 |xy|,

for each x,yR, k=1,2,,m.

If

ωδ<1,
(3.4)

where ω is defined by (3.2), and δ>0, then the boundary value problem (1.1) has a unique solution on J.

Proof We transform the boundary value problem (1.1) into a fixed point problem, x=Ax, where the operator A is defined by (3.1). By using the Banach contraction mapping principle, we shall show that A has a fixed point which is the unique solution of the boundary value problem (1.1).

Let M 1 , M 2 , and M 3 be nonnegative constants such that sup t J |f(t,0,0)|= M 1 , sup{| I k (0)|:k=1,2,,m}= M 2 , and sup{| I k (0)|:k=1,2,,m}= M 3 . By choosing a constant R as

R λ 0 1 ε ,

where δε<1 and λ 0 defined by (3.3), we will show that A B R B R , where a ball B R is defined by B R ={xPC(J,R):xR}. For x B R , we have

A x sup t J { ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + ( 1 t T ) k = 1 m ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + ( 1 t T ) t m T t m s f ( r , x ( r ) , ( S q m x ) ( r ) ) d q m r d q m s + ( 1 t T ) t m T f ( s , x ( s ) , ( S q m x ) ( s ) ) d q m s + 0 < t k < t ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + t k t t k s f ( r , x ( r ) , ( S q k x ) ( r ) ) d q k r d q k s } ( 1 + T T ) k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + ( 1 + T T ) k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k + 1 ) + ( 1 + T T ) t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + ( 1 + T T ) t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k ) + t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s ( | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) f ( r , 0 , 0 ) | + | f ( r , 0 , 0 ) | ) d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k ( | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) f ( s , 0 , 0 ) | + | f ( s , 0 , 0 ) | ) d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k ( | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) f ( s , 0 , 0 ) | + | f ( s , 0 , 0 ) | ) d q k 1 s + 1 + 2 T T k = 1 m ( | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) + 1 + T T k = 1 m ( | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) + 1 + 2 T T k = 1 m ( | I k ( x ( t k ) ) I k ( 0 ) | + | I k ( 0 ) | ) ( T t k ) 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s ( L 1 R + ϕ 0 L 2 R t k 1 r d q k 1 u + M 1 ) d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k ( L 1 R + ϕ 0 L 2 R t k 1 s d q k 1 r + M 1 ) d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k ( L 1 R + ϕ 0 L 2 R t k 1 s d q k 1 r + M 1 ) d q k 1 s + 1 + 2 T T k = 1 m ( L 3 R + M 2 ) + 1 + T T k = 1 m ( L 4 R + M 3 ) + 1 + 2 T T k = 1 m ( L 4 R + M 3 ) ( T t k ) 1 + 2 T T k = 1 m + 1 [ L 1 R ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 L 2 R ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 + M 1 ( t k t k 1 ) 2 1 + q k 1 ] + 1 + T T k = 1 m + 1 [ L 1 R ( t k t k 1 ) + ϕ 0 L 2 R ( t k t k 1 ) 2 1 + q k 1 + M 1 ( t k t k 1 ) ] + 1 + 2 T T k = 1 m ( T t k ) [ L 1 R ( t k t k 1 ) + ϕ 0 L 2 R ( t k t k 1 ) 2 1 + q k 1 + M 1 ( t k t k 1 ) ] + 1 + 2 T T k = 1 m ( L 3 R + M 2 ) + 1 + T T k = 1 m ( L 4 R + M 3 ) + 1 + 2 T T k = 1 m ( L 4 R + M 3 ) ( T t k ) = ω R + λ 0 ( δ + 1 ε ) R R ,

which implies that A B R B R .

For any x,yPC(J,R) and for each tJ, we have

| A x ( t ) A y ( t ) | 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s ( | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) f ( r , y ( r ) , ( S q k 1 y ) ( r ) ) | ) d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k ( | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) f ( s , y ( s ) , ( S q k 1 y ) ( s ) ) | ) d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k ( | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | ) d q k 1 s + 1 + 2 T T k = 1 m ( | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) + 1 + T T k = 1 m ( | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) + 1 + 2 T T k = 1 m ( | I k ( x ( t k ) ) I k ( y ( t k ) ) | ) ( T t k ) 1 + 2 T T k = 1 m + 1 [ L 1 ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 L 2 ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 ] x y + 1 + T T k = 1 m + 1 [ L 1 ( t k t k 1 ) + ϕ 0 L 2 ( t k t k 1 ) 2 1 + q k 1 ] x y + 1 + 2 T T k = 1 m ( T t k ) [ L 1 ( t k t k 1 ) + ϕ 0 L 2 ( t k t k 1 ) 2 1 + q k 1 ] x y + m ( 1 + 2 T ) L 3 T x y + m ( 1 + T ) L 4 T x y + ( 1 + 2 T ) L 4 x y T k = 1 m ( T t k ) = ω x y ,

which implies that AxAyωxy. As ω<1, A is a contraction. Therefore, by the Banach contraction mapping principle, we find that A has a fixed point which is the unique solution of problem (1.1). This completes the proof. □

The second existence result is based on Schaefer’s fixed point theorem.

Theorem 3.2 Assume that:

(H3) f:J× R 2 R is a continuous function and there exists a constant N 1 >0 such that

| f ( t , x , ( S q k x ) ) | N 1 ,

for each tJ and all xR, k=0,1,2,,m.

(H4) The functions I k , I k :RR are continuous and there exist constants N 2 , N 3 >0 such that

| I k ( x ) | N 2 and | I k ( x ) | N 3 ,

for all xR, k=1,2,,m.

Then the boundary value problem (1.1) has at least one solution on J.

Proof We will use Schaefer’s fixed point theorem to prove that A, defined by (3.1), has a fixed point. We divide the proof into four steps.

Step 1: Continuity of A.

Let { x n } be a sequence such that x n x in PC(J,R). Since f is a continuous function on J× R 2 and I k , I k are continuous functions on for k=1,2, , we have

f ( t , x n ( t ) , ( S q k x n ) ( t ) ) f ( t , x ( t ) , ( S q k x ) ( t ) ) ,

and I k ( x n ( t k )) I k (x( t k )), I k ( x n ( t k )) I k (x( t k )) for k=1,2, , as n.

Then, for each tJ, we get

| ( A x n ) ( t ) ( A x ) ( t ) | = ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s | f ( r , x n ( r ) , ( S q k 1 x n ) ( r ) ) f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x n ( t k ) ) I k ( x ( t k ) ) | ) + ( 1 t T ) k = 1 m ( t k 1 t k | f ( s , x n ( s ) , ( S q k 1 x n ) ( s ) ) f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x n ( t k ) ) I k ( x ( t k ) ) | ) ( T t k + 1 ) + ( 1 t T ) t m T t m s | f ( r , x n ( r ) , ( S q m x n ) ( r ) ) f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + ( 1 t T ) t m T | f ( s , x n ( s ) , ( S q m x n ) ( s ) ) f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + 0 < t k < t ( t k 1 t k t k 1 s | f ( r , x n ( r ) , ( S q k 1 x n ) ( r ) ) f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x n ( t k ) ) I k ( x ( t k ) ) | ) + 0 < t k < t ( t k 1 t k | f ( s , x n ( s ) , ( S q k 1 x n ) ( s ) ) f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x n ( t k ) ) I k ( x ( t k ) ) | ) ( t t k ) + t k t t k s | f ( r , x n ( r ) , ( S q k x n ) ( r ) ) f ( r , x ( r ) , ( S q k x ) ( r ) ) | d q k r d q k s ,

which gives A x n Ax0 as n. This means that A is continuous.

Step 2: A maps bounded sets into bounded sets in PC(J,R).

So, let us prove that for any r>0, there exists a positive constant ρ such that for each x B r ={xPC(J,R):xr}, we have Axρ. For any x B r , we have

| ( A x ) ( t ) | | 1 t | T k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + | 1 t | T k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k + 1 ) + | 1 t | T t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + | 1 t | T t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k ) + t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s N 1 d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k N 1 d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k N 1 d q k 1 s + 1 + 2 T T k = 1 m N 2 + 1 + T T k = 1 m N 3 + 1 + 2 T T k = 1 m N 3 ( T t k ) 1 + 2 T T k = 1 m + 1 [ N 1 ( t k t k 1 ) 2 1 + q k 1 ] + 1 + T T k = 1 m + 1 [ N 1 ( t k t k 1 ) ] + 1 + 2 T T k = 1 m ( T t k ) [ N 1 ( t k t k 1 ) ] + m ( 1 + 2 T ) N 2 T + m ( 1 + T ) N 3 T + ( 1 + 2 T ) N 3 T k = 1 m ( T t k ) : = ρ .

Hence, we deduce that Axρ.

Step 3: A maps bounded sets into equicontinuous sets of PC(J,R).

Let τ 1 , τ 2 J i for some i{0,1,2,,m}, τ 1 < τ 2 , B r be a bounded set of PC(J,R) as in Step 2, and let x B r . Then we have

| ( A x ) ( τ 2 ) ( A x ) ( τ 1 ) | | τ 2 τ 1 | T k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + | τ 2 τ 1 | T k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k + 1 ) + | τ 2 τ 1 | T t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + | τ 2 τ 1 | T t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + | τ 2 τ 1 | k = 1 i ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) + | t i τ 2 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s t i τ 1 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s | | τ 2 τ 1 | T k = 1 m [ N 1 ( t k t k 1 ) 2 1 + q k 1 + N 2 ] + | τ 2 τ 1 | T k = 1 m [ N 1 ( t k t k 1 ) + N 3 ] ( T t k + 1 ) + | τ 2 τ 1 | T [ N 1 ( T t m ) 2 1 + q m ] + | τ 2 τ 1 | T [ N 1 ( T t m ) ] + | τ 2 τ 1 | k = 1 i [ N 1 ( t k t k 1 ) + N 3 ] + | τ 2 τ 1 | N 1 1 + q i ( τ 2 + τ 1 + 2 t i ) .

As τ 1 τ 2 , the right-hand side of the above inequality (which is independent of x) tends to zero. As a consequence of Steps 1 to 3, together with the Arzelá-Ascoli theorem, we deduce that A:PC(J,R)PC(J,R) is completely continuous.

Step 4: We show that the set

E= { x P C ( J , R ) : x = θ A x  for some  0 < θ < 1 }

is bounded.

Let xE. Then x(t)=θ(Ax)(t) for some 0<θ<1. Thus, for each tJ, by using the computations of Step 2, we have that

Axρ.

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem, we conclude that A has a fixed point which is a solution of the impulsive q k -integro-difference boundary value problem (1.1). □

The third existence result for the impulsive boundary value problem (1.1) is based on Krasnoselskii’s fixed point theorem.

Lemma 3.3 (Krasnoselskii’s fixed point theorem) [19]

Let M be a closed, bounded, convex and nonempty subset of a Banach space X. Let A, B be the operators such that

  1. (a)

    Ax+ByM whenever x,yM;

  2. (b)

    A is a compact and continuous;

  3. (c)

    B is a contraction mapping.

Then there exists zM such that z=Az+Bz.

For convenience we put

Λ = 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + T T k = 1 m + 1 ( t k t k 1 ) + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) ,
(3.5)

and

λ 1 = m ( 1 + 2 T ) N 1 T + m ( 1 + T ) N 2 T + ( 1 + 2 T ) N 2 T k = 1 m (T t k ).
(3.6)

Theorem 3.4 Let f:J×RR be a continuous function. Assume that:

(A1) |f(t,x,y)|μ(t), (t,x,y)J×R×R and μC(J, R + ).

(A2) There exist constants N 1 , N 2 >0 such that | I k (x)| N 1 and | I k (x)| N 2 , xR, for k=1,2,,m.

(A3) There exist constants K 1 , K 2 >0 such that | I k (x) I k (y)| K 1 |xy| and | I k (x) I k (y)| K 2 |xy|, x,yR, for k=1,2,,m.

If

m ( 1 + 2 T ) K 1 T + m ( 1 + T ) K 2 T + ( 1 + 2 T ) K 2 T k = 1 m (T t k )<1,
(3.7)

then boundary value problem (1.1) has at least one solution on J.

Proof We define sup t J |μ(t)|=μ and choose a suitable constant ρ as

ρμΛ+ λ 1 ,

where Λ and λ 1 are defined by (3.5) and (3.6), respectively. We define the operators Φ and Ψ on B ρ ={xPC(J,R):xρ} as

( Φ x ) ( t ) = ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s ) + ( 1 t T ) k = 1 m ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s ) ( T t k + 1 ) + ( 1 t T ) t m T t m s f ( r , x ( r ) , ( S q m x ) ( r ) ) d q m r d q m s + ( 1 t T ) t m T f ( s , x ( s ) , ( S q m x ) ( s ) ) d q m s + 0 < t k < t ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s ) + 0 < t k < t ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s ) ( t t k ) + t k t t k s f ( r , x ( r ) , ( S q k x ) ( r ) ) d q k r d q k s

and

( Ψ x ) ( t ) = ( 1 t T ) k = 1 m I k ( x ( t k ) ) + ( 1 t T ) k = 1 m I k ( x ( t k ) ) ( T t k + 1 ) + 0 < t k < t I k ( x ( t k ) ) + 0 < t k < t I k ( x ( t k ) ) ( t t k ) .

For x,y B ρ , we have

Φ x + Ψ y μ { 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + T T k = 1 m + 1 ( t k t k 1 ) + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) } + m ( 1 + 2 T ) N 1 T + m ( 1 + T ) N 2 T + ( 1 + 2 T ) N 2 T k = 1 m ( T t k ) = μ Λ + λ 1 ρ .

Thus, Φx+Ψy B ρ .

For x,yPC(J,R), from (A3), we have

Ψ x Ψ y 1 + 2 T T k = 1 m | I k ( x ( t k ) ) I k ( y ( t k ) ) | + 1 + T T k = 1 m | I k ( x ( t k ) ) I k ( y ( t k ) ) | + 1 + 2 T T k = 1 m | I k ( x ( t k ) ) I k ( y ( t k ) ) | ( T t k ) m ( 1 + 2 T ) K 1 x y T + m ( 1 + T ) K 2 x y T + ( 1 + 2 T ) K 2 x y T k = 1 m ( T t k ) ,

which implies, by (3.7), that Ψ is a contraction mapping.

Continuity of f implies that the operator Φ is continuous. Also, Φ is uniformly bounded on B ρ as

ΦxμΛ.

Now we prove the compactness of the operator Φ.

We define sup ( t , x ) J × B ρ |f(t,x)|= f ¯ <, τ 1 , τ 2 ( t i , t i + 1 ) for some i{0,1,,m} with τ 1 < τ 2 and consequently we get

| ( Φ x ) ( τ 2 ) ( Φ x ) ( τ 1 ) | | τ 2 τ 1 | T k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s ) + | τ 2 τ 1 | T k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s ) ( T t k + 1 ) + | τ 2 τ 1 | T t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + | τ 2 τ 1 | T t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + | τ 2 τ 1 | k = 1 i ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s ) + | t i τ 2 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s t i τ 1 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s | | τ 2 τ 1 | f ¯ T k = 1 m ( t k t k 1 ) 2 1 + q k 1 + | τ 2 τ 1 | f ¯ T k = 1 m ( t k t k 1 ) ( T t k + 1 ) + | τ 2 τ 1 | f ¯ T ( T t m ) 2 1 + q m + | τ 2 τ 1 | f ¯ T ( T t m ) + | τ 2 τ 1 | f ¯ k = 1 i ( t k t k 1 ) + | τ 2 τ 1 | f ¯ 1 + q i ( τ 2 + τ 1 + 2 t i ) ,

which is independent of x and tends to zero as τ 2 τ 1 0. Thus, Φ is equicontinuous. So Φ is relatively compact on B ρ . Hence, by the Arzelá-Ascoli theorem, Φ is compact on B ρ . Thus all the assumptions of Lemma 3.3 are satisfied. So the boundary value problem (1.1) has at least one solution on J. The proof is completed. □

Our final, fourth existence result is based on the Leray-Schauder Nonlinear Alternative.

Lemma 3.5 (Nonlinear alternative for single valued maps) [20]

Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and 0U. Suppose that F: U ¯ C is a continuous, compact (that is, F( U ¯ ) is a relatively compact subset of C) map. Then either

  1. (i)

    F has a fixed point in U ¯ , or

  2. (ii)

    there is a uU (the boundary of U in C) and θ(0,1) with u=θF(u).

Theorem 3.6 Assume that:

(A4) There exist a continuous nondecreasing function ψ:[0,)(0,) and a continuous function p:J R + such that

| f ( t , x , y ) | p(t)ψ ( | x | ) +|y|for each (t,x,y)J×R×R.

(A5) There exist continuous nondecreasing functions φ 1 , φ 2 :[0,)(0,) such that

| I k ( x ) | φ 1 ( | x | ) and | I k ( x ) | φ 2 ( | x | ) ,

for all xR, k=1,2,,m.

(A6) There exists a constant M >0 such that

M p 0 ψ ( M ) Q 1 + ϕ 0 M Q 2 + Q 3 >1,

where p 0 =max{p(t):tJ}, ϕ 0 =max{ϕ(t,s):(t,s)J×J} and

Q 1 = 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + T T k = 1 m + 1 ( t k t k 1 ) + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) , Q 2 = 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 + 1 + T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) 2 1 + q k 1 , Q 3 = m ( 1 + 2 T ) φ 1 ( M ) T + m ( 1 + T ) φ 2 ( M ) T + ( 1 + 2 T ) φ 2 ( M ) T k = 1 m ( T t k ) .

Then the impulsive boundary value problem (1.1) has at least one solution on J.

Proof First we show that A maps bounded sets (balls) into bounded sets in PC(J,R). For a positive number ρ ¯ , let B ρ ¯ ={xPC(J,R):x ρ ¯ } be a bounded ball in PC(J,R). Then for tJ we have

| ( A x ) ( t ) | | 1 t | T k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + | 1 t | T k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k + 1 ) + | 1 t | T t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + | 1 t | T t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k ) + t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s ( p 0 ψ ( x ) + ϕ 0 x t k 1 r d q k 1 u ) d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k ( p 0 ψ ( x ) + ϕ 0 x t k 1 s d q k 1 r ) d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k ( p 0 ψ ( x ) + ϕ 0 x t k 1 s d q k 1 r ) d q k 1 s + 1 + 2 T T k = 1 m φ 1 ( x ) + 1 + T T k = 1 m φ 2 ( x ) + 1 + 2 T T k = 1 m φ 2 ( x ) ( T t k ) 1 + 2 T T k = 1 m + 1 [ p 0 ψ ( x ) ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 x ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 ] + 1 + T T k = 1 m + 1 [ p 0 ψ ( x ) ( t k t k 1 ) + ϕ 0 x ( t k t k 1 ) 2 1 + q k 1 ] + 1 + 2 T T k = 1 m ( T t k ) [ p 0 ψ ( x ) ( t k t k 1 ) + ϕ 0 x ( t k t k 1 ) 2 1 + q k 1 ] + m ( 1 + 2 T ) φ 1 ( x ) T + m ( 1 + T ) φ 2 ( x ) T + ( 1 + 2 T ) φ 2 ( x ) T k = 1 m ( T t k ) 1 + 2 T T k = 1 m + 1 [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 ρ ¯ ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 ] + 1 + T T k = 1 m + 1 [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) + ϕ 0 ρ ¯ ( t k t k 1 ) 2 1 + q k 1 ] + 1 + 2 T T k = 1 m ( T t k ) [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) + ϕ 0 ρ ¯ ( t k t k 1 ) 2 1 + q k 1 ] + m ( 1 + 2 T ) φ 1 ( ρ ¯ ) T + m ( 1 + T ) φ 2 ( ρ ¯ ) T + ( 1 + 2 T ) φ 2 ( ρ ¯ ) T k = 1 m ( T t k ) : = K .

Hence, we deduce that AxK.

Next we show that A maps bounded sets into equicontinuous sets of PC(J,R).

Let τ 1 , τ 2 J i for some i{0,1,2,,m}, τ 1 < τ 2 , B ρ ¯ be a bounded set of PC(J,R) as in the previous step, and let x B ρ ¯ . Then we have

| ( A x ) ( τ 2 ) ( A x ) ( τ 1 ) | | τ 2 τ 1 | T k = 1 m ( t k 1 t k t k 1 s | f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) | d q k 1 r d q k 1 s + | I k ( x ( t k ) ) | ) + | τ 2 τ 1 | T k = 1 m ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) ( T t k + 1 ) + | τ 2 τ 1 | T t m T t m s | f ( r , x ( r ) , ( S q m x ) ( r ) ) | d q m r d q m s + | τ 2 τ 1 | T t m T | f ( s , x ( s ) , ( S q m x ) ( s ) ) | d q m s + | τ 2 τ 1 | k = 1 i ( t k 1 t k | f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) | d q k 1 s + | I k ( x ( t k ) ) | ) + | t i τ 2 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s t i τ 1 t i s | f ( r , x ( r ) , ( S q i x ) ( r ) ) | d q i r d q i s | | τ 2 τ 1 | T k = 1 m [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 ρ ¯ ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 + φ 1 ( ρ ¯ ) ] + | τ 2 τ 1 | T k = 1 m [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) + ϕ 0 ρ ¯ ( t k t k 1 ) 2 1 + q k 1 + φ 2 ( ρ ¯ ) ] ( T t k + 1 ) + | τ 2 τ 1 | T [ p 0 ψ ( ρ ¯ ) ( T t m ) 2 1 + q m + ϕ 0 ρ ¯ ( T t m ) 3 1 + q m + q m 2 ] + | τ 2 τ 1 | T [ p 0 ψ ( ρ ¯ ) ( T t m ) + ϕ 0 ρ ¯ ( T t m ) 2 1 + q m ] + | τ 2 τ 1 | k = 1 i [ p 0 ψ ( ρ ¯ ) ( t k t k 1 ) + ϕ 0 ρ ¯ ( t k t k 1 ) 2 1 + q k 1 + φ 2 ( ρ ¯ ) ] + | τ 2 τ 1 | p 0 ψ ( ρ ¯ ) 1 + q i ( τ 2 + τ 1 + 2 t i ) + | τ 2 τ 1 | ϕ 0 ρ ¯ 1 + q i + q i 2 ( τ 2 2 + τ 2 τ 1 + τ 1 2 + 3 ( τ 2 + τ 1 ) t i + 3 t i 2 ) .

The right-hand side of the above inequality, which is independent of x, tends to zero as τ 1 τ 2 . From all above and by the Arzelá-Ascoli theorem A:PC(J,R)PC(J,R) is completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative (Lemma 3.5) once we have proved the boundedness of the set of all solutions to the equations x(t)=θ(Ax)(t) for some 0<θ<1.

Let x be a solution. Thus, for each tJ, we have

( A x ) ( t ) = θ ( 1 t T ) k = 1 m ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + θ ( 1 t T ) k = 1 m ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( T t k + 1 ) + θ ( 1 t T ) t m T t m s f ( r , x ( r ) , ( S q m x ) ( r ) ) d q m r d q m s + θ ( 1 t T ) t m T f ( s , x ( s ) , ( S q m x ) ( s ) ) d q m s + θ 0 < t k < t ( t k 1 t k t k 1 s f ( r , x ( r ) , ( S q k 1 x ) ( r ) ) d q k 1 r d q k 1 s + I k ( x ( t k ) ) ) + θ 0 < t k < t ( t k 1 t k f ( s , x ( s ) , ( S q k 1 x ) ( s ) ) d q k 1 s + I k ( x ( t k ) ) ) ( t t k ) + θ t k t t k s f ( r , x ( r ) , ( S q k x ) ( r ) ) d q k r d q k s .

This implies by (A4) and (A5) that for each tJ, we have

| ( A x ) ( t ) | θ ( 1 + 2 T ) T k = 1 m + 1 t k 1 t k t k 1 s ( p ( t ) ψ ( | x | ) + | S q k 1 x | ) d q k 1 r d q k 1 s + θ ( 1 + T ) T k = 1 m + 1 t k 1 t k ( p ( t ) ψ ( | x | ) + | S q k 1 x | ) d q k 1 s + θ ( 1 + 2 T ) T k = 1 m ( T t k ) t k 1 t k ( p ( t ) ψ ( | x | ) + | S q k 1 x | ) d q k 1 s + θ ( 1 + 2 T ) T k = 1 m φ 1 ( | x | ) + θ ( 1 + T ) T k = 1 m φ 2 ( | x | ) + θ ( 1 + 2 T ) T k = 1 m φ 2 ( | x | ) ( T t k ) 1 + 2 T T k = 1 m + 1 t k 1 t k t k 1 s ( p 0 ψ ( x ) + ϕ 0 x t k 1 r d q k 1 u ) d q k 1 r d q k 1 s + 1 + T T k = 1 m + 1 t k 1 t k ( p 0 ψ ( x ) + ϕ 0 x t k 1 s d q k 1 r ) d q k 1 s + 1 + 2 T T k = 1 m ( T t k ) t k 1 t k ( p 0 ψ ( x ) + ϕ 0 x t k 1 s d q k 1 r ) d q k 1 s + 1 + 2 T T k = 1 m φ 1 ( x ) + 1 + T T k = 1 m φ 2 ( x ) + 1 + 2 T T k = 1 m φ 2 ( x ) ( T t k ) 1 + 2 T T k = 1 m + 1 [ p 0 ψ ( x ) ( t k t k 1 ) 2 1 + q k 1 + ϕ 0 x ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 ] + 1 + T T k = 1 m + 1 [ p 0 ψ ( x ) ( t k t k 1 ) + ϕ 0 x ( t k t k 1 ) 2 1 + q k 1 ] + 1 + 2 T T k = 1 m ( T t k ) [ p 0 ψ ( x ) ( t k t k 1 ) + ϕ 0 x ( t k t k 1 ) 2 1 + q k 1 ] + m ( 1 + 2 T ) φ 1 ( x ) T + m ( 1 + T ) φ 2 ( x ) T + ( 1 + 2 T ) φ 2 ( x ) T k = 1 m ( T t k ) = p 0 ψ ( x ) [ 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + T T k = 1 m + 1 ( t k t k 1 ) + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) ] + ϕ 0 x [ 1 + 2 T T k = 1 m + 1 ( t k t k 1 ) 3 1 + q k 1 + q k 1 2 + 1 + T T k = 1 m + 1 ( t k t k 1 ) 2 1 + q k 1 + 1 + 2 T T k = 1 m ( T t k ) ( t k t k 1 ) 2 1 + q k 1 ] + m ( 1 + 2 T ) φ 1 ( x ) T + m ( 1 + T ) φ 2 ( x ) T + ( 1 + 2 T ) φ 2 ( x ) T k = 1 m ( T t k ) = p 0 ψ ( x ) Q 1 + ϕ 0 x Q 2 + Q 3 .

Consequently, we have

x p 0 ψ ( x ) Q 1 + ϕ 0 x Q 2 + Q 3 1.

In view of (A6), there exists M such that x M . Let us set

U= { x P C ( J , R ) : x < M } .

Note that the operator A: U ¯ PC(J,R) is continuous and completely continuous. From the choice of U, there is no xU such that x=θAx for some θ(0,1). Consequently, by the nonlinear alternative of Leray-Schauder type (Lemma 3.5), we deduce that A has a fixed point x U ¯ which is a solution of the problem (1.1). This completes the proof. □

4 Examples

In this section, we will give examples to illustrate our main results.

Example 4.1 Consider the following boundary value problem for the nonlinear second-order impulsive q k -integro-difference equation:

{ D k + 1 k + 4 2 x ( t ) = t e t ( t + 3 ) 2 | x ( t ) | | x ( t ) | + 3 + t 2 36 t k t sin π ( t s ) 3 x ( s ) d q k s , t J , t t k , Δ x ( t k ) = | x ( t k ) | 9 ( k + 8 ) + | x ( t k ) | , k = 1 , 2 , , 9 , D k + 1 k + 4 x ( t k + ) D k k + 3 x ( t k ) = | x ( t k ) | 8 ( k + 7 ) + | x ( t k ) | , k = 1 , 2 , , 9 , x ( 0 ) + D 1 4 x ( 0 ) = 0 , x ( 1 ) + D 10 13 x ( 1 ) = 0 .
(4.1)

Here J=[0,1], t k =k/10, q k =(k+1)/(k+4) for k=0,1,2,,9, m=9, T=1, f(t,x, S q k x)=(t|x|)/( e t ( t + 3 ) 2 (|x|+3))+( t 2 /36) t k t ((sinπ(ts))/3)x(s) d q k s, I k (x)=|x|/(9(k+8)+|x|) and I k (x)=|x|/(8(k+7)+|x|). Since

| f ( t , x ) f ( t , y ) | 1 27 | x y | + ( 1 / 36 ) ( S q k | x y | ) , | I k ( x ) I k ( y ) | 1 81 | x y | and | I k ( x ) I k ( y ) | 1 64 | x y | ,

(H1) and (H2) are satisfied with L 1 =(1/27), L 2 =(1/36), L 3 =(1/81), L 4 =(1/64). We can show that

ω0.9587977316<1.

Hence, by Theorem 3.1, boundary value problem (4.1) has a unique solution on [0,1].

Example 4.2 Consider the following boundary value problem for the nonlinear second-order impulsive q k -integro-difference equation:

{ D 2 k + 3 3 k + 6 2 x ( t ) = 4 t 2 ( 1 + x 2 ) 2 + t 2 sin t t | t k t cos 2 π ( t s ) 3 x ( s ) d q k s | + 1 , t J , t t k , Δ x ( t k ) = k sin π t k + t | x ( t k ) | , k = 1 , 2 , , 9 , D 2 k + 3 3 k + 6 x ( t k + ) D 2 k + 1 3 k + 3 x ( t k ) = 4 k cos 2 t 2 k + | x ( t k ) | sin t , k = 1 , 2 , , 9 , x ( 0 ) + D 1 2 x ( 0 ) = 0 , x ( 1 ) + D 7 11 x ( 1 ) = 0 .
(4.2)

Here J=[0,1], t k =k/10, q k =(2k+3)/(3k+6) for k=0,1,2,,9, m=9, T=1, f(t,x, S q k x)=((4 t 2 )/ ( 1 + x 2 ) 2 )+( t 2 sint)/(t| t k t (( cos 2 π(ts))/3)x(s) d q k s|+1), I k (x)=(ksinπt)/(k+t|x( t k )|) and I k (x)=(4k cos 2 t)/(2k+|x( t k )|sint). We can show that

| f ( t , x , ( S q k x ) ) | = | 4 t 2 ( 1 + x 2 ) 2 + t 2 sin t t | t k t cos 2 π ( t s ) 3 x ( s ) d q k s | + 1 | 5 = N 1 , | I k ( x ) | = | k sin π t k + t | x ( t k ) | | 1 = N 2 , and | I k ( x ) | = | 4 k cos 2 t 2 k + | x ( t k ) | sin t | 2 = N 3 .

Hence, by Theorem 3.2, boundary value problem (4.2) has at least one solution on [0,1].

Example 4.3 Consider the following nonlinear second-order impulsive q k -difference equation with separated boundary condition:

{ D k + 1 3 k + 2 2 x ( t ) = t sin π t ( t + 1 ) 2 | x | 2 | x | + 1 + cos π t 2 2 | t k t e t s t + e t s x ( s ) d q k s | , t J , t t k , Δ x ( t k ) = | x ( t k ) | 7 ( k + 8 ) + | x ( t k ) | , k = 1 , 2 , , 9 , D k + 1 3 k + 2 x ( t k + ) D k 3 k 1 x ( t k ) = | x ( t k ) | 8 ( k + 7 ) + | x ( t k ) | , k = 1 , 2 , , 9 , x ( 0 ) + D 1 2 x ( 0 ) = 0 , x ( 1 ) + D 10 29 x ( 1 ) = 0 ,
(4.3)

where J=[0,1], t k =k/10, q k =(k+1)/(3k+2) for k=0,1,2,,9, m=9, T=1, f(t,x)=(tsinπt/ ( t + 1 ) 2 )(|x|/(2|x|+1))+(cos(π t 2 /2))/(| t k t ( e t s /(t+ e t s ))x(s) d q k s|), I k (x)=|x( t k )|/(7(k+8)+|x( t k )|) and I k (x)=|x( t k )|/(8(k+7)+|x( t k )|). Since

| I k ( x ) I k ( y ) | (1/63)|xy|and | I k ( x ) I k ( y ) | (1/64)|xy|,

(A3) is satisfied with L 1 =(1/63), L 2 =(1/64). It is easy to verify that |f(t,x)|μ(t)(tsinπt)/ ( t + 1 ) 2 + e t cos(π t 2 /2), I k (x) N 1 =1, and I k (x) N 2 =1 for all t[0,1], xR, k=1,,m. Thus (A1) and (A2) are satisfied. We can show that

m ( 1 + 2 T ) K 1 T + m ( 1 + T ) K 2 T + ( 1 + 2 T ) K 2 T k = 1 m (T t k )0.9207589286<1.

Hence, by Theorem 3.4, boundary value problem (4.3) has at least one solution on [0,1].

Example 4.4 Consider the following nonlinear second-order impulsive q k -difference equation with separated boundary condition:

{ D k + 2 k + 4 2 x ( t ) = x x 2 + 6 e t + 42 + 1 + sin π t e t + 7 cos t t k t ( t s ) sin t e t s + 2 x ( s ) d q k s , t J , t t k , Δ x ( t k ) = sin π x ( t k ) 8 π ( k + 7 ) , k = 1 , 2 , , 9 , D k + 2 k + 4 x ( t k + ) D k + 1 k + 3 x ( t k ) = x ( t k ) cos 2 k t 8 ( k + 11 ) , k = 1 , 2 , , 9 , x ( 0 ) + D 1 2 x ( 0 ) = 0 , x ( 1 ) + D 11 13 x ( 1 ) = 0 .
(4.4)

Here J=[0,1], t k =k/10, q k =(k+2)/(k+4) for k=0,1,2,,9, m=9, T=1, f(t,x)=(x/( x 2 +6 e t +42))+(1+sinπt)/( e t +7)cost t k t ((ts)sint/( e t s +2))x(s) d q k s, I k (x)=(sinπx)/(8π(k+7)), and I k (x)=(x cos 2 kt)/(8(k+11)). Clearly,

| f ( t , x ) | = | x x 2 + 6 e t + 42 + 1 + sin π t e t + 7 cos t t k t ( t s ) sin t e t s + 2 x ( s ) d q k s | ( 2 e t + 7 ) | x + 1 | 6 + | t k t ( t s ) sin t e t s + 2 x ( s ) d q k s | , | I k ( x ) | = | sin π x 8 π ( k + 7 ) | | x | 64 and | I k ( x ) | = | x cos 2 k t 8 ( k + 11 ) | | x | 96 .

Choosing p(t)= 2 e t + 7 , ψ(|x|)= | x + 1 | 6 , φ 1 (|u|)= | x | 64 , and φ 2 (|x|)= | x | 96 , we obtain

M 0.9854645864 M + 0.1469016279 >1

which implies that M >10.10646356. Hence, by Theorem 3.6, boundary value problem (4.4) has at least one solution on [0,1].

Authors’ information

Sotiris K Ntouyas is a member of Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.

References

  1. Tariboon J, Ntouyas SK: Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013., 2013: Article ID 282

    Google Scholar 

  2. Kac V, Cheung P: Quantum Calculus. Springer, New York; 2002.

    Book  Google Scholar 

  3. Bangerezako G: Variational q -calculus. J. Math. Anal. Appl. 2004, 289: 650–665. 10.1016/j.jmaa.2003.09.004

    Article  MathSciNet  Google Scholar 

  4. Dobrogowska A, Odzijewicz A: Second order q -difference equations solvable by factorization method. J. Comput. Appl. Math. 2006, 193: 319–346. 10.1016/j.cam.2005.06.009

    Article  MathSciNet  Google Scholar 

  5. Gasper G, Rahman M: Some systems of multivariable orthogonal q -Racah polynomials. Ramanujan J. 2007, 13: 389–405. 10.1007/s11139-006-0259-8

    Article  MathSciNet  Google Scholar 

  6. Ismail MEH, Simeonov P: q -difference operators for orthogonal polynomials. J. Comput. Appl. Math. 2009, 233: 749–761. 10.1016/j.cam.2009.02.044

    Article  MathSciNet  Google Scholar 

  7. Bohner M, Guseinov GS: The h -Laplace and q -Laplace transforms. J. Math. Anal. Appl. 2010, 365: 75–92. 10.1016/j.jmaa.2009.09.061

    Article  MathSciNet  Google Scholar 

  8. El-Shahed M, Hassan HA: Positive solutions of q -difference equation. Proc. Am. Math. Soc. 2010, 138: 1733–1738.

    Article  MathSciNet  Google Scholar 

  9. Ahmad B: Boundary-value problems for nonlinear third-order q -difference equations. Electron. J. Differ. Equ. 2011, 94: 1–7.

    Google Scholar 

  10. Ahmad B, Alsaedi A, Ntouyas SK: A study of second-order q -difference equations with boundary conditions. Adv. Differ. Equ. 2012., 2012: Article ID 35

    Google Scholar 

  11. Ahmad B, Ntouyas SK, Purnaras IK: Existence results for nonlinear q -difference equations with nonlocal boundary conditions. Commun. Appl. Nonlinear Anal. 2012, 19: 59–72.

    MathSciNet  Google Scholar 

  12. Ahmad B, Nieto JJ: On nonlocal boundary value problems of nonlinear q -difference equations. Adv. Differ. Equ. 2012., 2012: Article ID 81

    Google Scholar 

  13. Ahmad B, Ntouyas SK: Boundary value problems for q -difference inclusions. Abstr. Appl. Anal. 2011., 2011: Article ID 292860

    Google Scholar 

  14. Zhou W, Liu H: Existence solutions for boundary value problem of nonlinear fractional q -difference equations. Adv. Differ. Equ. 2013., 2013: Article ID 113

    Google Scholar 

  15. Yu C, Wang J: Existence of solutions for nonlinear second-order q -difference equations with first-order q -derivatives. Adv. Differ. Equ. 2013., 2013: Article ID 124

    Google Scholar 

  16. Lakshmikantham V, Bainov DD, Simeonov PS: Theory of Impulsive Differential Equations. World Scientific, Singapore; 1989.

    Book  Google Scholar 

  17. Samoilenko AM, Perestyuk NA: Impulsive Differential Equations. World Scientific, Singapore; 1995.

    Google Scholar 

  18. Benchohra M, Henderson J, Ntouyas SK 2. In Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York; 2006.

    Chapter  Google Scholar 

  19. Krasnoselskii MA: Two remarks on the method of successive approximations. Usp. Mat. Nauk 1955, 10: 123–127.

    MathSciNet  Google Scholar 

  20. Granas A, Dugundji J: Fixed Point Theory. Springer, New York; 2003.

    Book  Google Scholar 

Download references

Acknowledgements

The research of C Thaiprayoon and J Tariboon is supported by King Mongkut’s University of Technology North Bangkok, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessada Tariboon.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally in this article. They read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Thaiprayoon, C., Tariboon, J. & Ntouyas, S.K. Separated boundary value problems for second-order impulsive q-integro-difference equations. Adv Differ Equ 2014, 88 (2014). https://doi.org/10.1186/1687-1847-2014-88

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1847-2014-88

Keywords