- Research
- Open access
- Published:
Existence and uniqueness for a class of iterative fractional differential equations
Advances in Difference Equations volume 2015, Article number: 78 (2015)
Abstract
The presence of a self-mapping increases the difficulty in proving the existence and uniqueness of solutions for general iterative fractional differential equations. In this article, we provide conditions for the existence and uniqueness of solutions for the initial value problem. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.
1 Introduction
Fractional calculus is an area of specialization in mathematics that is concerned with differential and integral operators of arbitrary orders. Fractional derivatives are considered excellent tools for the description of nonlinearity. Fractional derivatives are mainly used with classical integer order patterns, in which such effects are neglected. The significance of fractional derivatives is manifested in modeling, electrical properties of real materials, capacity of rheological properties of rocks, and many other fields. Fractional derivatives and fractional integrals have various definitions. The most famous operators are Riesz, Grunwald-Letnikov, Riemann-Liouville, and Caputo [1–10].
Existence and uniqueness theory is studied widely in fractional differential equations. Agarwal et al. studied the existence of solutions for the Riemann-Liouville operator for a class of integro-differential equations of high fractional order [11]. Moreover, Agarwal et al. presented some existence and uniqueness outcomes for a class of fuzzy fractional integral equations utilizing the Schauder fixed point theorem in semilinear Banach spaces [12]. Li et al. established the existence of a class of nonlinear fractional q-difference equations with mixed nonlinear assumptions, including the fractional q-derivative of Riemann-Liouville type, employing the Guo-Krasnoselskii fixed point theorem on cones [13]. Ibrahim applied the Tarski fixed point theorem to study the existence of extremal solutions for fractional differential equations with maxima [14]. The existence and uniqueness in complex domains have been imposed considering the Srivastava-Owa fractional operators [15, 16].
In this study, we introduce some conditions for the existence and uniqueness of solutions for the initial value problems of iterative equations. We also determine the Burton stability of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville fractional operators, as well as Caputo derivative.
2 Preliminaries
This section deals with some preliminaries and notations regarding fractional calculus.
Fractional calculus originated from the Riemann-Liouville definition of fractional integral of order α in the form
where ψ is continuous.
The fractional (arbitrary) order differential of the continuous function ψ of order \(\alpha >0\) is defined by
When \(a=0\), we conclude that
and
Let ψ be a continuously \((n)\) differentiable function. The Caputo derivative can then be realized by the following form:
where n is an integer and γ is a real number.
3 Related work
Differential equations with state-dependent delays attract interest of specialists because they arise from application models, such as the two-body problem of classical electrodynamics, transmission, mechanical models, population models, infection disease, position control, and dynamics of economical systems. As a special type of state-dependent delay differential equations, iterative differential equations have distinct characteristics. Such equations have been investigated in recent years in terms of their smoothness, analyticity, monotonicity, convexity, and numerical solution. In the theory of differential equations, one of the essential and important problems is the initial value problem. Numerous existence results on special iterative differential equations can be found in the literature. In 1984, Eder proved the existence of the unique monotone solution for the second iterative differential equation [17] using the contraction principle as follows:
linked with \(y(t_{0}) = t_{0}\) (\(t_{0} \in[-1, 1]\)). Fečkan investigated the general second iterative differential equation [18]
with the initial value \(y(0) = 0\). Modified iterative functional differential equations have been recently suggested by Zhang and Gong [19] to determine approximate solutions. They studied the following iterative functional differential equation:
which satisfies the following result.
Lemma 3.1
Let
where \(M<1\). If \(f, g\in\varphi_{M}\), then
Ibrahim utilized nonexpansive operators to establish the existence and uniqueness of iterative fractional differential equations of various forms [20, 21]. Recently, Ibrahim and Darus established sufficient conditions for fractional differential equations as follows:
with the initial value \(y(0) = y_{0}\), see [22].
In this study, we aim to establish the existence and uniqueness of the fractional iterative
subject to the initial value
where \(y^{[j]}(t) := y(y^{[j-1]}(t))\) indicates the jth iterate of self-mapping y, where \(j = 1, 2, \ldots , n\).
4 Existence and uniqueness
We start with the following result.
Theorem 4.1
Suppose that \(f:{\Re^{n+1}\rightarrow\Re}\) is continuous. If positive r exists, such that
where \(M_{1}=\|f\|_{\bar{B}(z_{0},r)}\leq1\) and \(\bar{B}(z_{0},r)\) denotes the closed ball centered at \(z_{0}=(t_{0},y_{0},\ldots,y_{0})\) with radius r, then Eq. (1) has a solution defined on \([t_{0}-l,t_{0}+l]\) for any \(l\in[ l_{0} /(1-M_{1}),r]\).
Proof
The existence of solutions of Eq. (1) is equivalent to finding a continuous solution of the integral equation
Define a set \(\varphi_{M_{1}}\) as follows:
for any \(l\in[l_{0} /(1-M_{1}),r]\). Then, for \(y\in\varphi_{M_{1}}\), we prove that \(y^{[j]} (t)\) (\(j=2,3,\ldots,n\)) are well defined on \([t_{0} -l,t_{0} +l]\). It suffices to establish
for \(j\in\mathbb{N}\) by induction. In fact, for \(t_{0}\leq s\leq t\), we have
We let \(|y^{[j]}(t)-y_{0}|\le l\) for a positive integer \(j\geq1\), then
On the basis of induction, (4) holds and \(y^{[j]}([t_{0}-l,t_{0}+l])\) are well defined for any \(y\in\varphi_{M_{1}}\). In the sequel we apply the Schauder fixed point theorem to prove the existence of the continuous solution of Eq. (3). To this end, we define the integral operator \({\mathcal{G}}: \varphi_{M_{1}}\rightarrow C^{0}([t_{0}-l,t_{0}+l])\) by
Clearly,
for any \(y\in\varphi_{M_{1}}\). In view of
we get
Then \(\varphi_{M_{2}}\) is a nonempty convex and compact subset of the Banach space \(C^{0}([a,b])\). We consider the mapping \({\mathcal{T}}: \varphi_{M_{2}}\rightarrow C^{0}([a,b])\) defined by
To show \(\mathcal{T}\) is a self-mapping, we note that for any \(t_{1},t_{2}\in[t_{0}-l,t_{0}+l]\). Therefore Eqs. (5)-(7) yield \({\mathcal{G}}y\in\varphi_{M_{1}}\); (i.e., \({\mathcal{G}}\) is a self-mapping operator). It remains to show that \({\mathcal{G}}\) is continuous. For this purpose, taking any \(y_{1}, y_{2}\in\varphi_{M_{1}}\), we obtain
By Lemma 3.1, we conclude that
Given the uniform continuity of f on \(\bar{B}(z_{0},r)\), for any \(\varepsilon>0\), there exists \(\delta(\varepsilon)>0\), the inequality
holds for \(\|y_{1}-y_{2}\|_{[t_{0}-l,t_{0}+l]}<\delta\), which yields \({\mathcal{G}}\) is continuous. \(\Phi_{M_{1}}\) is a convex, compact subset of the Banach space \(C^{0}([t_{0}-l, t_{0}+l])\) and \({\mathcal{G}}\) is a continuous operator that satisfies all conditions of the Schauder fixed point theorem, \({\mathcal{G}}\) has a fixed point \(g\in\varphi_{M_{1}}\) and g is a solution for Eq. (1) on the interval \([t_{0}-l,t_{0}+l]\). This completes the proof. □
Theorem 4.2
Suppose that \(f:\Re^{n+1}\rightarrow\Re\) is continuous and any compact interval \([a,b]\) includes \(t_{0}\) and \(y_{0}\). If
where \(A_{t_{0}}=\max\{t_{0} -a,b-t_{0}\}\), \(B_{y_{0}}=\min\{y_{0} -a,b-y_{0}\}\), \(M_{2} =\|f\|_{[a,b]^{n+1}}\) and \([a,b]^{n+1}\) denotes the product of \(n+1\) intervals \([a,b]\), then Eq. (1) has a solution defined on \([a,b]\).
Proof
Let
then \(\varphi_{M_{2}}\) is a nonempty convex and compact subset of the Banach space \(C^{0}([a,b])\). We consider the mapping \({\mathcal{T}}: \varphi_{M_{2}}\rightarrow C^{0}([a,b])\) to be defined by
To show \(\mathcal{T}\) is a self-mapping, we note that
Clearly, \({\mathcal{T}}y(t_{0})=y_{0}\). Moreover, for any \(t_{1},t_{2}\in[a,b]\), we obtain
Therefore, (12) and (13) yield that \({\mathcal{T}}\) maps \(\varphi_{M_{2}}\) into itself. The definitions of \(A_{t_{0}}\) and \(B_{y_{0}}\) prove that \(M_{2} \leq1\), thus for any \(y_{1},y_{2}\in \varphi_{M_{2}}\), according to Lemma 3.1, we have
By the uniform continuity of f on \([a,b]^{n+1}\), for any \(\varepsilon>0\), there exists \(\delta(\varepsilon)>0\). When \(\|y_{1}-y_{2}\|_{[a,b]}<\delta\), we obtain
Consequently,
which means that \({\mathcal{T}}\) is a continuous operator. It follows that \(\varphi_{M_{2}}\) is a convex, compact subset of the Banach space \(C^{0}([a,b])\). By the Schauder fixed point theorem, \({\mathcal{T}}\) has a fixed point \(h\in\varphi_{M_{2}}\) and h is a solution of Eq. (1) on the interval \([a,b]\). This completes the proof. □
5 Applications
In this section, our theorems are illustrated by the following example. First, we prove the existence of smooth solutions of (1) based on the results provided by Si and Wang [23]. In this paper, smooth function \(g \in C^{n}\) means that the function g has a number of continuous derivatives, and its nth continuous derivative is Lipschitzian. We require the following result.
Lemma 5.1
Let
Then, for any \(x(t)\in\Omega(N_{1},\ldots,N_{n+1}; I)\), there exist a function
and positive constants \(N_{uv}^{ik}\) such that
for \((\bar{\lambda}_{10},\ldots,\bar{\lambda}_{k,i-1})\), \((\tilde{\lambda}_{10},\ldots,\tilde{\lambda}_{k,i-1})\) belong to compact sets \([0,N_{1}]^{i}\times[0,N_{2}]^{i}\times\cdots \times[0,N_{k}]^{i}\), where \(y_{ri}(t)=y^{(r)}(y^{[i]}(t))\), \(y_{*ik}(t)=(y^{[i]}(t))^{(k)}\) and \(P_{ik}\) is a uniquely defined multivariate polynomial with nonnegative coefficients and \(1\leq u \leq k\), \(0\leq v\leq i-1\).
Theorem 5.1
Consider the equation
associated with \(y(t_{0})=y_{0}\), where \(a_{i}(t), F(t)\in C^{n} \) are given smooth functions.
Proof
For \(R>0\), by the smoothness of the given functions, we have positive \(M_{a_{j}}\) and \(M_{F}\) such that
Denote
If \((1-N_{1})R\geq|y_{0} -t_{0}|\), then Eq. (14) has a solution in the function set
by Theorem 4.1, where arbitrary \(l_{1} \in[|y_{0} -t_{0}|/(1-N_{1}),R]\). In fact, for any \(y\in\varphi_{N_{1}}\), we see that the function
is continuous on \([t_{0}-l_{1},t_{0}+l_{1}]\) and
Since \((1-N_{1})R\geq|y_{0} -t_{0}|\), the condition of Theorem 4.1 is satisfied, there exists a solution \(y=\psi(t)\) of Eq. (14) in the functional set \(\psi_{N_{1}}\). In the sequel, we show that \(\psi^{(n+1)}(t)\) also is Lipschitzian on the compact interval \([t_{0}-l_{1},t_{0}+l_{1}]\). In view of Lemma 5.1, we obtain
where \(y_{n}=y^{[n]}({t})\), \(n=1,2,\ldots,i-1\).
Denote
Then, for any \(t_{1}, t_{2}\in[t_{0}-l_{1}, t_{0}+l_{1}]\), we get
Since
we attain
which implies that \(\psi^{(m+1)}(t)\) is Lipschitzian. □
Example 5.1
Consider the equation
associated with
Now we check the conditions of Theorem 4.2. For the compact interval \([-1,0]\), we see that \(y_{0}=-\frac{1}{2}\), \(t_{0}=-1\), \(\gamma=\frac{1}{2}\), \(\Gamma(\frac {3}{2})=0.88\) for all \(t\in[-1,0]\). Since \(M_{2} =\|y\|_{[-1,0]^{n+1}}= 1/5 +1/4 =9/20 <0.5\), also \(A_{t_{0}}=\max\{t_{0}-a,b-t_{0}\}=\max\{-1+1,0+1\}=\max\{0,1\}=1\), \(B_{y_{0}} =\min\{y_{0}-a,b-y_{0}\}=\min\{\frac{-1}{2}+1,0+\frac{1}{2}\}=\min\{ \frac{1}{2},\frac{1}{2}\}=1/2\), and \(\Gamma(\frac{3}{2})=0.88\), then \(\frac{M_{2}}{\Gamma(\frac{3}{2})}=\frac{9}{17.6}\), which satisfies the conditions of Theorem 4.2. Then Eq. (15) associated with Eq. (16) has a solution.
Remark 5.1
In the proof of an invariant set, they require the inequalities
The right-most inequality of Eq. (15) contradicts the definition of \(C_{x_{0}}\). We overcome this difficulty by defining \(B_{y_{0}}\).
6 Burton stability
In this section, we aim to discuss the stability of solutions of a class of iterative fractional differential equations. We need the following observations.
Definition 6.1
Let \(g:[0,\infty[\, \mapsto[1,\infty[\) be an arbitrary continuous strictly increasing function with \(g(t)\mapsto\infty\) as \(t \mapsto \infty\) and define a Banach space \((W,|\cdot|_{g})\) of continuous functions \(\Phi: [0,\infty[\, \mapsto\Re^{n}\) with the property that
Definition 6.2
[24]
Let B be a closed and densely defined operator on Y and \(l \in \mathcal{C}(\Re^{+})\) be a scalar kernel. A family \({\Im}_{t\geq0}\) is called a k-regularized resolvent family if the following conditions are satisfied:
-
(a)
ℑ is strongly continuous on \(\Re^{+}\) and \(\Im(0) = k(0)I\);
-
(b)
\(\Im y\in D(B)\) and \(B\Im(t)(y) = \Im(t)By\) for all \(y \in D(B)\) and \(t\geq0\);
-
(c)
the k-regularized resolvent equation holds
$$\Im(t) (y) = K(t) (y)-\int_{0}^{t}BK(t-s)\Im(s)y \, ds. $$
Lemma 6.1
[25]
Let N be a closed ball in AB, let \(P: N \rightarrow N\) be continuous, and let PN be locally equicontinuous. Then there exists a point \(\Psi\in N \) with \(P\Psi= \Psi\).
Lemma 6.2
[25]
Let N be a convex, nonempty, bounded subset of AB, let \(P: N \mapsto N\), and let PN be locally equicontinuous. If, in addition, the g-norm closure of PN is in N, then there exists a point \(\Psi\in M\) with \(P \Psi=\Psi\).
Next, we discuss the stability of Eq. (14) for a special case by putting
Theorem 6.1
Consider the fractional differential equation
where \(A_{i}, B_{i}, r_{i}:[0,\infty)\mapsto[0,\infty)\) are continuous. Moreover, suppose that
-
(a)
\(a_{i}:=-A_{i}(t)\), \(A_{i}(t)\) is bounded on \([0,\infty[\);
-
(b)
\(A_{i}(t)-B_{i}(t)\geq\delta\) for all \(t_{0}\geq0\), and a constant \(\delta>0\);
-
(c)
\(r_{i}(t)\geq0\) for all \(t\geq0\).
Then the zero solution of Eq. (18) is stable.
Proof
Consider problem (18). Assume that \(\exists\zeta>0\) and \(\max_{i} [\sup_{t\geq0}A_{i}(t)]<\zeta\) for all \(t\geq 0\) such that
Then for the Lizama resolvent \((\Im_{\gamma})\), which satisfies
we have
Rewrite Eq. (18) as follows:
Therefore, the solution \(y(t)\) of Eq. (18) achieves
where \(w(t)=y_{0}(1-\int_{0}^{\infty}\Im(s)\, ds)\).
Let \(0<\epsilon<\frac{\sqrt{3}}{3}\), we may assume that \(\zeta\geq1\) and \(0<\delta<1\) so that \(\frac{\delta\epsilon^{3}}{\zeta}<\epsilon\). Now set
Let \(\phi:[n_{0},0]\rightarrow\Re\) be a given continuous initial function with \(\|\phi\|<\frac{\delta\epsilon^{3}}{\zeta}<\epsilon\). Define
For the natural mapping defined above with \(y(s)=\phi(s)\) for \(s\leq 0\), we can show that \(P:N \mapsto N\). We observe that \(\sum_{i=1}^{m}[r-r_{i}]\) is increasing on \([0,\epsilon]\) and we obtain
It is clear that PN is equicontinuous on \([0,\infty)\) and the g-norm closure of PN is in N (Lemma 6.1). Consequently, in view of Lemma 6.2, P has a fixed point \(y\in N\) which is a solution of Eq. (18). Thus, the zero solution of Eq. (18) is stable. This completes the proof. □
References
Srivastava, HM, Owa, S: Univalent Functions, Fractional Calculus, and Their Applications. Halsted, New York (1989)
Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)
Kiryakova, V: Generalized Fractional Calculus and Applications. Longman, Harlow (1994); copublished in the United States with John Wiley & Sons, Inc., New York
Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
Hilfer, R: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)
West, BJ, Bologna, M, Grigolini, P: Physics of Fractal Operators. Springer, New York (2003)
Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Sabatier, J, Agrawal, OP, Machado, JA: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)
Lakshmikantham, V, Leela, S, Vasundhara, DJ: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)
Klafter, J, Lim, SC, Metzler, R (eds.): Fractional Dynamics: Recent Advances. World Scientific, Singapore (2011)
Agarwal, RP, Ntouyas, SK, Ahmad, B, Alhothuali, MS: Existence of solutions for integro-differential equations of fractional order with nonlocal three-point fractional boundary conditions. Adv. Differ. Equ. 2013, 128 (2013)
Agarwal, RP, Arshad, S, O’Regan, S, Lupulescu, V: A Schauder fixed point theorem in semilinear spaces and applications. Fixed Point Theory Appl. 2013, 306 (2013)
Li, X, Han, Z, Sun, S, Zhao, P: Existence of solutions for fractional q-difference equation with mixed nonlinear boundary conditions. Adv. Differ. Equ. 2014, 326 (2014)
Ibrahim, RW: Extremal solutions for certain type of fractional differential equations with maxima. Adv. Differ. Equ. 2012, 7 (2012)
Ibrahim, RW: Modified fractional Cauchy problem in a complex domain. Adv. Differ. Equ. 2013, 149 (2013)
Ibrahim, RW: On holomorphic solution for space- and time-fractional telegraph equations in complex domain. J. Funct. Spaces Appl. 2012, Article ID 703681 (2012)
Eder, E: The functional differential equation \(x'(t) = x(x(t))\). J. Differ. Equ. 54(3), 390-400 (1984)
Fečkan, M: On a certain type of functional differential equations. Math. Slovaca 43(1), 39-43 (1993)
Zhang, P, Gong, X: Existence of solutions for iterative differential equations. Electron. J. Differ. Equ. 2014, 7 (2014)
Ibrahim, RW: Existence of deviating fractional differential equation. CUBO 14, 127-140 (2012)
Ibrahim, RW: Existence of iterative Cauchy fractional differential equation. J. Math. 2013, Article ID 838230 (2013)
Ibrahim, RW, Darus, M: Infective disease processes based on fractional differential equation. In: Proceedings of the 3rd International Conference on Mathematical Sciences, vol. 1602, pp. 696-703 (2014)
Si, J-G, Wang, X-P: Smooth solutions of a nonhomogeneous iterative functional differential equation with variable coefficients. J. Math. Anal. Appl. 226(2), 377-392 (1998)
Lizama, C, Vergara, V: Uniform stability of resolvent families. Proc. Am. Math. Soc. 132(1), 175-181 (2004)
Burton, TA, Zhang, B: A Schauder-type fixed point theorem. J. Math. Anal. Appl. 417(2), 552-558 (2014)
Acknowledgements
The authors would like to thank the referees for giving strong and very useful suggestions for improving the work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors jointly worked on deriving the results and approved the final manuscript.
Rights and permissions
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
About this article
Cite this article
Ibrahim, R.W., Kılıçman, A. & Damag, F.H. Existence and uniqueness for a class of iterative fractional differential equations. Adv Differ Equ 2015, 78 (2015). https://doi.org/10.1186/s13662-015-0421-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-015-0421-y