- Research
- Open Access
- Published:
Anti-periodic boundary value problem for first order impulsive delay difference equations
Advances in Difference Equations volume 2015, Article number: 93 (2015)
Abstract
In this paper, we investigate the anti-periodic boundary value problem for first order impulsive delay difference equations. To begin with, we establish two comparison theorems. Then, by using these theorems, we prove the existence and uniqueness of solutions for the linear problem. Finally, by using the method of upper and lower solutions coupled with the monotone iterative technique, we obtain the new existence results of extremal solutions. Meanwhile, an example is given to illustrate the results obtained.
1 Introduction
Impulsive differential equations are recognized as important models which describe many evolution processes that abruptly change their state at a certain moment. Such equations have extensive application in economics, physics, chemical technology, medicine, dynamic systems, optimal control, population dynamics and many other fields. The theory of impulsive differential equations has drawn much attention in recent years and is much richer than the corresponding theory of differential equations. For more information about the theory of important differential equations, see [1–4] and the references therein.
Anti-periodic boundary value problem is an important branch of boundary value problem, and it has recently become an interesting area of investigation. The existence and uniqueness of solutions for such a problem have received a great deal of attention, we refer the readers to [5–12] and the references therein. For the case of differential equations, Chen et al. [5] investigated the anti-periodic solutions for first order differential equations, Aftabizadeh et al. [7] discussed the anti-periodic boundary value problem for second order differential equations, Wang and Zhang [8] considered the anti-periodic problem for impulsive differential equations. Ahmad and Nieto [9] studied anti-periodic problem for impulsive functional differential equations. Moreover, for difference equations, a lot of results have been investigated in the literature [13–17]. For example, Liu [14] studied higher order functional difference equations with p-Laplacian. Immediately after this, he [15] studied higher order nonlinear periodic difference equations. However, we noticed that all these known results are related to anti-periodic problem for differential equations and to difference equations. Motivated by some recent work on anti-periodic problems and difference equations with impulse (see [18–23]), in this paper, we attempt to propose some results concerning the impulsive delay difference equations with anti-periodic boundary conditions
where \(\Delta u(n)=u(n+1)-u(n)\), \(f\in C(J\times\mathbb{R}^{2},\mathbb {R})\), \(\theta\in C[J,\mathbb{Z}]\), \(0\leq\theta(n)\leq n\), \(J=[0,T]=\{ 0,1,\ldots,T\}\), \(I_{k}\in C(\mathbb{R},\mathbb{R})\) (\(k=1,2,\ldots,p\)), \(0< n_{1}<n_{2}<\cdots<n_{p}<T\), T is a positive integer.
In [19], He and Zhang investigated first order impulsive difference equations with periodic boundary conditions. Wang and Wang [18] analyzed first order impulsive difference equations with linear boundary conditions. Zhang et al. [12] investigated impulsive anti-periodic boundary value problems for nonlinear \(q_{k}\)-difference equations. To the best of our knowledge, there are few results on the anti-periodic boundary value problem for impulsive delay difference equations. Hence, we are concerned with the existence of solutions for anti-periodic boundary value problem (1). In Section 2, we introduce the concept of upper and lower solutions and establish two comparison principles. In Section 3, we discuss the existence of solutions and uniqueness for the linear anti-periodic boundary value problem. Moreover, by using the monotone iterative technique and the method of upper and lower solutions, we obtain the existence theorem of extremal solutions for problem (1). Finally, an example is worked out to demonstrate the obtained results.
2 Comparison results
In this section, we introduce relative notation and some lemmas. Throughout this paper, let ℕ denote the set of all natural numbers and let Ω denote the set of real-valued functions defined on J with the norm \(\|u\|= \max_{n\in J}|u(n)|\) for \(u\in\Omega\). For \(\alpha,\beta\in\Omega\), we write \(\alpha\leq\beta \) if \(\alpha(n)\leq\beta(n)\) for all \(n\in J\).
A function \(u\in\Omega\) is said to be a solution of problem (1) if it satisfies (1).
Definition 2.1
Functions \(\alpha, \beta\in \Omega\) are called lower and upper solutions of problem (1) if
and
Lemma 2.1
([19])
Assume that
(i) the sequence \({n_{k}}\) satisfies \(0\leq n_{0}< n_{1}<\cdots<n_{k}<\cdots\) with \(\lim_{k\to\infty}n_{k}=\infty \);
(ii) for \(k\in\mathbb{N}\), \(n\geq n_{0}\),
where \(\{l_{n}\}\) and \(\{q_{n}\}\) are two real-valued consequences and \(l_{n}>-1\), \(b_{k}\) and \(e_{k}\) are constants, and \(b_{k}\geq0\). Then
Remark 2.2
When k is finite, Lemma 2.1 also holds. In this paper, we only consider this case.
Next, we will establish two new comparison results which play an important role in the monotone iterative technique.
Lemma 2.2
Let \(m\in\Omega\) be such that
where \(N\geq0\), \(0\leq L_{k}< M<1\) for \(k=1,2,\ldots,p\), and
Then \(m(n)\leq0\) on J.
Proof
Let \(v(n)=(1-M)^{-n}m(n)\), \(n\in[0,T]\),
Obviously, \(v(n)\leq0\) implies \(m(n)\leq0\). So it suffices to show \(v(n)\leq0\) on J. Suppose on the contrary that there exists \(n^{*}\in J\) such that \(v(n^{*})>0\). Since \(v(0)=m(0)\leq0\), then \(n^{*}\in(0,T]\). Let \(\bar{n}\in[0,n^{*})\) such that \(v(\bar{n})=\mbox{inf}_{n\in [0,n^{*})}v(n)=-\lambda\leq0\). We suppose that \(\bar{n}\neq n_{k}\) (if \(\bar{n}=n_{k}\), the proof is similar). From (3) we have
By (4) and (5), using Lemma 2.1, we have for \(n\in [\bar{n},n^{*}]\)
Let \(n=n^{*}\), we can get
which is a contradiction. Hence \(v(n)\leq0\) on J, this completes the proof. □
Lemma 2.3
Let (2) hold and \(m\in \Omega\),
where \(N\geq0\), \(0\leq L_{k}< M<1\) for \(k=1,2,\ldots,p\).
Then \(m(n)\leq0\) on J.
Proof
Suppose on the contrary that \(m(n)>0\) for some \(n\in J\). Then there are two cases as follows.
Case 1: There exists \(n^{*}\in J\) such that \(m(n^{*})>0\) and \(m(n)\geq0\) for all \(n\in J\). In this case, (6) implies \(\Delta m(n)\leq0\) and \(m(n_{k}+1)\leq(1-L_{k})m(n_{k})\leq m(n_{k})\), \(k=1,2,\ldots,p\). So \(m(n)\) is a nonincreasing function. Then we have \(m(0)\geq m(T)\). Since \(m(0)\leq-m(T)\) and \(m(n)\geq0\) for all \(n\in J\), we get \(m(0)=m(T)=0\), then \(m(n)\equiv0\), which is a contradiction with \(m(n^{*})>0\).
Case 2: There exist \(n^{*}\) and \(n_{*}\) such that \(m(n^{*})>0\) and \(m(n_{*})<0\). The proof demonstrates that \(m(0)\leq0\), so that we can apply Lemma 2.2 and affirm that \(m(n)\leq0\) on J. If \(m(0)>0\), then \(m(T)<0\). Let \(v(n)=(1-M)^{-n}m(n)\) on J, we get \(v(0)>0\), \(v(T)<0\), \(v(n^{*})>0\), \(v(n_{*})<0\). Set \(\min_{n\in J}v(n)=-\lambda\), then \(\lambda>0\). Without loss of generality, we shall suppose \(v(n_{*})=-\lambda\) (if for some k such that \(v(n_{k})=-\lambda\), the proof is similar), we have
If \(n_{*}< n^{*}\), using (7) and Lemma 2.1, for \(n\in[n_{*},n^{*}]\), we obtain
Let \(n=n^{*}\), we get
which is a contradiction.
If \(n_{*}>n^{*}\), using (7) and Lemma 2.1, for \(n\in[n_{*},T]\), we get
Let \(n=T\), it then follows from (2) that
which is a contradiction with the definition of \(v(n_{*})\). So \(m(0)\leq 0\). By Lemma 2.2, we get \(m(n)\leq0\) on J, the proof is complete. □
3 Main results
Let us consider the linear problem of (1) as follows:
where \(N\geq0\), \(0\leq L_{k}< M<1\), \(\gamma_{k}\in\mathbb{R}\), \(\sigma\in C(J,\mathbb{R})\).
Lemma 3.1
A function \(u\in\Omega\) is a solution of (8) if and only if u is a solution of the following impulsive summation equation:
where
Proof
Assume that \(u\in\Omega\) is a solution of (8). Set \(v(n)= \frac{u(n)}{(1-M)^{n}}\), \(n\in J\). From (8), we see that \(v(n)\) satisfies
By using (10), we have
If we set \(n=T\) in (11), then we get
From the boundary condition \(v(T)= \frac{-v(0)}{(1-M)^{T}}\), we obtain
Substituting (13) into (11) and using \(v(n)= \frac{u(n)}{(1-M)^{n}}\), \(n\in J\), we have
Let
we see that u is a solution of (9). The proof is complete. □
Lemma 3.2
Assume that constants \(0< M<1\), \(N\geq0\), \(0\leq L_{k}<1\), \(\gamma_{k}\in\mathbb{R}\), \(\sigma\in C(J,\mathbb{R})\), and
Then (8) has a unique solution.
Proof
Define an operator \(F:\Omega\to\Omega \) by
For any \(u_{1}, u_{2}\in\Omega\), we have
Hence, \(\|Fu_{1}(n)-Fu_{2}(n)\|= \max_{n\in J}|Fu_{1}(n)-Fu_{2}(n)|=\tau\|u_{1}-u_{2}\|\), where
By the Banach contraction principle, F has a unique fixed point. The proof is complete. □
Theorem 3.1
Let the following conditions hold:
- (A0):
-
Functions \(\alpha,\beta\in\Omega\) are lower and upper solutions for (1) with \(\alpha\leq\beta\).
- (A1):
-
There exist \(N\geq0\), \(0\leq L_{k}< M<1\) for \(k=1,2,\ldots,p\) such that the function \(f\in C(J\times\mathbb{R}^{2},\mathbb{R})\) satisfies
$$f(n,x,y)-f(n,u,v)\geq-M(x-u)-N(y-v), $$where \(\alpha(n)\leq u\leq x\leq\beta(n)\), \(\alpha(\theta(n))\leq v(\theta(n))\leq y(\theta(n))\leq\beta(\theta(n))\), \(n\in J\).
- (A2):
-
The functions \(I_{k}\in C(\mathbb{R},\mathbb{R})\) satisfy
$$I_{k}(x)-I_{k}(y)\geq-L_{k}(x-y), $$where \(\alpha(n_{k})\leq y\leq x\leq\beta(n_{k})\), \(0\leq L_{k}<1\), \(k=1,2,\ldots,p\).
- (A3):
-
$$N \sum_{i=0,i\neq n_{k}}^{T} \prod _{i< n_{k}<T}(1-L_{k}) (1-M)^{\theta(i)-i-1} - \prod _{k=1}^{p}(1-L_{k})<M-1. $$
- (A4):
-
$$\frac{1}{1+(1-M)^{T}} \Biggl(TN+ \sum_{k=1}^{p}|M-L_{k}| \Biggr)< 1. $$
Then there exists a solution u of problem (1) such that \(\alpha(n)\leq u(n)\leq\beta(n)\) on J.
Proof
We consider the following modified problem:
where
We can easily see that if \(\alpha(n)\leq u(n)\leq\beta(n)\) on J, then u is a solution of (1) if and only if u is a solution of (15). Indeed, suppose that \(u\in\Omega\) is a solution of (15), we now prove that \(\alpha(n)\leq u(n)\) on J. Set \(m(n)=\alpha (n)-u(n)\), \(n\in J\). Owing to (A0)-(A2), we acquire
and
By Lemma 2.3, we have \(m(n)\leq0\) on J, i.e., \(\alpha (n)\leq u(n)\) on J. Similarly, we can show that \(u(n)\leq\beta(n)\) on J.
Next, we need to prove that problem (15) has a solution. To do this, we write problem (15) in the following way by Lemma 3.1:
We define the continuous and compact operator \(\mathcal{A}:\Omega\to \Omega\) by
The continuity of f and the definition of q imply that \(\sigma_{q}\) and \(d_{k}\) are bounded. We can choose constants \(h>0\) and \(w>0\) such that \(|\sigma_{q}|\leq h\), \(|d_{k}|\leq w\). For \(\lambda\in(0,1)\), we find that any solution of \(u=\lambda\mathcal{A}u\) satisfies
Then by (A4) we have
From the Schaefer fixed-point theorem, \(\mathcal{A}\) has at least a fixed point. It is clear that this fixed point is the solution of (15). Such a solution lies between α and β and in consequence is a solution of (1). The proof is complete. □
Theorem 3.2
Let all assumptions of Theorem 3.1 hold. Then there exist monotone sequences \(\{\alpha_{j}(n)\}\), \(\{\beta_{j}(n)\}\) with \(\alpha_{0}=\alpha\), \(\beta_{0}=\beta\) such that \(\lim_{j\to\infty}\alpha_{j}(n)=\rho(n)\), \(\lim_{j\to\infty}\beta_{j}(n)=r(n)\) uniformly on J, and \(\rho(n)\), \(r(n)\) are the extremal solutions of problem (1).
Proof
Let
and
for \(j=1,2,\ldots\) , where \(\alpha_{0}=\alpha\), \(\beta_{0}=\beta\). It follows from Lemma 3.2 that problems (16) and (17) have a unique solution, respectively.
First, we show that \(\alpha_{0}\leq\alpha_{1}\leq\beta_{1}\leq\beta_{0}\).
Let \(m=\alpha_{0}-\alpha_{1}\), then owing to (A0) and \(\alpha _{1}(0)=-\alpha_{1}(T)\), we obtain
and
It then follows from Lemma 2.3 that we have \(m(n)\leq0\) on J, which implies \(\alpha_{0}(n)\leq\alpha_{1}(n)\) for \(n\in J\). Similarly, we get \(\beta_{1}(n)\leq\beta_{0}(n)\) on J.
Next, take \(m=\alpha_{1}-\beta_{1}\), by using (A0), (A1), we have
Noticing \(\alpha_{0}\leq\beta_{0}\) and (A2), we get
Again by Lemma 2.3 we get \(m(n)\leq0\) on J, that is, \(\alpha_{1}(n)\leq \beta_{1}(n)\) for all \(n\in J\). Thus we get \(\alpha_{0}\leq\alpha_{1}\leq\beta _{1}\leq\beta_{0}\). Continuing this process, by induction, we can get the sequences \(\{\alpha_{j}(n)\}\) and \(\{\beta_{j}(n)\}\) such that
Clearly, the sequences \(\{\alpha_{j}(n)\}\), \(\{\beta_{j}(n)\}\) are uniformly bounded and equi-continuous. Since they are monotone sequences, by the Ascoli-Arzela theorem, we can get that the entire sequences \(\{\alpha_{j}(n)\}\) and \(\{\beta_{j}(n)\}\) converge uniformly and monotonically on J with \(\lim_{j\to\infty}\alpha _{j}(n)=\rho(n)\) and \(\lim_{j\to\infty}\beta_{j}(n)=r(n)\).
Obviously ρ, r are the solutions of (1). Next we prove that ρ, r are extremal solutions of (1), let \(u\in \Omega\) be any solutions of problem (1) such that \(\alpha _{0}\leq u\leq\beta_{0}\). Suppose that there exists a positive integer j such that \(\alpha_{j}\leq u\leq{\beta}_{j}\) on J. Setting \(m=\alpha_{j+1}-u\), we have
By Lemma 2.3, \(m(n)\leq0\) on J, i.e., \(\alpha_{j+1}(n)\leq u(n)\) \(n\in J\). Similarly, one derives \(\alpha_{j+1}(n)\leq u(n)\leq \beta_{j+1}(n)\) on J. Since \(\alpha_{0}(n)\leq u(n)\leq\beta_{0}(n)\) on J, by induction we see that \(\alpha_{j}(n)\leq u(n)\leq\beta_{j}(n)\) on J for every j. Taking the limit as \(j\to\infty\), we conclude \(\rho(n)\leq u(n)\leq r(n)\) on J. The proof is then finished. □
Example 3.1
Consider the equations
It is easy to verify that \(\alpha=- \frac{1}{201}\) is a lower solution and \(\beta(n)= \frac{1}{12}(4-2^{-n})\) is an upper solution for (18). Indeed,
for \(\alpha\leq u\leq x\leq\beta\). Taking \(M= \frac {2}{3}\), \(N= \frac{1}{200}\), \(L_{k}= \frac {1}{2}\), we get
which shows that condition (A3) is satisfied, and
which shows that condition (A4) is satisfied. Hence, by Theorem 3.2, we obtain the existence of monotone sequences that converge to the extremal solutions of (18) in a function interval contained in \([\alpha,\beta]\).
References
Samoilenko, AM, Perestyuk, NA, Chapovsky, Y: Impulsive Differential Equations. World Scientific, Singapore (1995)
Bainov, DD, Lakshmikantham, V, Simeonov, P: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Stamov, GT: Almost Periodic Solutions of Impulsive Differential Equations. Springer, New York (2012)
Fu, X, Yan, B, Liu, Y: Nonlinear Impulsive Differential Systems. Science Press, Beijing (2008) (in Chinese)
Chen, Y, Nieto, JJ, O’Regan, D: Anti-periodic solutions for fully nonlinear first-order differential equations. Math. Comput. Model. 46, 1183-1190 (2007)
Chen, Y, O’Regan, D, Agarwal, RP: Anti-periodic solutions for evolution equations associated with monotone type mappings. Appl. Math. Lett. 23, 1320-1325 (2010)
Aftabizadeh, AR, Aizicovici, S, Pavel, NH: On a class of second-order anti-periodic boundary value problems. J. Math. Anal. Appl. 171, 301-320 (1992)
Wang, X, Zhang, J: Impulsive anti-periodic boundary value problem of first-order integro-differential equations. J. Comput. Appl. Math. 234, 3261-3267 (2010)
Ahmad, B, Nieto, JJ: Existence and approximation of solutions for a class of nonlinear impulsive functional differential equations with anti-periodic boundary conditions. Nonlinear Anal. 69, 3291-3298 (2008)
Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74, 792-804 (2011)
Chen, AP, Chen, Y: Existence of solutions to anti-periodic boundary value problem for nonlinear fractional differential equations with impulses. Adv. Differ. Equ. 2011, Article ID 915689 (2011)
Zhang, L, Ahmad, B, Wang, G: Impulsive antiperiodic boundary value problems for nonlinear \(q_{k}\)-difference equations. Abstr. Appl. Anal. 2014, Article ID 165129 (2014). doi:10.1155/2014/165129
Kelley, WG, Peterson, AC: Difference Equations: An Introduction with Applications. Academic Press, Tokyo (1991)
Liu, Y: On nonlinear boundary value problems for higher order functional difference equations with p-Laplacian. Appl. Math. Comput. 38, 195-208 (2012)
Liu, Y, Liu, X: The existence of periodic solutions of higher order nonlinear periodic difference equations. Math. Methods Appl. Sci. 36, 1459-1470 (2013)
Wang, P, Tian, S, Wu, Y: Monotone iterative method for first-order functional difference equations with nonlinear boundary value conditions. Appl. Math. Comput. 203, 266-272 (2008)
Wang, P, Zhang, J: Monotone iterative technique for initial-value problems of nonlinear singular discrete systems. J. Comput. Appl. Math. 221, 158-164 (2008)
Wang, P, Wang, W: Boundary value problems for first order impulsive difference equations. Int. J. Difference Equ. 1, 249-259 (2006)
He, Z, Zhang, X: Monotone iterative technique for first order impulsive difference equations with periodic boundary conditions. Appl. Math. Comput. 156, 605-620 (2004)
He, D, Ma, Q: Asymptotic behavior of impulsive non-autonomous delay difference equations with continuous variables. Adv. Differ. Equ. 2012, Article ID 118 (2012)
Li, B, Song, Q: Asymptotic behaviors of non-autonomous impulsive difference equation with delays. Appl. Math. Model. 35, 3423-3433 (2011)
Li, D, Long, S, Wang, X: Difference inequality for stability of impulsive difference equations with distributed delays. J. Inequal. Appl. 2011, Article ID 8 (2011)
Zhu, W, Xu, D, Yang, Z: Global exponential stability of impulsive delay difference equation. Appl. Math. Comput. 181, 65-72 (2006)
Acknowledgements
The authors sincerely thank the reviewers and the editors for their valuable suggestions and comments. This paper is supported by the National Natural Science Foundation of China (11271106), the Natural Science Foundation of Hebei Province, China (A2013201232) and the Science and Technology Research Projects of Higher Education Institutions of Hebei Province, China (Z2013038).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors completed the paper together. All authors read and approved the final manuscript.
Rights and permissions
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
About this article
Cite this article
Wang, P., Wang, W. Anti-periodic boundary value problem for first order impulsive delay difference equations. Adv Differ Equ 2015, 93 (2015). https://doi.org/10.1186/s13662-015-0441-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-015-0441-7
MSC
- 39A10
- 34B37
Keywords
- anti-periodic boundary value problem
- impulsive delay difference equations
- monotone iterative technique
- extremal solutions