- Research
- Open Access
- Published:
Existence and uniqueness of solutions for a higher-order coupled fractional differential equations at resonance
Advances in Difference Equations volume 2015, Article number: 202 (2015)
Abstract
In this article, we present the existence of solutions for a higher-order coupled fractional differential equations with the Caputo fractional derivative. Our main approach is the coincidence degree theory due to Mawhin. The most interesting point is the proof of the uniqueness of the solution for the higher-order coupled fractional differential equations at resonance. We give an example to demonstrate our results.
1 Introduction
In this article, we study the higher-order coupled fractional differential equation
with the coupled two-point boundary conditions
where \(N-1<\alpha,\beta<N \), \(N\geq2\), \(D_{0^{+}}^{\alpha}\) and \(D_{0^{+}}^{\beta}\) denote the Caputo fractional derivative, and f, g are given continuous functions.
Fractional differential equations have been studied extensively. It is caused both by the intensive development of the theory of fractional calculus itself and by the applications such as physics, chemistry, phenomena arising in engineering, economy and science; see e.g. [1–4].
Recently, more and more authors paid attention to the boundary value problems of fractional differential equations; see [5–19]. In [6], the author has investigated the existence of solutions to the coupled systems of fractional differential equations at nonresonance. Moreover, there have been many works related to the existence of solutions for boundary value problems at resonance; see [10–13, 15–18, 20, 21]. Some papers have dealt with the solutions of multipoint boundary value problems of a coupled fractional differential equations at resonance; see [12, 17].
In [17], Zhang et al. considered a three-point boundary value problem for a coupled system of nonlinear fractional differential equations at resonance given by
where \(1<\alpha,\beta\leq2\), \(0<\eta_{1},\eta_{2} <1\), \(\sigma_{1},\sigma_{2} >0\), \(\sigma_{1}\eta_{1}^{\alpha-1}=\sigma_{2}\eta_{2}^{\beta-1}=1\), D is Riemann-Liouville fractional derivative, and \(f,g:[0,1]\times \mathbb{R}^{2} \rightarrow\mathbb{R} \) are given functions.
In [12], the authors discussed a two-point boundary value problem for a coupled system of fractional differential equations at resonance:
where \(D_{0^{+}}^{\alpha}\), \(D_{0^{+}}^{\beta}\) is Caputo fractional derivative, \(1<\alpha,\beta\leq2\), and \(f,g:[0,1]\times \mathbb{R}^{2} \rightarrow\mathbb{R} \) are given function.
From the above work, we see three facts. Firstly, although the two-point boundary value problems for coupled system of fractional differential equations have been studied by some authors, to the best of our knowledge, higher-order fractional differential equations with the Caputo fractional derivative are seldom considered. Secondly, the nonlinear terms in the equations of this paper satisfy a sublinear growth condition that is weaker than the previous ones (see [11, 15]), meanwhile, the present work generalizes and improves the available results (see [5, 12]). Thirdly, the uniqueness of the solution is useful for many applications. As far as we know, there are few contributions to the uniqueness of a solution for fractional differential equations. The objective of this paper is to fill the gap in the relevant literature.
The rest of this paper is organized as follows. In Section 2, we give some necessary notations, definitions and lemmas. In Section 3, we study the existence of solutions of (1.1) and (1.2) by the coincidence degree theory due to Mawhin [22]. Finally, an example is given to illustrate our results in Section 4.
2 Preliminaries
We present the necessary definitions and lemmas from fractional calculus theory that will be used to prove our main theorems.
Definition 2.1
([1])
The Riemann-Liouville fractional integral of order \(\alpha>0\) of a function \(f:(0,\infty)\to\mathbb{R}\) is given by
provided that the right-hand side is pointwise defined on \((0,\infty)\).
Definition 2.2
([1])
The Riemann-Liouville fractional derivative of order \(\alpha>0\) of a continuous function \(f:(0,\infty)\to\mathbb{R}\) is given by
where \(n-1<\alpha\leq n\), provided that the right-hand side is pointwise defined on \((0,\infty)\).
Lemma 2.1
([1])
Let \(n-1<\alpha\leq n\), \(u\in C(0,1)\cap L^{1}(0,1)\), then
where \(c_{i}\in\mathbb{R}\), \(i=0,1,\ldots, n-1\).
Lemma 2.2
([1])
If \(\beta>0\), \(\alpha+\beta>0\), then the equation
is satisfied for continuous function f.
Now let us recall some notation about the coincidence degree continuation theorem.
Let Y, Z be real Banach spaces, \(L:\operatorname{dom} L \subset Y \to Z\) be a Fredholm map of index zero and \(P:Y\to Y\), \(Q:Z\to Z\) be continuous projectors such that \(\ker L = \operatorname{Im}P\), \(\operatorname{Im}L= \ker Q\), and \(Y=\ker L \oplus\ker P\), \(Z=\operatorname{Im}L \oplus\operatorname{Im}Q\). It follows that \(L|_{\operatorname{dom}L \cap\ker P}: \operatorname{dom}L \cap\ker P \to\operatorname{Im}L\) is invertible. We denote the inverse of this map by \(K_{P}\). If Ω is an open bounded subset of Y, the map N will be called L-compact on \(\overline{\Omega}\) if \(QN(\overline{\Omega})\) is bounded and \(K_{P,Q}N=K_{P}(I-Q)N:\overline{\Omega}\to Y\) is compact.
Theorem 2.1
Let L be a Fredholm operator of index zero and N be L-compact on \(\overline{\Omega}\). Suppose that the following conditions are satisfied:
-
(1)
\(Lx \neq\lambda Nx\) for each \((x,\lambda) \in [(\operatorname{dom}L\setminus\ker L) \cap \partial\Omega ]\times (0,1)\);
-
(2)
\(Nx \notin\operatorname{Im} L\) for each \(x \in\ker L \cap\partial\Omega\);
-
(3)
\(\deg(JQN|_{\ker L}, \Omega\cap\ker L, 0)\neq0\), where \(Q:Z\to Z\) is a continuous projection as above with \(\operatorname{Im}L= \ker Q\) and \(J:\operatorname{Im}Q\to \ker L\) is any isomorphism.
Then the equation \(Lx = Nx\) has at least one solution in \(\operatorname{dom}L\cap\overline{\Omega}\).
3 Main results
In this section, we will prove the existence and uniqueness results for (1.1) and (1.2).
We use the Banach space \(E=C[0,1]\) with the norm \(\|u\|_{\infty}=\max_{0 \le t \le1}|u(t)|\). We define a linear space \(X =\{u^{(i)}\in E:i=1,2,\ldots,N-1\}\). By means of the linear functional analysis theory, we can prove that X is a Banach space with the norm \({\Vert x \Vert }_{X}=\max \{\Vert u \Vert _{\infty}, \Vert u' \Vert _{\infty},\ldots, \Vert {{u}^{(N-1)}} \Vert _{\infty}\}\). Further we consider a Banach space \(Y=X\times X\) endowed with the norm defined by \(\|(u,v)\|_{Y}=\max\{\|u\|_{X},\|v\|_{X} \}\), and \(Z=E\times E\) is a Banach space with the norm defined by \(\|(x,y)\|_{Z}=\max \{\|x\|_{\infty},\|y\|_{\infty}\}\).
Define the linear operator \(L_{1}\) from \(\operatorname{dom}L_{1}\cap X\) to E by
where \(\operatorname{dom}L_{1}=\{u\in X|u^{(i)}(0)=0, u^{(N-1)}(0)=u^{(N-1)}(1), i=0,1,\ldots, N-2\}\).
Define the linear operator \(L_{2}\) from \(\operatorname{dom}L_{2}\cap X\) to E by
where \(\operatorname{dom}L_{2}=\{v\in X|v^{(i)}(0)=0, v^{(N-1)}(0)=v^{(N-1)}(1), i=0,1,\ldots, N-2\}\).
Define the operator \(L: \operatorname{dom}L\cap Y \rightarrow Z\) by
where \(\operatorname{dom}L=\{(u,v)\in Y|u\in\operatorname{dom}L_{1},v\in\operatorname{dom}L_{2}\}\), and we define \(N:Y\to Z\) by setting
where \(N_{1}:X\to E\) is defined by
and \(N_{2}:X\to E\) is defined by
Then the problem (1.1) and (1.2) can be written by \(L(u,v)=N(u,v)\).
Lemma 3.1
The mapping \(L:\operatorname{dom} L \subset Y\rightarrow Z\) is a Fredholm operator of index zero.
Proof
It is clear that \(\operatorname{Ker}L=(c_{1}t^{N-1},c_{2}t^{N-1})\cong\mathbb{R}^{2}\).
Let \((x,y)\in\operatorname{Im}L\), so there exists \((u,v)\in\operatorname{dom}L\) which satisfies \(L(u,v)=(x,y)\). By Lemma 2.1, we have
By the definition of domL, we have \(c_{i}=d_{i}=0\), \(i=0,1,\ldots, N-2\). Hence
According to Lemma 2.2, we get
Taking into account \(u^{(N-1)}(0)=u^{(N-1)}(1)\) and \(v^{(N-1)}(0)=v^{(N-1)}(1)\), we obtain
On the other hand, suppose \((x,y)\) satisfies the above equations. Let \(u(t)=I_{0+}^{\alpha}x(t)\) and \(v(t)=I_{0+}^{\beta}y(t)\), we can easily prove \((u(t),v(t) )\in\operatorname{dom} L \).
Thus, we conclude that
Consider the linear operators \(Q_{1},Q_{2} :E\rightarrow E\) defined by
Obviously, \(Q(x,y)= (Q_{1}x(t),Q_{2}y(t) )\cong\mathbb{R}^{2}\). Taking \(x(t)\in E\), by a direct computation, we have
Similarly, \(Q_{2}^{2}=Q_{2}\). This gives \(Q^{2}(x,y)=Q(x,y)\). It is easy to check from \((x,y)=(x,y)-Q(x,y)+Q(x,y)\) that \(Z= \operatorname{Im}L+\operatorname{Im}Q\). Moreover, we can see that \(Z=\operatorname{Im}L\oplus \operatorname{Im}Q\).
Now, \(\operatorname{Ind}L = \operatorname{dim} \ker L - \operatorname{codim} \operatorname{Im}L = 0\), and so L is a Fredholm mapping of index zero. □
We can define the operators \(P_{1}:X\rightarrow X\), \(P_{2}:X\rightarrow X\) and \(P:(u,v)\rightarrow(P_{1}u,P_{2}v)\), where
Obviously, \(P_{1}^{2}=P_{1}\) and \(P_{2}^{2}=P_{2}\).
Note that
Since \((u,v)=(u,v)-P(u,v)+P(u,v)\), it is clear that \(Y= \operatorname{Ker}P+\operatorname{Ker}L\). By a simple calculation, we get \(\operatorname{Ker}L\cap\operatorname{Ker}P=\{(0,0)\}\). Thus, we get \(Y= \operatorname{Ker}L\oplus\operatorname{Ker}P\).
For every \((u,v)\in Y\),
We define \(K_{P}:\operatorname{Im}L\to \operatorname{dom}L \cap\operatorname{Ker} P\) by \(K_{P}(x,y)= (I_{0+}^{\alpha}x,I_{0+}^{\beta}y )\).
For \((x,y)\in\operatorname{Im} L \), we have
For \((u,v)\in\operatorname{dom} L \cap\operatorname{Ker} P \), we have \({u}^{(N-1)}(0)={v}^{(N-1)}(0)=0\), so the coefficients \(c_{i}\) and \(d_{i}\), \(i=0,1,\ldots,N-1\), in the expressions
are all equal to zero. Thus, we obtain
That shows that \(K_{P}=(L_{\operatorname{dom} L \cap\operatorname{Ker} P })^{-1}\).
Again, for each \((x,y)\in\operatorname{Im} L \),
where \(a=\frac{1}{\Gamma(\alpha-N+2)}\), \(b=\frac{1}{\Gamma(\beta-N+2)}\).
With similar arguments to [5], we obtain the following lemma.
Lemma 3.2
\(K_{P}(I-Q)N:Y\rightarrow Y \) is completely continuous.
To obtain our main results, we need the following conditions.
- (H1):
-
There exist positive constants \(a_{1}\), \(a_{2}\), \(b_{i}\), \(c_{i}\), and \({\theta_{i}},{\lambda_{i}}\in[0,1]\), \(i=1,2,\ldots,N\), such that for all \((x_{1},x_{2},\ldots,x_{N})\in\mathbb{R}^{N}\),
$$\begin{aligned}& \bigl\vert f(t,x_{1},x_{2},\ldots,x_{N})\bigr\vert \leq a_{1}+ b_{1}|x_{1}|^{\theta_{1}}+b_{2}|x_{2}|^{\theta _{2}}+ \cdots+b_{N}|x_{N}|^{\theta_{N}}, \quad \forall t\in[0,1], \\& \bigl\vert g(t,x_{1},x_{2},\ldots,x_{N})\bigr\vert \leq a_{2}+ c_{1}|x_{1}|^{\lambda _{1}}+c_{2}|x_{2}|^{\lambda_{2}}+ \cdots+c_{N}|x_{N}|^{\lambda_{N}},\quad \forall t\in[0,1]. \end{aligned}$$ - (H2):
-
There exists a constant \(A>0\) such that for any \(c_{1},c_{2}\in\mathbb{R}^{2}\), if \(\min\{|c_{1}|,|c_{2}|\}>A \), one has either
$$c_{1}\cdot N_{1}\bigl(c_{2}t^{N-1}\bigr)> 0, \qquad c_{2}\cdot N_{2}\bigl(c_{1}t^{N-1} \bigr)>0, $$or
$$c_{1}\cdot N_{1}\bigl(c_{2}t^{N-1}\bigr)< 0,\qquad c_{2}\cdot N_{2}\bigl(c_{1}t^{N-1} \bigr)< 0. $$ - (H3):
-
\(\max \{2a\sum_{i=1}^{N}{{{b}_{i}}}, a\sum_{i=1}^{N}{{{b}_{i}}}+b\sum_{i=1}^{N}{{{c}_{i}}}, 2b\sum_{i=1}^{N}{{{c}_{i}}} \}<1\).
Lemma 3.3
\(\Omega_{1}= \{(u,v)\in\operatorname{dom}L\setminus\operatorname{Ker}L: L(u,v)= \lambda N(u,v),\lambda\in[0,1] \}\) is bounded.
Proof
For \((u,v)\in\Omega_{1}\), thus \(\lambda\neq0\). Also, \(L(u,v)=\lambda N(u,v)\in\operatorname{Im}L=\operatorname{Ker}Q\), that is,
By the integral mean value theorem, there exist \(t_{0},t_{1}\in[0,1]\) such that
From (H2), we get \(|u^{(N-1)}(t_{1})|\leq A\) and \(| v^{(N-1)}(t_{0})| \leq A\).
Again for \((u,v)\in\Omega_{1}\), \((u,v)\in\operatorname{dom}(L)\setminus \operatorname{Ker}(L)\), then \((I-P)(u,v)\in\operatorname{dom}L\cap\operatorname{Ker}P\) and \(LP(u,v)=(0,0)\), thus from (3.2), we have
By \(Lu=\lambda Nu\) and \(u\in\operatorname{dom}L\), we have
Furthermore, we have
Substituting \(t=t_{1} \) into the above equation, we get
Together with \(|u^{(N-1)}(t_{1})|\leq A\), we derive that
With similar arguments, we obtain
In what follows, the proof can be divided into four cases.
Case 1. \(\|(u,v)\|_{Y} \leq \vert {{u}^{(N-1)}}(0) \vert +a\|N_{1}v\|_{\infty}\).
By (3.4) and (H1), we have
According to (H3) and the definition of \(\|(u,v)\|_{Y}\), we can derive \(\|v\|_{X}\) are bounded. Therefore \(\Omega_{1}\) is bounded.
Case 2. \(\|(u,v)\|_{Y} \leq | {{v}^{(N-1)}}(0) |+b\|N_{2}u\|_{\infty}\). The proof is similar to Case 1. Here, we omit it.
Case 3. \(\|(u,v)\|_{Y} \leq | {{u}^{(N-1)}}(0) |+b\|N_{2}u\|_{\infty}\).
From (3.4) and (H1), we obtain
By (H3), we easily conclude that \(\|(u,v)\|_{Y}\) is bounded. Therefore \(\Omega_{1}\) is bounded.
Case 4. \(\|(u,v)\|_{\infty}\leq | {{v}^{(N-1)}}(0) |+a\|N_{1}v\|_{\infty}\). The proof is similar to the Case 2. Here, we omit it.
According to the above arguments, we prove that \(\Omega_{1}\) is bounded. □
Lemma 3.4
\(\Omega_{2}= \{(u,v)\in\operatorname{Ker}L:N(u,v)\in\operatorname{Im}L \}\) is bounded.
Proof
Let \((u,v)\in\operatorname{Ker}L\), so we have \(u=c_{1}t^{N-1}\), \(v=c_{2}t^{N-1}\), \(c_{1},c_{2}\in\mathbb{R}\). In view of \(N(u,v)=(N_{1}v,N_{2}u)\in\operatorname{Im}L=\operatorname{Ker}Q\), we have
By the integral mean value theorem, there exist constants \(t_{0}, t_{1}\in[0,1]\) such that
which together with (H2) imply \(|c_{i}|\leq\frac{A}{ (N-1)!}\), \(i=1,2\). Hence, \(\Omega_{2}\) is bounded. □
Lemma 3.5
\(\Omega_{3}= \{(u,v)\in\operatorname{Ker}L:\lambda(u,v)+(1-\lambda) QN(u,v)=(0,0),\lambda\in[0,1] \}\) is bounded.
Proof
Let \((u,v)\in\operatorname{Ker}L\), so we have \(u=c_{1}t^{N-1}\), \(v=c_{2}t^{N-1}\), \(c_{1},c_{2}\in\mathbb{R} \), and
that is to say,
If \(\lambda=0\), then \(|c_{i}|\leq\frac{A}{ (N-1)!}\), \(i=1,2\). If \(\lambda\in(0,1]\), then we can have \(|c_{i}|\leq\frac{A}{ (N-1)!}\), \(i=1,2\). Otherwise, if \(|c_{i}|>\frac{A}{ (N-1)!}\), \(i=1,2\), in view of the first part of (H2), one has
which contradict (3.6) and (3.7). Thus, \(\Omega_{3}\) is bounded. □
Remark 3.1
If the second part of (H2) holds, then the set
is bounded.
Theorem 3.1
Suppose (H1)-(H3) hold, then the problem (1.1) and (1.2) has at least on solution in Y.
Proof
Let Ω to be a bounded open subset of Y, such that \(\bigcup_{i=1}^{3}{\overline{\Omega}_{i}}\subset\Omega\). It follows from Lemma 3.2 that N is L-compact on Ω. By Lemma 3.3, Lemma 3.4, and Lemma 3.5, we get:
-
(1)
\(Lu\neq\lambda Nu\), for every \((u,v,\lambda)\in[( \operatorname{dom}L\setminus\operatorname{Ker}L)\cap\partial\Omega]\times(0,1)\).
-
(2)
\(Nu\notin\operatorname{Im}L\) for every \(u\in\operatorname{Ker}L\cap\partial\Omega \).
-
(3)
Let \(H((u,v),\lambda)=\pm\lambda I(u,v)+(1-\lambda)JQN(u,v)\), where I is the identical operator. Via the homotopy property of the degree, we obtain
$$\begin{aligned} \deg (JQ N|_{\ker L},\Omega\cap\ker L,0 ) &= \deg \bigl(H(\cdot,0),\Omega \cap\ker L,0 \bigr) \\ &= \deg \bigl(H(\cdot,1),\Omega\cap\ker L,0 \bigr) \\ &= \deg (I,\Omega\cap\ker L,0 )=1\neq0. \end{aligned}$$
Applying Theorem 2.1, we conclude that \(L(u,v)=N(u,v)\) has at least one solution in \(\operatorname{dom}L\cap\overline{\Omega}\). □
Under the stronger conditions imposed on f, we can prove the uniqueness of the solutions to BVP (1.1) and (1.2).
Theorem 3.2
Suppose the condition (H1) in Theorem 2.1 is replaced by the following conditions:
- (\(\mathrm{H}'_{1}\)):
-
There exist positive constants \(a_{i}\), \(b_{i}\), \(i=0,1,\ldots ,N-1\), such that for all \((x_{1},x_{2},\ldots,x_{N}), (y_{1},y_{2},\ldots,y_{N})\in\mathbb{R}^{N}\) one has
$$\begin{aligned}& \bigl\vert f(t,x_{1},x_{2},\ldots,x_{N})-f(t,y_{1},y_{2}, \ldots,y_{N})\bigr\vert \leq a_{0}|x_{1}-y_{1}|+ \cdots+a_{N-1}|x_{N}-y_{N}|, \\& \bigl\vert g(t,x_{1},x_{2},\ldots,x_{N})-g(t,y_{1},y_{2}, \ldots,y_{N})\bigr\vert \leq b_{0}|x_{1}-y_{1}|+ \cdots+b_{N-1}|x_{N}-y_{N}|. \end{aligned}$$ - (\(\mathrm{H}''_{1}\)):
-
There exist positive constants \(k_{i}\), \(l_{i}\), \(i=0,1,\ldots,N-1\), such that for all \((x_{1},x_{2},\ldots,x_{N}), (y_{1},y_{2},\ldots,y_{N})\in\mathbb{R}^{N}\), one has
$$\begin{aligned}& \bigl\vert f (t,x_{1},x_{2},\ldots,x_{N})-f(t,y_{1},y_{2}, \ldots,y_{N})\bigr\vert \\& \quad \geq l_{N-1}|x_{N}-y_{N}|-l_{0}|x_{1}-y_{1}|-l_{1}|x_{2}-y_{2}|- \cdots -l_{N-2}|x_{N-1}-y_{N-1}|, \\& \bigl\vert g(t,x_{1},x_{2},\ldots,x_{N})-g(t,y_{1},y_{2}, \ldots,y_{N})\bigr\vert \\& \quad \geq k_{N-1}|x_{N}-y_{N}|-k_{0}|x_{1}-y_{1}|-k_{1}|x_{2}-y_{2}|- \cdots-k_{N-2}|x_{N-1}-y_{N-1}|. \end{aligned}$$
Then BVP (1.1) and (1.2) has a unique solution, provided that
where \(p_{1}=\frac{l_{0}}{l_{N-1}}\), \(p_{2}=\frac{{{k}_{0}}}{{{k}_{N-1}}}\), \(q_{1}=\sum_{i=1}^{N-2}\frac{l_{i}}{l_{N-1}}\), \(q_{2}=\sum_{i=1}^{N-2}{\frac{{{k}_{i}}}{{{k}_{N-1}}}}\), \(r_{1}=a\sum_{i=0}^{N-1}{{{a}_{i}}} \), \(r_{2}=b\sum_{i=0}^{N-1}{{{b}_{i}}}\).
Proof
We let \(y_{i}=0\), \(i=1,2,\ldots,N\), \(a_{1}=\max_{t\in[0,1]}|f(t,0,\ldots ,0)|\) and \(a_{2}=\max_{t\in[0,1]}|g(t,0, \ldots,0)|\), then from (3.8) we can show that the condition (H1) is satisfied. Therefore, the existence of a solution for the coupled system (1.1) and (1.2) follows from Theorem 3.1.
Suppose \((u_{i},v_{i})\in Y\), \(i=1,2\) are two solutions of BVP (1.1) and (1.2), then
Note \(u=u_{1}-u_{2}\), \(v=v_{1}-v_{2}\), thus we have the following equations:
By \(\operatorname{Im}L=\operatorname{Ker}Q\), we have
By the integral mean value theorem, there exist \(\xi,\eta\in[0,1]\), such that
By (\(\mathrm{H}''_{1}\)), we have
It follows from the two inequalities above that
and
By (3.9), we obtain
Substituting \(t=\eta\) into the above equation, we get
By (\(\mathrm{H}'_{1}\)), (3.10) and the definition of \(\|v\|_{X}\), we have
Similarly,
According to (3.3), (3.11), and (3.12), we have
Our proof can be divided into four cases.
Case 1. \(\|(u,v)\|_{Y}\leq (p_{2}+q_{2})\|u\|_{X}+ r_{1}\|v\|_{X}+a\|L_{1}u\|_{\infty }\).
By (\(\mathrm{H}'_{1}\)) and the definition of \(\|(u,v)\|_{Y}\), we have
By the assumption (3.8), the coefficient on the right side of (3.13) is less than 1. So we have \(\|u\|_{X}=\|v\|_{X}=0\), i.e., \(u_{1}=u_{2}\), \(v_{1}=v_{2}\).
Case 2. \(\|(u,v)\|_{Y}\leq(p_{1}+q_{1})\|v\|_{X}+ r_{2}\|u\|_{X}+b\|L_{2}v\|_{\infty}\). The proof is similar to Case 1. So we omit it.
Case 3. \(\|(u,v)\|_{\infty}\leq(p_{2}+q_{2})\|u\|_{X}+ r_{1}\|v\|_{X}+b\|L_{2}v\|_{\infty}\).
By (\(\mathrm{H}'_{1}\)) and the definition of \(\|(u,v)\|_{Y}\), we have
By our assumption (3.8), the coefficients on the right side of (3.14) are all less than 1. So we have \(\|u\|=\|v\|=0\), so that \(u_{1}=u_{2}\), \(v_{1}=v_{2}\).
Case 4. \(\|(u,v)\|_{Y}\leq(p_{1}+q_{1})\|v\|_{X}+ r_{2}\|u\|_{X}+a\|L_{1}u\|_{\infty}\). The proof is similar to Case 3. Here, we omit it.
By the above argument, we have derived that BVP (1.1) and (1.2) has exactly one solution. The proof is finished. □
4 Example
Let us consider the following coupled system of fractional differential equations at resonance:
where
Corresponding to BVP (1.1) and (1.2), we have \(\alpha=3.5\) and \(\beta=3.6\). Take \(a_{1}=\frac{59}{45}+\frac{\pi}{2}\), \(a_{2}=\frac{9}{4}\), \(b_{i}=c_{i}=0\), \(i=1,2,3\), \(b_{4}=\frac{1}{8}\), \(c_{4}=\frac {1}{2}\), \(\theta_{i}= \lambda_{i}=1\), \(i=1,2,3\), \(\theta_{4}=1\), \(\lambda_{4}=\frac{1}{3}\), and \(A=16\). Then we can calculate that (H1)-(H3) hold.
By Theorem 3.1, we see that BVP (4.1) has at least one solution.
References
Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
Weitzner, H, Zaslavsky, GM: Some applications of fractional equations. Commun. Nonlinear Sci. Numer. Simul. 8(3), 273-281 (2003)
Rui, W: Existence of solutions of nonlinear fractional differential equations at resonance. Electron. J. Qual. Theory Differ. Equ. 2011, 66 (2011)
Su, X: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22(1), 64-69 (2009)
Wang, G, Ahmad, B, Zhang, L: Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order. Nonlinear Anal. 74(3), 792-804 (2011)
Agarwal, RP, O’Regan, D, Stanek, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371(1), 57-68 (2010)
Ahmad, B, Alsaedi, A: Existence and uniqueness of solutions for coupled systems of higher-order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010, 364560 (2010)
Bai, Z: Solvability for a class of fractional m-point boundary value problem at resonance. Comput. Math. Appl. 62(3), 1292-1302 (2011)
Bai, Z, Zhang, Y: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 218(5), 1719-1725 (2011)
Hu, Z, Liu, W, Chen, T: Existence of solutions for a coupled system of fractional differential equations at resonance. Bound. Value Probl. 2012, 98 (2012)
Hu, Z, Liu, W, Chen, T: Two-point boundary value problems for fractional differential equations at resonance. Bull. Malays. Math. Sci. Soc. (2) 36(3), 747-755 (2013)
Jafari, H, Gejji, VD: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 180(2), 700-706 (2006)
Jiang, W: The existence of solutions to boundary value problems of fractional differential equations at resonance. Nonlinear Anal. 74(5), 1987-1994 (2011)
Xu, N, Liu, W, Xiao, L: The existence of solutions for nonlinear fractional multipoint boundary value problems at resonance. Bound. Value Probl. 2012, 65 (2012)
Zhang, Y, Bai, Z, Feng, T: Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance. Comput. Math. Appl. 61(4), 1032-1047 (2011)
Zhang, Y, Bai, Z: Existence of solutions for nonlinear fractional three-point boundary value problems at resonance. J. Appl. Math. Comput. 36(1), 417-440 (2011)
Agarwal, RP, Benchohra, M, Hamani, S: Boundary value problems for fractional differential equations. Georgian Math. J. 16(3), 401-411 (2009)
Kosmatov, N: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 68(8), 2158-2171 (2008)
Kosmatov, N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010, 135 (2010)
Mawhin, J: Topological degree and boundary value problems for nonlinear differential equations in topological methods for ordinary differential equations. In: Topological Degree and Boundary Value Problems for Nonlinear Differential Equations. Lect. Notes Math., vol. 1537, pp. 74-142. Springer, Berlin (1993)
Acknowledgements
Research was supported by the Science Foundation of Shandong Jiaotong University (Z201429) and supported by the National Natural Science Foundation of China (11371364).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hu, L., Zhang, S. Existence and uniqueness of solutions for a higher-order coupled fractional differential equations at resonance. Adv Differ Equ 2015, 202 (2015). https://doi.org/10.1186/s13662-015-0543-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-015-0543-2
MSC
- 34A08
- 34B15
- 34F15
Keywords
- fractional differential equation
- two-point boundary conditions
- resonance
- coincidence degree