Skip to main content

Theory and Modern Applications

Necessary and sufficient condition for the existence of positive solution to singular fractional differential equations

Abstract

In this paper, we discuss the existence of positive solution to singular fractional differential equations involving Caputo fractional derivative. Necessary and sufficient condition for the existence of \(C^{2}[0,1]\) positive solution is obtained by means of the fixed point theorems on cones. In addition, the uniqueness results and the iterative sequences of the solution are also given.

1 Introduction

In this paper, we consider the following singular fractional differential equation:

$$ \left \{ \textstyle\begin{array}{l} {}^{c}D^{\alpha}_{0+}u(t)+ f(t,u(t))=0 ,\quad 0< t< 1 , \\ u(0)= u'(1)=u''(0)=0, \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(1.1)

where \(2 < \alpha\leq3\) is a real number, \({}^{\mathrm{c}}D^{\alpha}_{0+}\) is the Caputo fractional derivative and f may be singular at \(t = 0,1\).

Singular differential equation boundary value problems (BVP for short) arise from many branches of applied mathematics and physics. The theory of singular boundary value problems has become an important area of investigation in recent years. Differential equations of fractional order arise from many engineering and scientific disciplines as the mathematical modeling of systems and processes in the fields of physics, chemistry, control theory, etc.; see [14] and the references therein. Recently, much attention has been paid to the existence results of solutions for fractional differential equations, for example [517].

In [5], Bai and Qiu considered the existence of positive solution to problem (1.1), where \(2 < \alpha\leq3\) is a real number, \({}^{\mathrm{c}}D^{\alpha}_{0+}\) is the Caputo fractional derivative, \(f: (0,1]\times[0,\infty)\rightarrow[0,\infty)\) is continuous and singular at \(t = 0\). The sufficient conditions for the existence of positive solution to (1.1) were obtained by using the Krasnosel’skii fixed-point theorem and the Leray-Schauder nonlinear alternative.

In [9], the authors investigated the existence of positive solution to the following boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D^{\alpha}_{0+}u(t)+\lambda f(t,u(t))=0 , \quad 0< t< 1 , \\ u(0)= u'(1)=u''(0)=0, \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(1.2)

where \(2 < \alpha\leq3\) is a real number, \({}^{\mathrm{c}}D^{\alpha}_{0+}\) is the Caputo fractional derivative, λ is a positive parameter, f may change sign and may be singular at \(t = 0, 1\).

In recent years, many results dealing with necessary and sufficient conditions for the existence of positive solutions to integer-order differential equations were obtained (for example, [1823]) with one of the following conditions:

  1. (A1)

    \(f\in C((0,1)\times[0,\infty),[0,\infty))\), \(f(t,e(t))>0\), \(t\in (0,1)\), here \(e\in C([0,1],[0,\infty))\); there exist constants \(0<\lambda_{1}\leq\lambda_{2}<1\) such that for \((t,x)\in (0,1)\times[0,\infty)\),

    $$ c^{\lambda_{2}}f(t,x)\leq f(t,cx)\leq c^{\lambda_{1}}f(t,x),\quad \forall c \in(0,1). $$
    (1.3)
  2. (A2)

    \(f\in C((0,1)\times[0,\infty),[0,\infty))\); for each fixed \(t\in(0,1)\), \(f(t,x)\) is increasing in x; there exists \(0<\alpha<1\) such that

    $$ f(t,rx)\geq r^{\alpha}f(t,x),\quad \forall0< r< 1, (t,x)\in(0,1)\times [0, \infty ). $$
    (1.4)
  3. (A3)

    \(f\in C((0,1)\times[0,\infty),[0,\infty))\); for each fixed \(t\in(0,1)\), \(f(t,x)\) is increasing in x; for all \(0< r<1\), there exists \(g (r)=m(r^{-\alpha}-1)\) such that

    $$ f(t,rx)\geq r\bigl(1+g (r)\bigr)f(t,x),\quad \forall(t,x)\in(0,1)\times [0, \infty ), 0< m\leq1, 0< \alpha< 1. $$
    (1.5)

While there are a lot of works dealing with necessary and sufficient conditions for integer-order differential equations, the results of fractional differential equations are relatively scarce due to the difficulties caused by the singularity of nonlinearity. In [7], the authors considered the necessary and sufficient condition for the existence of \(C^{3}[0, 1]\) positive solution of singular sub-linear boundary value problems for a fractional differential equation with condition (A2).

Inspired by the previous works, in this paper we aim to establish necessary and sufficient condition for the existence of \(C^{2}[0, 1]\) positive solutions to BVP (1.1). In this paper, by a \(C^{2}[0, 1]\) positive solution to BVP (1.1), we mean a function \(u\in C'[0,1]\cap C^{2}[0,1)\) which satisfies \(u''(1^{-})\) exists, is positive on \((0,1]\) and satisfies (1.1).

Throughout this paper, we assume that the following condition holds.

  1. (H)

    \(f\in C((0,1)\times[0,\infty),[0,\infty))\), \(f(t,x)\) is increasing in x; there exists a function \(\eta: [0,1]\rightarrow [0,+\infty)\) satisfying \(\eta(r)>r\) (\(0< r<1\)) such that

    $$ f(t,rx)\geq\eta(r)f(t,x),\quad \forall0< r< 1, (t,x)\in(0,1)\times [0,\infty ). $$
    (1.6)

Remark 1.1

Inequality (1.6) is equivalent to

$$ f(t,rx)\leq\frac{f(t,x)}{\eta(r^{-1})},\quad \forall r> 1, (t,x)\in(0,1)\times [0,\infty ). $$
(1.7)

Remark 1.2

Condition (H) includes conditions (A1), (A2) and (A3) as special cases.

Remark 1.3

The function η defined in (H) satisfies \(\eta(1)= 1\), and \(\eta(r) \leq1\), \(\forall r \in(0,1)\).

Remark 1.4

If condition (H) holds, then there exists a strictly increasing function φ satisfying \(\varphi(r)>r\) (\(0< r<1\)) such that

$$ f(t,rx)\geq\varphi(r)f(t,x),\quad \forall0< r< 1, (t,x)\in(0,1)\times [0,\infty ), $$
(1.8)

without loss of generality, we may suppose that η is strictly increasing on \((0.1]\).

Proof

If there exist \(t_{0}\in (0,1)\), \(x_{0}> 0\) such that \(f(t_{0},x_{0})=0\). By the monotonicity of f and (1.7), we have \(f(t_{0},x)\equiv0\), \(\forall x\in[0,+\infty)\). Set

$$ \Omega=\bigl\{ t\in(0,1): \exists x_{1}> 0\mbox{ such that }f(t,x_{1})=0\bigr\} . $$
(1.9)

For any \(r\in(0,1)\), denote

$$ D_{r}=\bigl\{ c: f(t,rx)\geq c f(t,x), (t,x)\in\bigl((0,1)\backslash \Omega \bigr)\times(0,\infty)\bigr\} . $$
(1.10)

It is clear that \(\sup D_{r}\) exists. Let \(\psi(r)=\sup D_{r}\), then

$$ f(t,rx)\geq\psi(r)f(t,x),\quad \forall(t,x)\in(0,1)\times [0,\infty ), $$
(1.11)

and \(r<\eta(r)\leq\psi(r)\leq1\). For any \(0< r_{2}< r_{1}<1\) and \(x\in[0,\infty)\), we have

$$ f(t,r_{1}x)=f \biggl(t,r_{2}\cdot\frac{r_{1}}{r_{2}}x \biggr) \geq\psi (r_{2})f \biggl(t,\frac{r_{1}}{r_{2}}x \biggr)\geq\psi (r_{2})f(t,x). $$
(1.12)

By the definition of ψ, we get \(\psi(r_{1})\geq\psi (r_{2})\), therefore ψ is nondecreasing. Let \(\varphi (r)=\frac{\psi(r)+r}{2}\). It is clear that φ is strictly increasing on \((0,1)\), satisfies \(\varphi(r)>r\) and

$$ f(t,rx)\geq\varphi(r)f(t,x),\quad \forall(t,x)\in(0,1)\times [0,\infty ), r \in(0,1). $$
(1.13)

The proof is completed. □

2 Basic definitions and preliminaries

In this section, we present some preliminaries and lemmas that are useful to the proof of the main results, we also present here some necessary definitions.

Definition 2.1

The Riemann-Liouville fractional integral \(I^{\alpha}_{0+}\) and derivative \(D^{\alpha}_{0+}\) are defined by

$$ I^{\alpha}_{0+}u(t)=\frac{1}{\Gamma(\alpha)}\int^{t}_{0}(t-s)^{\alpha-1}u(s) \,ds $$
(2.1)

and

$$ D^{\alpha}_{0+}u(t)=\frac{1}{\Gamma(n-\alpha)} \biggl(\frac {d}{dt} \biggr)^{(n)}\int^{t}_{0}(t-s)^{n-\alpha-1}u(s) \,ds, $$
(2.2)

where \(n=[\alpha]+1\), \([\alpha]\) denotes the integer part of number α, provided that the right-hand side is defined pointwise on \((0,+\infty)\).

Definition 2.2

(see [2])

The Caputo fractional derivative of order \(\alpha> 0\) on \([0,1]\) is defined via the above Riemann-Liouville fractional derivative by

$$ {}^{\mathrm{c}}D^{\alpha}_{0+}u(t)=D^{\alpha}_{0+} \Biggl[u(t)-\sum^{n-1}_{k=0}u^{(k)}(0)t^{k} \Biggr], $$
(2.3)

where \(n=[\alpha]+1\).

Remark 2.1

(see Theorem 2.1 of [2])

If \(u(t)\in AC^{n}[0,1]\), then the Caputo fractional derivative of order \(\alpha> 0\) exists almost everywhere on \([0,1]\) and can be represented by

$$ {}^{\mathrm{c}}D^{\alpha}_{0+}u(t)=\frac{1}{\Gamma(n-\alpha)}\int ^{t}_{0}(t-s)^{n-\alpha-1}u^{(n)}(s) \,ds, $$
(2.4)

where \(n=[\alpha]+1\), and

$$AC^{n}[0,1]= \biggl\{ y : [0,1]\rightarrow\mathbb{R}\mbox{ and } \frac{d^{n-1}y}{dt^{n-1}} \mbox{ is absolutely continuous on }[0, 1] \biggr\} . $$

Lemma 2.1

(see Lemma 2.5 of [2])

Let \(\alpha> 0\), \(u\in L[0,1]\) and \(D^{\alpha}_{0+}u\in L[0,1]\), then the following equality holds:

$$I^{\alpha}_{0+}D^{\alpha}_{0+}u(t)=u(t)+c_{1}t^{\alpha -1}+c_{2}t^{\alpha-2}+ \cdots+c_{n}t^{\alpha-n}, $$

where \(c_{i}\in R\), \(i=1,2,\ldots,n\), \(n=[\alpha]+1\).

Lemma 2.2

(see Lemma 2.4 of [2])

If \(\alpha> 0\) and \(y(t)\in L[0,1]\), then the equality

$$D^{\alpha}_{0+}I^{\alpha}_{0+}y(t)=y(t) $$

holds almost everywhere on \([0,1]\).

Lemma 2.3

(see Property 2.8 of [2])

Let \(\alpha>\beta> 0\). If \(y(t)\in L[0,1]\), then

$$D^{\beta}_{0+}I^{\alpha}_{0+}y(t)=I^{\alpha-\beta}_{0+}y(t). $$

Lemma 2.4

If \(2 < \alpha\leq 3\), \(y\in L[0,1]\cap C(0,1)\) and

$$ \lim_{t\rightarrow0+}t^{\alpha-2}\int_{0}^{1}(1-s)^{\alpha -2}y(ts) \,ds=0, $$
(2.5)

then the problem

$$ \left \{ \textstyle\begin{array}{l} {}^{\mathrm{c}}D^{\alpha}_{0+}u(t)+y(t)=0 ,\quad 0< t< 1 , \\ u(0)= u'(1)=u''(0)=0, \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(2.6)

has a unique solution

$$ u(t)= \int_{0}^{1}G(t,s)y(s)\,ds, $$
(2.7)

where

$$ G(t,s)=\frac{1}{\Gamma(\alpha)}\left \{ \textstyle\begin{array}{l@{\quad}l} (\alpha-1)t(1-s)^{\alpha-2}, &0\leq t\leq s\leq1 , \\ (\alpha-1)t(1-s)^{\alpha-2}-(t-s)^{\alpha-1}, &0\leq s\leq t\leq1. \end{array}\displaystyle \right . $$
(2.8)

Proof

Deduced from Lemma 2.1, the solution of (2.6) satisfies

$$u(t)=u'(0)t-I^{\alpha}_{0+}y(t)+c_{1}t^{\alpha-1}+c_{2}t^{\alpha -2}+c_{3}t^{\alpha-3}. $$

By direct calculation of \(u(0)\), \(u'(0)\) and \(u''(0)\), there is \(c_{1}=c_{2}=c_{3}=0\). Consequently,

$$ u(t)=u'(0)t-\frac{1}{\Gamma(\alpha)}\int^{t}_{0}(t-s)^{\alpha -1}y(s) \,ds $$
(2.9)

and

$$ u'(t)=u'(0)-\frac{1}{\Gamma(\alpha-1)}\int^{t}_{0}(t-s)^{\alpha -2}y(s) \,ds. $$
(2.10)

By \(u'(1)=0\), we have

$$ u'(0)=\frac{1}{\Gamma(\alpha-1)}\int^{1}_{0}(1-s)^{\alpha -2}y(s) \,ds. $$
(2.11)

Therefore,

$$u(t)=\int_{0}^{1}G(t,s)y(s)\,ds. $$

On the other hand, for

$$u(t)=\int_{0}^{1}G(t,s)y(s)\,ds= \frac{t}{\Gamma(\alpha-1)}\int^{1}_{0}(1-s)^{\alpha-2}y(s) \,ds- \frac{1}{\Gamma(\alpha)}\int^{t}_{0}(t-s)^{\alpha-1}y(s) \,ds, $$

we have \(u(0)= u'(1)=0\) and \(u'(0)=\frac{1}{\Gamma(\alpha-1)}\int^{1}_{0}(1-s)^{\alpha-2}y(s)\,ds\). From (2.5), we get

$$\begin{aligned} u''(0)&=\lim_{t\rightarrow0+}\frac{u'(t)-u'(0)}{t} =\lim_{t\rightarrow 0+}\frac{\int^{t}_{0}(t-s)^{\alpha-2}y(s)\,ds}{\Gamma(\alpha-1)t} \\ &=\lim_{t\rightarrow 0+}\frac{t^{\alpha-2}}{\Gamma(\alpha-1)}\int_{0}^{1}(1-x)^{\alpha -2}y(tx) \,dx=0. \end{aligned}$$
(2.12)

By Definition 2.2 and Lemma 2.2, we have u is a solution of problem (2.6). The proof is completed. □

Remark 2.2

If \(\alpha=3\) and \(y\in L[0,1]\), then condition (2.5) holds naturally.

Lemma 2.5

(see [9])

The function \(G(t,s)\) has the following properties:

  1. (1)

    \(G(t,s) \leq\frac{1}{\Gamma(\alpha-1)}t(1-s)^{\alpha-2}\), \(\forall t,s\in [0,1]\);

  2. (2)

    \(G(t,s) \leq \frac{1}{\Gamma(\alpha-1)}(\alpha-2+s)(1-s)^{\alpha-2}\), \(\forall t,s\in[0,1]\);

  3. (3)

    \(G(t,s) \geq \frac{1}{\Gamma(\alpha)}(\alpha-2+s)t(1-s)^{\alpha-2}\), \(\forall t,s\in[0,1]\).

Lemma 2.6

Suppose that u is a positive solution of BVP (1.1), then there exist \(L_{u}, l_{u}> 0\) such that

$$ l_{u}t\leq u(t)\leq L_{u}t,\quad \forall t \in[0,1]. $$
(2.13)

Proof

By Lemma 2.4, u can be expressed by

$$ u(t)= \int_{0}^{1}G(t,s)f\bigl(s,u(s)\bigr) \,ds. $$
(2.14)

From (1) of Lemma 2.5, we have

$$ u(t)\leq \frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha -2}f \bigl(s,u(s)\bigr)\,ds. $$
(2.15)

By (2), (3) of Lemma 2.5, we get

$$ u(t)\geq\frac{ t}{\Gamma(\alpha)}\int_{0}^{1}( \alpha-2+s) (1-s)^{\alpha -2}f\bigl(s,u(s)\bigr)\,ds $$
(2.16)

and

$$ u(t)\leq \frac{1}{\Gamma(\alpha-1)}\int_{0}^{1}( \alpha-2+s) (1-s)^{\alpha -2}f\bigl(s,u(s)\bigr)\,ds. $$
(2.17)

Inequalities (2.16) and (2.17) imply \(u(t)\geq\frac {t}{\alpha-1}\| u(t)\|\).

Let

$$ l_{u}=\frac{\| u(t)\|}{\alpha-1},\qquad L_{u}= \frac{\int_{0}^{1}(1-s)^{\alpha -2}f(s,u(s))\,ds}{\Gamma(\alpha-1)}. $$
(2.18)

Then (2.13) holds. The proof is completed. □

Lemma 2.7

Assume that \(g(x)\), \(\{g_{n}(x)\}\), \(h(x)\), \(\{h_{n}(x)\}\) are Lebesgue integrable on \([0,1]\), satisfy

$$ \bigl\vert g_{n}(x)\bigr\vert \leq h_{n}(x),\qquad \lim_{n\rightarrow\infty}g_{n}(x)=g(x),\qquad \lim _{n\rightarrow\infty}h_{n}(x)=h(x), \quad \textit{a.e. } [0,1] $$
(2.19)

and

$$ \lim_{n\rightarrow\infty}\int_{0}^{1}h_{n}(x) \,dx=\int_{0}^{1}h(x)\,dx, $$
(2.20)

then

$$ \lim_{n\rightarrow\infty}\int_{0}^{1}g_{n}(x) \,dx=\int_{0}^{1}g(x)\,dx. $$
(2.21)

Proof

By \(|g_{n}(x)|\leq h_{n}(x)\), a.e. \([0,1]\), we have

$$ \bigl\vert g(x)\bigr\vert \leq h(x), \quad \mbox{a.e. }[0,1]. $$
(2.22)

Set

$$ k_{n}(x)=h_{n}(x)+h(x)-\bigl\vert g_{n}(x)-g(x) \bigr\vert , $$
(2.23)

then \(k_{n}(x)\rightarrow2h(x)\) (\(n\rightarrow\infty\)) a.e. \([0,1]\). By the Fatou lemma, we get

$$\begin{aligned} \int_{0}^{1}2h(x)\,dx&=\int_{0}^{1} \lim_{n\rightarrow \infty}k_{n}(x)\,dx \leq\liminf _{n\rightarrow \infty}\int_{0}^{1}k_{n}(x) \,dx \\ &=2\int_{0}^{1}h(x)\,dx-\limsup _{n\rightarrow\infty} \int_{0}^{1}\bigl\vert g_{n}(x)-g(x)\bigr\vert \,dx, \end{aligned}$$
(2.24)

which implies

$$ \lim_{n\rightarrow \infty}\int_{0}^{1}\bigl\vert g_{n}(x)-g(x)\bigr\vert \,dx=0. $$
(2.25)

Thus

$$ \lim_{n\rightarrow\infty}\int_{0}^{1}g_{n}(x) \,dx=\int_{0}^{1}g(x)\,dx. $$
(2.26)

The proof is completed. □

3 Main result

Theorem 3.1

Suppose that (H) holds. Then the necessary and sufficient condition for BVP (1.1) to have a \(C^{2}[0, 1]\) positive solution is

$$\begin{aligned}& 0< \int_{0}^{1}(1-s)^{\alpha-3}f(s,s)\,ds< + \infty, \end{aligned}$$
(3.1a)
$$\begin{aligned}& \lim_{t\rightarrow 0+}t^{\alpha-2}\int_{0}^{1}(1-s)^{\alpha-3}f(ts,ts) \,ds=0, \end{aligned}$$
(3.1b)
$$\begin{aligned}& \lim_{t\rightarrow 1-}\int_{0}^{1}(1-s)^{\alpha-3}f(ts,ts) \,ds=\int_{0}^{1}(1-s)^{\alpha -3}f(s,s) \,ds. \end{aligned}$$
(3.1c)

Proof

(i) Necessity. Assume that u is a \(C^{2}[0, 1]\) positive solution of BVP (1.1). In the following, we will divide the rather long proof into three steps.

Step 1: By Lemma 2.4, u can be expressed by

$$ u(t)= \frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha -2}f \bigl(s,u(s)\bigr)\,ds -\frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha -1}f \bigl(s,u(s)\bigr)\,ds. $$
(3.2)

For any \(t \in(0,1)\), Lemma 2.3 implies

$$ u'(t)= \frac{1}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha -2}f \bigl(s,u(s)\bigr)\,ds -\frac{1}{\Gamma(\alpha-1)}\int_{0}^{t}(t-s)^{\alpha -2}f \bigl(s,u(s)\bigr)\,ds $$
(3.3)

and

$$\begin{aligned} u''(t)&= -\frac{1}{\Gamma(\alpha-2)}\int_{0}^{t}(t-s)^{\alpha-3}f \bigl(s,u(s)\bigr)\,ds \\ &=-\frac{t^{\alpha-2}}{\Gamma(\alpha-2)}\int_{0}^{1}(1-s)^{\alpha -3}f \bigl(ts,u(ts)\bigr)\,ds. \end{aligned}$$
(3.4)

It is clear that \(u'(t)\geq0\), and \(u''(t)\leq0\), \(\forall t \in(0,1)\).

\(\forall\varepsilon\in(0,\frac{1}{2})\), \(t \in(0,1)\), we deduce that

$$ \int_{\varepsilon}^{1-\varepsilon}(1-s)^{\alpha-3}f\bigl(ts,u(ts) \bigr)\,ds\leq -\Gamma(\alpha-2)t^{2-\alpha}u''(t). $$
(3.5)

Let \(t\rightarrow 1\), noticing (H) and the existence of \(u''(1^{-})\), we have

$$ \int_{\varepsilon}^{1-\varepsilon}(1-s)^{\alpha-3}f\bigl(s,u(s) \bigr)\,ds\leq -\Gamma(\alpha-2)u''\bigl(1^{-} \bigr),\quad \forall \varepsilon\in \biggl(0,\frac{1}{2} \biggr). $$
(3.6)

Thus \(\int_{0}^{1}(1-s)^{\alpha-3}f(s,u(s))\,ds\) is well defined, that is, \(u''(1)\) is well defined. By Lemma 2.6, we have

$$\begin{aligned} \int_{0}^{1}(1-s)^{\alpha-3}f\bigl(s,u(s) \bigr)\,ds &\geq\int_{0}^{1}(1-s)^{\alpha-3}f(s,l_{u}s) \,ds \\ &\geq \int_{0}^{1}(1-s)^{\alpha-3}f \bigl(s,\min\{1, l_{u}\}s \bigr)\,ds \\ &\geq\eta\bigl(\min\{1, l_{u}\}\bigr) \int_{0}^{1}(1-s)^{\alpha-3}f(s,s) \,ds \\ &\geq\min\{1, l_{u}\} \int_{0}^{1}(1-s)^{\alpha-3}f(s,s) \,ds, \end{aligned}$$
(3.7)

which implies

$$ \int_{0}^{1}(1-s)^{\alpha-3}f(s,s)\,ds< + \infty. $$
(3.8)

On the other hand, we have

$$\begin{aligned} u(t)&= \int_{0}^{1}G(t,s)f\bigl(s,u(s)\bigr)\,ds \leq \frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha -2}f(s,L_{u}s) \,ds \\ &\leq \frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha -2}f \bigl(s,(1+L_{u})s\bigr)\,ds \\ &\leq\frac{t}{\Gamma(\alpha-1)\eta([1+L_{u}]^{-1})} \int_{0}^{1}(1-s)^{\alpha-3}f(s,s) \,ds. \end{aligned}$$
(3.9)

Since u is a positive solution, then

$$ \int_{0}^{1}(1-s)^{\alpha-3}f(s,s)\,ds > 0. $$
(3.10)

Inequalities (3.8) and (3.10) yield (3.1a) holds.

Step 2: From u is a \(C^{2}[0, 1]\) positive solution, we get

$$ \lim_{t\rightarrow 0+}t^{\alpha-2}\int_{0}^{1}(1-s)^{\alpha-3}f \bigl(ts,u(ts)\bigr)\,ds=-\Gamma (\alpha-2)u''(0)=0 $$
(3.11)

and

$$ \lim_{t\rightarrow 1-}\int_{0}^{1}(1-s)^{\alpha-3}f \bigl(ts,u(ts)\bigr)\,ds=\int_{0}^{1}(1-s)^{\alpha-3}f \bigl(s,u(s)\bigr)\,ds. $$
(3.12)

Similar to (3.7) and (3.9), we have

$$ f\bigl(s,u(s)\bigr)\geq\min\{1, l_{u}\}f(s,s),\quad \forall s \in (0,1) $$
(3.13)

and

$$ f\bigl(s,u(s)\bigr)\leq \frac{1}{\eta([1+L_{u}]^{-1})} f(s,s),\quad \forall s \in(0,1). $$
(3.14)

Then, for any \(t\in(0,1)\), we have

$$ \int_{0}^{1}(1-s)^{\alpha-3}f\bigl(ts,u(ts) \bigr)\,ds\geq\min\{1, l_{u}\}\int_{0}^{1}(1-s)^{\alpha-3}f(ts,ts) \,ds $$
(3.15)

and

$$ \int_{0}^{1}(1-s)^{\alpha-3}f\bigl(ts,u(ts) \bigr)\,ds\leq \frac{1}{\eta([1+L_{u}]^{-1})} \int_{0}^{1}(1-s)^{\alpha-3}f(ts,ts) \,ds. $$
(3.16)

Combining (3.11) with (3.15), we obtain (3.1b) holds.

Step 3: \(\forall\{t_{n}\}\subset(0,1)\) satisfies \(t_{n}\rightarrow 1\) (\(n\rightarrow\infty\)). Set

$$ \begin{aligned} &g_{n}(s) =\min\{1, l_{u} \}(1-s)^{\alpha-3}f(t_{n}s,t_{n}s),\qquad g(s)=\min\{1, l_{u}\}(1-s)^{\alpha-3}f(s,s), \\ &h_{n}(s) =(1-s)^{\alpha-3}f\bigl(t_{n}s,u(t_{n}s) \bigr),\qquad h(s)=(1-s)^{\alpha -3}f\bigl(s,u(s)\bigr). \end{aligned} $$
(3.17)

It is clear that \(\{g_{n}(s)\}\), \(g(s)\), \(\{h_{n}(x)\}\), \(h(x)\) are Lebesgue integrable on \([0,1]\), and

$$ \lim_{n\rightarrow \infty}g_{n}(x)=g(x), \qquad \lim _{n\rightarrow \infty}h_{n}(x)=h(x),\quad \mbox{a.e. }[0,1]. $$
(3.18)

From (3.13), we get

$$0\leq g_{n}(x)\leq h_{n}(x). $$

Equation (3.12) yields

$$ \lim_{n\rightarrow\infty}\int_{0}^{1}h_{n}(s) \,ds=\int_{0}^{1}h(s)\,ds. $$
(3.19)

By Lemma 2.7, we have

$$ \lim_{n\rightarrow \infty}\int_{0}^{1}(1-s)^{\alpha-3}f(t_{n}s,t_{n}s) \,ds=\int_{0}^{1}(1-s)^{\alpha-3}f(s,s) \,ds. $$
(3.20)

Then (3.1c) holds.

(ii) Sufficiency. Let \(P=\{u \in C[0,1]: u\geq0\}\). Clearly P is a normal cone of \(C[0,1]\). Denote \(e(t)=t\), and

$$P_{e}=\{u \in P: \exists L_{u}, l_{u}>0\mbox{ such that }l_{u}e \leq u\leq L_{u}e\}. $$

Set

$$ Au(t)= \int_{0}^{1}G(t,s)f\bigl(s,u(s)\bigr) \,ds. $$
(3.21)

For any \(u\in P_{e}\), by (3.1a), (3.13), (3.14) and Lemma 2.5, we have

$$\begin{aligned} Au(t)&\leq \frac{t}{\Gamma(\alpha-1)}\int_{0}^{1}(1-s)^{\alpha-2}f \bigl(s,u(s)\bigr)\,ds \\ &\leq\frac{t}{\Gamma(\alpha-1)\eta((1+L_{u})^{-1})} \int_{0}^{1}(1-s)^{\alpha-3}f(s,s) \,ds \end{aligned}$$
(3.22)

and

$$\begin{aligned} Au(t)& \geq \frac{t}{\Gamma(\alpha)}\int_{0}^{1}( \alpha-2+s) (1-s)^{\alpha -2}f\bigl(s,u(s)\bigr)\,ds \\ &\geq\frac{t}{\Gamma(\alpha)} \min\{1, l_{u}\}\int_{0}^{1}( \alpha -2) (1-s)^{\alpha-2}f(s,s)\,ds, \end{aligned}$$
(3.23)

which implies \(A: P_{e}\rightarrow P_{e}\) is well defined.

It is clear that \(e\in P_{e}\), so there exist positive numbers \(L_{e}>1> l_{e}>0\) such that \(l_{e}e \leq Ae\leq L_{e}e\). Noticing \(\eta(r)>r\) on \((0,1)\), we can choose a positive integer m large enough such that

$$ \biggl(\frac{\eta(l_{e})}{l_{e}} \biggr)^{m}>\frac{1}{l_{e}},\qquad \biggl(\frac{\eta (L_{e}^{-1})}{L_{e}^{-1}} \biggr)^{m}>L_{e}. $$
(3.24)

Let

$$ u_{0}=l_{e}^{m}e,\qquad v_{0}=L_{e}^{m}e, \qquad u_{n+1}=Au_{n},\qquad v_{n+1}=Av_{n}, \quad n=0,1,2,\ldots. $$
(3.25)

It is easy to see that

$$ \biggl(\frac{l_{e}}{L_{e}} \biggr)^{m}v_{0}=u_{0} \leq v_{0}= \biggl(\frac{L_{e}}{l_{e}} \biggr)^{m}u_{0} $$
(3.26)

and

$$\begin{aligned} u_{1}&=Au_{0}=\int_{0}^{1}G(t,s)f \bigl(s,l_{e}^{m}e(s)\bigr)\,ds \geq\eta(l_{e}) \int_{0}^{1}G(t,s)f\bigl(s,l_{e}^{m-1}e(s) \bigr)\,ds \\ & \geq \cdots\geq\eta^{m}(l_{e})\int_{0}^{1}G(t,s)f \bigl(s,e(s)\bigr)\,ds =\eta ^{m}(l_{e})Ae\geq \eta^{m}(l_{e})l_{e}e\geq l_{e}^{m}e=u_{0}. \end{aligned}$$
(3.27)

In a similar way, we can get \(v_{0}\geq v_{1}\). It follows from the increasing property of A that

$$ u_{0}\leq u_{1}\leq\cdots\leq u_{n}\leq\cdots \leq v_{n}\leq\cdots \leq v_{1}\leq v_{0}. $$
(3.28)

Therefore, \(u_{n}\geq u_{0} = (\frac{l_{e}}{L_{e}} )^{m}v_{0}\geq (\frac{l_{e}}{L_{e}} )^{m}v_{n}\). Let

$$ c_{n}=\sup\{c> 0| u_{n}\geq cv_{n}\},\quad n=1,2,\ldots. $$
(3.29)

Then \(u_{n}\geq c_{n}v_{n}\). Noticing (3.28), we have \(1\geq c_{n+1}\geq c_{n}\). Thus, we can suppose that \(\{c_{n}\}\) converges to \(c^{\ast}\). It is clear that \(0< c^{\ast}\leq1\), we now prove that \(c^{\ast}=1\). In fact, if \(0< c^{\ast}<1\), then

$$ u_{n+1}=Au_{n}\geq A(c_{n}v_{n}) \geq A \biggl(\frac{c_{n}}{c^{\ast}}c^{\ast}v_{n} \biggr) \geq \eta \biggl(\frac{c_{n}}{c^{\ast}} \biggr)\eta\bigl(c^{\ast}\bigr) A(v_{n})\geq \frac{c_{n}}{c^{\ast}}\eta\bigl(c^{\ast}\bigr) v_{n+1}. $$
(3.30)

Therefore \(c_{n+1}\geq \frac{c_{n}}{c^{\ast}}\eta(c^{\ast})\). Let \(n\rightarrow\infty\), we have \(c^{\ast}\geq\eta(c^{\ast})\), which contradicts (H). Hence \(c^{\ast}=1\).

For each natural number p, we have

$$ \begin{aligned} &0\leq u_{n+p}-u_{n}\leq v_{n}-u_{n} \leq v_{n}-c_{n}v_{n}\leq (1-c_{n})v_{0}, \\ &0 \leq v_{n}-v_{n+p}\leq v_{n}-u_{n} \leq (1-c_{n})v_{0}. \end{aligned} $$
(3.31)

Since P is normal, then

$$ \|u_{n+p}-u_{n}\|\rightarrow0,\qquad \|v_{n}-v_{n+p} \|\rightarrow0,\quad n\rightarrow\infty, $$
(3.32)

which implies \(\{u_{n}\}\), \(\{v_{n}\}\) are Cauchy sequences. There exist \(u_{\ast}\), \(v_{\ast}\) such that \(u_{n}\rightarrow u_{\ast}\), \(v_{n}\rightarrow v_{\ast}\). From (3.28), we get \(u_{n}\leq u_{\ast}\leq v_{\ast}\leq v_{n}\). By (3.31), we have \(\|u_{\ast}-v_{\ast}\|\rightarrow0\). Then \(u_{\ast}=v_{\ast}\) is a fixed point of A.

Equations (3.1b) and (3.16) yield

$$ \lim_{t\rightarrow 0+}t^{\alpha-2}\int_{0}^{1}(1-s)^{\alpha-3}f \bigl(ts,u_{\ast }(ts)\bigr)\,ds=0. $$
(3.33)

Then

$$ \lim_{t\rightarrow 0+}t^{\alpha-2}\int_{0}^{1}(1-s)^{\alpha-2}f \bigl(ts,u_{\ast }(ts)\bigr)\,ds=0. $$
(3.34)

By Lemma 2.4, \(u_{\ast}\) is a positive solution of BVP (1.1).

Noticing (3.13), (3.14) and (3.1a), it is clear that \(u_{\ast}\in C'[0,1]\cap C^{2}(0,1)\). Again from (3.1b) and (3.16), we get \(u_{\ast }''(0+)=u_{\ast}''(0)=0\). By (3.1c), (3.14) and Lemma 2.7, we have (3.12) holds, which implies \(u_{\ast}''(1^{-})\) exists. Therefore, \(u_{\ast}\) is a \(C^{2}[0, 1]\) positive solution of BVP (1.1). The proof is completed. □

Theorem 3.2

Suppose that (3.1a), (3.1b), (3.1c) and (H) hold. Then:

  1. (i)

    BVP (1.1) has a unique \(C^{2}[0, 1]\) positive solution \(u_{\ast}\in P_{e}\).

  2. (ii)

    For any initial value \(\omega_{0}\in P_{e}\), the sequence of functions defined by

    $$ \omega_{n}=\int_{0}^{1}G(t,s)f \bigl(s,\omega_{n-1}(s)\bigr)\,ds,\quad n=1,2,\ldots $$
    (3.35)

    converges uniformly to \(u_{\ast}\) on \([0, 1]\).

Proof

(i) It follows from Theorem 3.1 that BVP (1.1) has a \(C^{2}[0, 1]\) positive solution \(u_{\ast}\in P_{e}\). Let v be another \(C^{2}[0, 1]\) positive solution of BVP (1.1). Lemma 2.6 implies \(v\in P_{e}\). So there exist two positive numbers \(0< l_{v}<1<L_{v}\) such that

$$ l_{v}e(t)\leq v(t)\leq L_{v}e(t),\quad t \in[0,1]. $$
(3.36)

Let m defined by (3.24) be large enough such that \(l_{v}>l_{e}^{m}\) and \(L_{v}< L_{e}^{m}\). Then

$$ u_{0}\leq v\leq v_{0}. $$
(3.37)

It is clear that A is an increasing operator and \(A v= v\), therefore

$$ u_{n}\leq v\leq v_{n},\quad n=1,2,\ldots. $$
(3.38)

Let \(n\rightarrow\infty\), we get \(v=u_{\ast}\). So the \(C^{2}[0, 1]\) positive solution of BVP (1.1) is unique.

(ii) For any initial value \(\omega_{0}\in P_{e}\), there exist two positive numbers \(0< l_{\omega_{0}}<1<L_{\omega_{0}}\) such that

$$ l_{\omega_{0}}e(t)\leq\omega_{0}(t)\leq L_{\omega_{0}}e(t), \quad t\in [0,1]. $$
(3.39)

Let m defined by (3.24) be large enough such that \(l_{\omega_{0}}>l_{e}^{m}\) and \(L_{\omega_{0}}< L_{e}^{m}\). Then

$$ u_{0}\leq\omega_{0}\leq v_{0}. $$
(3.40)

Notice that A is an increasing operator, we have

$$ u_{n}\leq \omega_{n}\leq v_{n},\quad n=1,2, \ldots. $$
(3.41)

Let \(n\rightarrow\infty\), then \(\omega_{n}=u_{\ast}\). It follows from (3.28), (3.31) and (3.41) that \(\omega _{n}\) converges uniformly to the unique positive solution \(u_{\ast}\) on \([0, 1]\). The proof is completed. □

4 Example

Example 4.1

Consider the following problem:

$$ \left \{ \textstyle\begin{array}{l} D^{\alpha}_{0+}u(t)+ f(t,u(t))=0,\quad t \in(0,1), 2< \alpha< 3, \\ u(0)= u'(1)=u''(0)=0, \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(4.1)

where

$$f(t,x)=t^{-\sigma}x^{\beta}, \quad \sigma, \beta\in(0,1). $$

Obviously, assumption (H) holds. By Theorem 3.1, we have that the necessary and sufficient condition for the existence of a \(C^{2}[0, 1]\) positive solution to BVP (4.1) is

$$\beta-\sigma+\alpha>2. $$

Example 4.2

Consider the following problem:

$$ \left \{ \textstyle\begin{array}{l} D^{\alpha}_{0+}u(t)+ a(t)f(u(t))=0,\quad t \in(0,1), 2< \alpha< 3, \\ u(0)= u'(1)=u''(0)=0, \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(4.2)

where \(a\in C((0,1),[0,\infty))\),

$$f(x)=\left \{ \textstyle\begin{array}{l@{\quad}l} x^{\beta}+x, &x \in[0,1], 0< \beta< 1, \\ 2x^{\beta},& x \in(1,+\infty). \end{array}\displaystyle \displaystyle \displaystyle \right . $$

Let

$$\eta(r)=\frac{r^{\beta}+r}{2}, $$

then assumption (H) holds. Noticing

$$x^{\beta}\leq f(x)\leq2x^{\beta}, \quad x\in [0,+\infty ), $$

by Theorem 3.1 and Lemma 2.7, we have that the necessary and sufficient condition for the existence of a \(C^{2}[0, 1]\) positive solution of BVP (4.2) is

$$\begin{aligned}& 0< \int_{0}^{1}a(s)s^{\beta}(1-s)^{\alpha-3} \,ds< +\infty, \\& \lim_{t\rightarrow 0+}t^{\alpha+\beta-2}\int_{0}^{1}a(ts)s^{\beta}(1-s)^{\alpha -3} \,ds=0, \\& \lim_{t\rightarrow 1-}\int_{0}^{1}a(ts)s^{\beta}(1-s)^{\alpha-3} \,ds=\int_{0}^{1}a(s)s^{\beta}(1-s)^{\alpha-3} \,ds. \end{aligned}$$

References

  1. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  3. Guo, S, Mei, L, Li, Y, Sun, Y: The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics. Phys. Lett. A 376, 407-411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lu, B: Backlund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376, 2045-2048 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z, Qiu, T: Existence of positive solution for singular fractional differential equation. Appl. Math. Comput. 215, 2761-2767 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ahmad, B, Nieto, JJ, Alsaedi, A, El-Shahed, M: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13, 599-606 (2012)

    Article  MathSciNet  Google Scholar 

  7. Wei, Z, Pang, C, Ding, Y: Positive solutions of singular Caputo fractional differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 17, 3148-3160 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Agarwal, RP, Benchohra, M, Slimani, BA: Existence results for differential equations with fractional order and impulses. Mem. Differ. Equ. Math. Phys. 44, 1-21 (2008)

    Article  MathSciNet  Google Scholar 

  9. Wang, Y, Liu, L, Wu, Y: Positive solutions of a fractional boundary value problem with changing sign nonlinearity. Abstr. Appl. Anal. 2012, 149849 (2012)

    MathSciNet  Google Scholar 

  10. Wang, Y, Liu, L, Wu, Y: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599-3605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kosmatov, N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010, 135 (2010)

    MathSciNet  Google Scholar 

  12. Su, X, Zhang, S: Unbounded solutions to a boundary value problem of fractional order on the half-line. Comput. Math. Appl. 61, 1079-1087 (2011)

    Article  MathSciNet  Google Scholar 

  13. Zhai, C, Xu, L: Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 19, 2820-2827 (2014)

    Article  MathSciNet  Google Scholar 

  14. Feng, M, Zhang, X, Ge, W: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. 2011, 720702 (2011)

    Article  MathSciNet  Google Scholar 

  15. Agarwal, RP, O’Regan, D, Stanek, S: Positive solutions for Dirichlet problem of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)

    Article  MathSciNet  Google Scholar 

  16. Li, C, Luo, X, Zhou, Y: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363-1375 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, Z, Sun, J: Nonlinear boundary value problems of fractional functional integro-differential equations. Comput. Math. Appl. 64, 3228-3234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wei, Z: Positive solutions of some singular m-point boundary value problems at non-resonance. Appl. Math. Comput. 171, 433-449 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei, Z, Pang, C: The method of lower and upper solutions for fourth order singular m-point boundary value problems. J. Math. Anal. Appl. 322, 675-692 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Y, Liu, L, Debnath, L: A necessary and sufficient condition for the existence of positive solutions of singular boundary value problems. Appl. Math. Lett. 18, 881-889 (2005)

    Article  MathSciNet  Google Scholar 

  21. Luo, Y, Luo, Z: A necessary and sufficient condition for the existence of symmetric positive solutions of higher-order boundary value problems. Appl. Math. Lett. 25, 862-868 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, J, Ge, W: A necessary and sufficient condition for the existence of positive solutions to a kind of singular three-point boundary value problem. Nonlinear Anal. 71, 3973-3980 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X, Liu, L: A necessary and sufficient condition for positive solutions for fourth-order multi-point boundary value problems with p-Laplacian. Nonlinear Anal. 68, 3127-3137 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referee for his/her valuable suggestions. The authors were supported financially by the National Natural Science Foundation of China (11371221), the PhD Programs Foundation of Ministry of Education of China (20133705120003), the Natural Science Foundation of Shandong Province of China (ZR2013AQ014, ZR2014AM034), Project of Shandong Province Higher Educational Science and Technology Program (J13LI08), Doctoral Scientific Research Foundation of Qufu Normal University and Youth Foundation of Qufu Normal University (XJ201216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqing Wang.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, L. Necessary and sufficient condition for the existence of positive solution to singular fractional differential equations. Adv Differ Equ 2015, 207 (2015). https://doi.org/10.1186/s13662-015-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0540-5

MSC

Keywords