In this section, we consider the fractional finite difference inclusion
$$ \Delta_{\nu-3}^{\nu}x(t)\in F\bigl(t,x(t),\Delta x(t),\Delta^{2} x(t)\bigr) $$
(3)
via the boundary value conditions \(\xi x(\nu-3)+\beta\Delta x(\nu -3)=0\), \(\gamma x(b+\nu)+\delta\Delta x(b+\nu)=0\), and \(x(\eta)=0\), where ξ, β, γ, δ are non-zero numbers, \(\eta\in \mathbb{N}_{\nu-2}^{b+\nu-1}\), \(2<\nu<3\), \(x:\mathbb{N}_{\nu-3}^{b+\nu +1}\to\mathbb{R}\) and \(F:\mathbb{N}_{\nu-3}^{b+\nu+1}\times\mathbb {R}\times\mathbb{R}\times\mathbb{R}\to2^{\mathbb{R}} \) is a compact valued multifunction.
Lemma 3.1
Let
\(y:\mathbb{N}_{0}^{b+1}\to\mathbb{R}\)
and
\(2<\nu< 3\). Then
\(x_{0}\)
is a solution for the fractional finite difference equation
\(\Delta_{\nu-3}^{\nu}x(t)=y(t)\)
via the boundary conditions
\(\xi x(\nu -3)+\beta\Delta x(\nu-3)=0\), \(x(\eta)=0\), and
\(\gamma x(b+\nu)+\delta \Delta x(b+\nu)=0\)
if and only if
\(x_{0}\)
is a solution of the fractional sum equation
\(x(t)=\sum_{s=0}^{b+1}G(t,s,\eta)y(s)\), where
$$\begin{aligned} G(t,s,\eta) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}} -\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{\theta\beta_{0}\mu \Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)] [\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu -4}}} \biggr] \\ &{}\times(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}} + \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} \\ &{}+ \frac{(t-\sigma(s))^{\underline{\nu -1}}}{\Gamma(\nu)}, \end{aligned}$$
whenever
\(0\leq s\leq t-\nu\leq b+1\)
and
\(0\leq s\leq\eta-\nu\leq b+1\),
$$\begin{aligned} G(t,s,\eta) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)] [\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu -4}}} \biggr] \\ &{}\times(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}} + \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}, \end{aligned}$$
whenever
\(0\leq t-\nu< s\leq\eta-\nu\leq b+1\),
$$\begin{aligned} G(t,s,\eta) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}} +\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}, \end{aligned}$$
whenever
\(0\leq\eta-\nu< s\leq t-\nu\leq b+1\)
and
$$\begin{aligned} G(t,s,\eta) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}}, \end{aligned}$$
whenever
\(0\leq t-\nu< s\leq b+1\)
and
\(0\leq\eta-\nu< s\leq b+1\). Here,
$$\begin{aligned}& \theta=\frac{\eta\beta\nu-\eta\xi-3\eta\beta-2\xi+\xi\nu-\beta\nu ^{2}+6\beta\nu-8\beta}{\beta(\nu-2)}, \\& \mu=\frac{b\xi\delta\nu-2b\delta\xi+\gamma\xi b^{2}+3b\gamma\xi+\beta b\nu ^{2}\delta+\delta b^{2}\beta\nu+\beta b\delta\nu-6\beta\delta b+3\beta \delta b^{2}+4\xi\delta\nu}{\beta(\nu-2)} \\& \hphantom{\mu=}{}+\frac{-8\delta\xi+4\gamma\xi b+12\gamma\xi+4\beta\nu^{2}\delta+7\gamma \beta\nu b+12\gamma\beta\nu+4\beta\delta\nu-24\beta\delta+21\beta\gamma b+36\beta\gamma}{\beta(\nu-2)} \end{aligned}$$
and
$$\beta_{0}=\frac{\theta[\delta(\nu-1)+\gamma(b+2)](b+3)(b+4)+\mu(\eta+2-\nu )(\eta+3-\nu)}{\theta\mu}. $$
Proof
Let \(x_{0}\) be a solution for the equation \(\Delta_{\nu-3}^{\nu}x(t)=y(t)\) via the boundary conditions \(\xi x(\nu -3)+\beta\Delta x(\nu-3)=0\), \(x(\eta)=0\), and \(\gamma x(b+\nu)+\delta \Delta x(b+\nu)=0\). Then by using (2) and Lemma 2.1, we get
$$x_{0}(t)=c_{1}t^{\underline{\nu-1}}+c_{2}t^{\underline{\nu -2}}+c_{3}t^{\underline{\nu-3}} +\frac{1}{\Gamma(\nu)}\sum_{s=0}^{t-\nu}\bigl(t- \sigma(s)\bigr)^{\underline{\nu-1}}y(s) $$
and
$$\begin{aligned} \Delta x_{0}(t) =&c_{1}(\nu-1)t^{\underline{\nu-2}}+c_{2}( \nu-2)t^{\underline {\nu-3}}+c_{3}(\nu-3)t^{\underline{\nu-4}} \\ &{}+\frac{1}{\Gamma(\nu-1)} \sum_{s=0}^{t-\nu+1}\bigl(t-\sigma(s) \bigr)^{\underline {\nu-2}}y(s), \end{aligned}$$
where \(c_{1},c_{2},c_{3}\in\mathbb{R}\) are arbitrary constants. Now, by using the boundary condition
$$\xi x(\nu-3)+\beta\Delta x(\nu-3)=0, $$
we get \(\xi c_{3} +\beta[c_{2}(\nu-2)+c_{3}(\nu-3)]=0\). Also, by using the condition \(x(\eta)=0\) we obtain
$$\begin{aligned} c_{3} =&-(\eta+2-\nu) (\eta+3-\nu)c_{1}-(\eta+2- \nu)c_{2} \\ &{}-\frac{1}{\eta^{\underline{\nu-3}}\Gamma(\nu)}\sum_{s=0}^{\eta-\nu} \bigl(\eta -\sigma(s)\bigr)^{\underline{\nu-1}}y(s). \end{aligned}$$
Moreover, by using the boundary condition \(\gamma x(b+\nu)+\delta \Delta x(b+\nu)=0\), we get
$$\begin{aligned}& c_{1}\bigl[\delta(\nu-1)+\gamma(b+2)\bigr](b+\nu)^{\underline{\nu-2}}+c_{2} \bigl[\delta(\nu -2)+\gamma(b+3)\bigr](b+\nu)^{\underline{\nu-3}} \\& \qquad {}+c_{3} \bigl[\delta(\nu-3)+\gamma(b+4)\bigr] (b+\nu)^{\underline{\nu-4}} \\& \quad =-\frac{\delta}{\Gamma(\nu-1)}\sum_{s=0}^{b+1} \bigl(b+\nu-\sigma (s)\bigr)^{\underline{\nu-2}}y(s)-\frac{\gamma}{\Gamma(\nu)}\sum _{s=0}^{b} \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-1}}y(s). \end{aligned}$$
Thus, by using a simple calculation, we get
$$\begin{aligned}& c_{1}=-\frac{1}{\beta_{0}\theta\eta^{\underline{\nu-3}}\Gamma(\nu)}\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) \\& \hphantom{c_{1}={}}{}-\frac{\gamma+\delta(\nu-1)}{\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}}\sum _{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}}y(s), \\& c_{2}=\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline{\nu-3}}\Gamma(\nu)}\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) \\& \hphantom{c_{2}={}}{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu -4}}} \\& \hphantom{c_{2}={}}{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y(s) \end{aligned}$$
and
$$\begin{aligned} c_{3} =&\frac{(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}}{\theta^{2}\beta_{0}\eta ^{\underline{\nu-3}}\Gamma(\nu)}\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) \\ &{}+\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]}{\theta\beta _{0}\mu\Gamma(\nu) (b+\nu)^{\underline{\nu-4}}}\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma (s)\bigr)^{\underline{\nu-2}}y(s). \end{aligned}$$
Hence,
$$\begin{aligned} x_{0}(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times \sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) \\ &{}+\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y(s) =\sum_{s=0}^{b+1}G(s,t,\eta)y(s). \end{aligned}$$
Now, let \(x_{0}\) be a solution for the equation \(x(t)=\sum_{s=0}^{b+1}G(s,t,\eta)y(s)\). Then we have
$$\begin{aligned} x_{0}(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)] t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y(s). \end{aligned}$$
Since \((\nu-3)^{\underline{\nu-1}}=(\nu-3)^{\underline{\nu-2}}=0\), \((\nu -3)^{\underline{\nu-3}}=(\nu-3)^{\underline{\nu-4}}=\Gamma(\nu-2)\), and
$$\sum_{s=0}^{-3}\bigl(\nu-3-\sigma(s) \bigr)^{\underline{\nu-1}}y(s)=\sum_{s=0}^{-2} \bigl(\nu-3-\sigma(s)\bigr)^{\underline{\nu-2}}y(s)=0, $$
we get \(\xi x_{0}(\nu-3)+\beta\Delta x_{0}(\nu-3)=0\). A simple calculation shows us \(\gamma x_{0}(b+\nu)+\delta\Delta x_{0}(b+\nu)=0\) and \(x_{0}(\eta)=0\). On the other hand,
$$x_{0}(t)=c_{1}t^{\underline{\nu-1}}+c_{2}t^{\underline{\nu-2}} +c_{3}t^{\underline{\nu-3}}+\frac{1}{\Gamma(\nu)}\sum _{s=0}^{t-\nu }\bigl(t-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) $$
is a solution for the equation \(\Delta^{\nu}_{\nu-3} x(t)=y(t)\) and so \(\Delta^{\nu}_{\nu-3} x_{0}(t)=y(t)\). □
A function \(x:\mathbb{N}_{\nu-3}^{b+\nu+1}\to\mathbb{R}\) is a solution of the problem (3) whenever it satisfies the boundary conditions and there exists a function \(y:\mathbb{N}_{0}^{b+1}\to\mathbb {R}\) such that
$$y(t)\in F\bigl(t, x(t),\Delta x(t),\Delta^{2} x(t)\bigr) $$
for all \(t\in\mathbb{N}_{0}^{b+1}\) and
$$\begin{aligned} x(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y(s). \end{aligned}$$
Let \(\mathcal{X}\) be the set of all functions \(x:\mathbb{N}_{\nu -3}^{b+\nu+1}\to\mathbb{R}\) endowed with the norm
$$\|x\|=\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}\bigl\vert x(t)\bigr\vert +\max _{t\in\mathbb {N}_{\nu-3}^{b+\nu+1}}\bigl\vert \Delta x(t)\bigr\vert +\max _{t\in\mathbb{N}_{\nu-3}^{b+\nu +1}}\bigl\vert \Delta^{2} x(t)\bigr\vert . $$
We show that \((\mathcal{X},\|\cdot\|)\) is a Banach space. Let \(\{x_{n}\}\) be a Cauchy sequence in \(\mathcal{X}\) and \(\epsilon>0\) be given. Choose a natural number N such that \(\|x_{n}-x_{m}\|<\epsilon\) for all \(m,n>N\). This implies that \(\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}|x_{n}(t)-x_{m}(t)|<\epsilon\), \(\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}|\Delta x_{n}(t)-\Delta x_{m}(t)|<\epsilon\) and
$$\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}\bigl\vert \Delta^{2} x_{n}(t)-\Delta^{2} x_{m}(t)\bigr\vert < \epsilon. $$
Choose \(x(t), z(t), w(t)\in\mathbb{R}\) such that \(x_{n}(t)\to x(t)\), \(\Delta x_{n}(t)\to z(t)\), and \(\Delta^{2} x_{n}(t)\to w(t)\) for all \(t\in \mathbb{N}_{\nu-3}^{b+\nu+1}\). Note that \(\Delta x_{n}(t)=x_{n}(t+1)-x_{n}(t)\) and so \(\Delta x(t)=x(t+1)-x(t)=z(t)\). Similarly, we get \(\Delta^{2} x(t)=w(t)\). This implies that \(|x_{n}(t)-x(t)|<\frac{\epsilon}{3}\), \(|\Delta x_{n}(t)-\Delta x(t)|<\frac {\epsilon}{3}\), and \(|\Delta^{2} x_{n}(t)-\Delta^{2} x(t)|<\frac{\epsilon }{3}\) for all \(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\) and \(n>M\) for some natural number M. Thus,
$$\|x_{n}-x\|=\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}\bigl\vert x_{n}(t)-x(t)\bigr\vert +\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}}\bigl\vert \Delta x_{n}(t)-\Delta x(t)\bigr\vert +\max_{t\in\mathbb{N}_{\nu-3}^{b+\nu+1}} \bigl\vert \Delta^{2} x(t)-\Delta^{2} x(t)\bigr\vert < \epsilon. $$
Hence, \((\mathcal{X},\|\cdot\|)\) is a Banach space.
Let \(x\in\mathcal {X}\). Define the set of selections of F by
$$S_{F,x}=\bigl\{ y:\mathbb{N}_{0}^{b+1}\to\mathbb{R} \mid y(t)\in F\bigl(t, x(t),\Delta x(t),\Delta^{2} x(t)\bigr) \mbox{ for all } t \in\mathbb {N}_{0}^{b+1}\bigr\} . $$
Since \(F(t, x(t),\Delta x(t),\Delta^{2} x(t))\neq\emptyset\), the selection principle implies that \(S_{F,x}\) is nonempty.
Theorem 3.2
Suppose that
\(\psi\in\Psi\)
and
\(F: \mathbb{N}_{\nu-3}^{b+\nu+1}\times \mathbb{R} \times\mathbb{R}\times\mathbb{R}\to P_{\mathrm{cp}}(\mathbb{R})\)
is a multifunction such that
$$H_{d}\bigl(F(t,x_{1},x_{2},x_{3})-F(t,z_{1},z_{2},z_{3}) \bigr)\leq\psi\bigl(\vert x_{1}-z_{1}\vert +\vert x_{2}-z_{2}\vert +\vert x_{3}-z_{3} \vert \bigr) $$
for all
\(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\)
and
\(x_{1},x_{2},x_{3},z_{1},z_{2},z_{3}\in\mathbb{R}\). Then the boundary value inclusion (3) has a solution.
Proof
Choose \(y\in S_{F,x}\) and put \(h(t)=\sum_{s=0}^{b+1}G(t,s,\eta)y(s)\) for all \(t\in\mathbb{N}_{\nu-3}^{\nu+b+1}\). Then \(h\in\mathcal{X}\) and so the set
$$\Biggl\{ h\in\mathcal{X}: \mbox{there exists } y\in S_{F,x} \mbox{ such that } h(t)=\sum_{s=0}^{b+1}G(t,s,\eta)y(s) \mbox{ for all } t\in\mathbb {N}_{\nu-3}^{b+\nu+1} \Biggr\} $$
is nonempty. Now define \(\mathcal{F}: \mathcal{X}\to2^{\mathcal{X}}\) by
$$\begin{aligned} \mathcal{F}(x) =& \Biggl\{ h\in\mathcal{X}: \mbox{there exists } y\in S_{F,x} \mbox{ such that } h(t)=\sum_{s=0}^{b+1}G(t,s, \eta)y(s) \\ &\mbox{for all } t\in\mathbb{N}_{\nu-3}^{b+\nu+1} \Biggr\} . \end{aligned}$$
We show that the multifunction \(\mathcal{F}\) has a fixed point. First, we show that \(\mathcal{F}(x)\) is closed subset of \(\mathcal{X}\) for all \(x\in\mathcal{X}\). Let \(x\in\mathcal{X}\) and \(\{u_{n}\}_{n\geq1}\) be a sequence in \(\mathcal{F}(x)\) with \(u_{n}\to u\). For each n, choose \(y_{n} \in S_{F,x}\) such that
$$\begin{aligned} u_{n}(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y_{n}(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y_{n}(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y_{n}(s) \end{aligned}$$
for all \(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\). Since F has compact values, \(\{y_{n}\}_{n\geq1}\) has a subsequence which converges to some \(y\in S_{F,x}\). We denote this subsequence again by \(\{y_{n}\}_{n\geq 1}\). So
$$\begin{aligned} u_{n}(t) \to& u(t) \\ =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y(s) \end{aligned}$$
for all \(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\). This implies that \(u\in \mathcal{F}(x)\). Thus, the multifunction \(\mathcal{F}\) has closed values. Since F is a compact multifunction, it is easy to check that \(\mathcal {F}(x)\) is bounded set in \(\mathcal{X}\) for all \(x\in\mathcal{X}\). Let \(x,z\in\mathcal{X}\), \(h_{1}\in\mathcal{F}(x)\), and \(h_{2}\in\mathcal {F}(z)\). Choose \(y_{1}\in S_{F,x}\) and \(y_{2}\in S_{F,z}\) such that
$$\begin{aligned} h_{1}(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y_{1}(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y_{1}(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y_{1}(s) \end{aligned}$$
and
$$\begin{aligned} h_{2}(t) =& \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y_{2}(s) \\ &{}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y_{2}(s) +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)}y_{2}(s) \end{aligned}$$
for all \(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\). Since
$$\begin{aligned}& H_{d}\bigl(F\bigl(t,x(t),\Delta x(t),\Delta^{2} x(t) \bigr)-F\bigl(t,z(t),\Delta z(t),\Delta^{2} z(t)\bigr)\bigr) \\& \quad \leq \psi\bigl(\bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)-\Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)- \Delta^{2} z(t)\bigr\vert \bigr) \end{aligned}$$
for all \(x,z\in\mathcal{X}\) and \(t\in\mathbb{N}_{\nu-3}^{b+\nu+1}\), we get
$$\bigl\vert y_{1}(t)-y_{2}(t)\bigr\vert \leq\psi\bigl( \bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)-\Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)-\Delta^{2} z(t)\bigr\vert \bigr). $$
Now, put
$$\begin{aligned}& G_{1}=\max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{[\gamma +\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-3}} -\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{\theta\beta_{0}\mu \Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \hphantom{G_{1}={}}{}-\frac{[\xi-\beta(\nu-3)] [\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu -4}}}\biggr\vert \\& \hphantom{G_{1}={}}{}\times\sum _{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}} +\biggl\vert \frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\& \hphantom{G_{1}={}}{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)}\biggr\vert \\& \hphantom{G_{1}={}}{}\times\sum _{s=0}^{\eta-\nu}\bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}+ \sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)} \Biggr\} , \\& G_{2}=\max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{(\nu -3)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-4}}}{\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \hphantom{G_{2}={}}{}-\frac{(\nu-1)\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-2}}}{\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \hphantom{G_{2}={}}{}-\frac{[\xi-\beta(\nu-3)] [\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -3}}}{\beta\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}}\biggr\vert \\& \hphantom{G_{2}={}}{}\times\sum _{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s) \bigr)^{\underline{\nu-2}} \\& \hphantom{G_{2}={}}{}+\biggl\vert \frac{(\nu-3)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}-\theta(\nu-1) t^{\underline{\nu-2}}}{\beta _{0}\theta^{2}\eta^{\underline{\nu-3}}\Gamma(\nu)} \\& \hphantom{G_{2}={}}{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-3}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\& \hphantom{G_{2}={}}{}\times\sum _{s=0}^{\eta-\nu}\bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}+ \sum_{s=0}^{t-\nu+1}\frac{(t-\sigma(s))^{\underline{\nu-2}}}{\Gamma(\nu -1)} \Biggr\} \end{aligned}$$
and
$$\begin{aligned} G_{3} =&\max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{(\nu-3)(\nu-4)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)] t^{\underline{\nu-5}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}} \\ &{}-\frac{(\nu-1)(\nu-2)\theta[\gamma+\delta(\nu -1)]t^{\underline{\nu-3}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}} \\ &{}-\frac{(\nu-3)[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu )(\eta+3-\nu)]t^{\underline{\nu-4}}}{\beta\theta\beta_{0}\mu\Gamma(\nu) (b+\nu)^{\underline{\nu-4}}}\biggr\vert \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma (s)\bigr)^{\underline{\nu-2}} \\ &{}+\biggl\vert \frac{(\nu-3)(\nu-4)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-5}} -\theta(\nu-1)(\nu-2) t^{\underline{\nu-3}}}{\beta_{0}\theta^{2}\eta ^{\underline{\nu-3}}\Gamma(\nu)} \\ &{}+\frac{(\nu-3)[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} +\sum_{s=0}^{t-\nu+2}\frac{(t-\sigma(s))^{\underline{\nu-3}}}{\Gamma(\nu -2)} \Biggr\} . \end{aligned}$$
Then we have
$$\begin{aligned}& \bigl\vert h_{1}(t)-h_{2}(t)\bigr\vert \\& \quad = \Biggl\vert \biggl[\frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu )(\eta+3-\nu)]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\& \qquad {}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \biggr] \\& \qquad {}\times \sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}(y_{1}-y_{2}) (s) \\& \qquad {}+ \biggl[\frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\& \qquad {}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)} \biggr] \\& \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}(y_{1}-y_{2}) (s) +\sum_{s=0}^{t-\nu} \frac{(t-\sigma(s))^{\underline{\nu-1}}}{ \Gamma(\nu)}(y_{1}-y_{2}) (s)\Biggr\vert \\& \quad \leq \biggl\vert \frac{[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-1}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)] t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}\bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert \\& \qquad {}+\biggl\vert \frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\& \qquad {}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} \bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert +\sum_{s=0}^{t-\nu}\frac{(t-\sigma(s))^{\underline{\nu-1}}}{ \Gamma(\nu)} \bigl\vert y_{1}(s)-y_{2}(s)\bigr\vert \\& \quad \leq \max_{t\in\mathbb{N}_{0}^{b+1}}\bigl\vert y_{1}(t)-y_{2}(t) \bigr\vert \\& \qquad {}\times\max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{[\gamma+\delta (\nu-1)][(\eta+2-\nu) (\eta+3-\nu)]t^{\underline{\nu-3}}-\theta[\gamma+\delta(\nu -1)]t^{\underline{\nu-1}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}} \\& \qquad {}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta\beta_{0}\mu\Gamma(\nu) (b+\nu)^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma (s)\bigr)^{\underline{\nu-2}} +\biggl\vert \frac{[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta_{0}]t^{\underline{\nu -3}}-\theta t^{\underline{\nu-1}}}{\beta_{0}\theta^{2}\eta^{\underline{\nu -3}}\Gamma(\nu)} \\& \qquad {}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-2}}}{\beta(\nu-2)\theta^{2}\beta_{0}\eta^{\underline {\nu-3}}\Gamma(\nu)}\biggr\vert \\ & \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}+\sum_{s=0}^{t-\nu} \frac{(t-\sigma(s))^{\underline{\nu-1}}}{\Gamma(\nu)} \Biggr\} \\& \quad \leq \psi\bigl(\bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)-\Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)- \Delta^{2} z(t)\bigr\vert \bigr)\times G_{1}. \end{aligned}$$
Since
$$\begin{aligned} \Delta h_{1}(t) =& \biggl[\frac{(\nu-3)[\gamma+\delta(\nu-1)][(\eta+2-\nu )(\eta+3-\nu)]t^{\underline{\nu-4}}-(\nu-1)\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-2}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\ &{}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-3}}}{\beta\theta\beta_{0}\mu \Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \biggr] \\ &{}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}y_{1}(s) \\ &{}+ \biggl[\frac{(\nu-3)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}-\theta(\nu-1) t^{\underline{\nu-2}}}{\beta _{0}\theta^{2}\eta^{\underline{\nu-3}}\Gamma(\nu)} \\ &{}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-3}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)} \biggr] \\ &{}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}y_{1}(s) +\sum_{s=0}^{t-\nu+1}\frac{(t-\sigma(s))^{\underline{\nu-2}}}{\Gamma(\nu -1)}y_{1}(s), \end{aligned}$$
we get
$$\begin{aligned}& \bigl\vert \Delta h_{1}(t)-\Delta h_{2}(t)\bigr\vert \\& \quad \leq\biggl\vert \frac{(\nu-3)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-4}}-(\nu-1)\theta[\gamma+\delta(\nu-1)] t^{\underline{\nu-2}}}{\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline {\nu-4}}} \\& \qquad {}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu) (\eta+3-\nu)]t^{\underline{\nu-3}}}{\beta\theta\beta_{0}\mu\Gamma(\nu )(b+\nu)^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}}\bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert \\& \qquad {}+\biggl\vert \frac{(\nu-3)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}-\theta(\nu-1) t^{\underline{\nu-2}}}{\beta _{0}\theta^{2}\eta^{\underline{\nu-3}}\Gamma(\nu)} \\& \qquad {}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-3}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} \bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert +\sum_{s=0}^{t-\nu+1}\frac{(t-\sigma(s))^{\underline{\nu-2}}}{ \Gamma(\nu-1)} \bigl\vert y_{1}(s)-y_{2}(s)\bigr\vert \\& \quad \leq\max_{t\in\mathbb{N}_{0}^{b+1}}\bigl\vert y_{1}(t)-y_{2}(t) \bigr\vert \\ & \qquad {}\times \max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{(\nu-3)[\gamma +\delta(\nu-1)] [(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu-4}}}{\theta\beta_{0}\mu\Gamma(\nu) (b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{(\nu-1)\theta[\gamma +\delta(\nu-1)]t^{\underline{\nu-2}}}{\theta\beta_{0}\mu\Gamma(\nu) (b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta +3-\nu)]t^{\underline{\nu-3}}}{ \beta\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}} \\& \qquad {}+\biggl\vert \frac{(\nu-3)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}-\theta(\nu-1) t^{\underline{\nu-2}}}{\beta _{0}\theta^{2}\eta^{\underline{\nu-3}}\Gamma(\nu)} \\& \qquad {}+\frac{[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-3}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\& \qquad {}\times \sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}}+\sum_{s=0}^{t-\nu+1} \frac{(t-\sigma(s))^{\underline{\nu-2}}}{\Gamma(\nu -1)} \Biggr\} \\& \quad \leq\psi\bigl(\bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)-\Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)- \Delta^{2} z(t)\bigr\vert \bigr)\times G_{2}. \end{aligned}$$
Also, we have
$$\begin{aligned}& \bigl\vert \Delta^{2} h_{1}(t)-\Delta^{2} h_{2}(t)\bigr\vert \\& \quad \leq\biggl\vert \frac{(\nu-3)(\nu-4)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu )]t^{\underline{\nu-5}}}{\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{(\nu-1) (\nu-2)\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-3}}}{\theta\beta _{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{(\nu-3)[\xi-\beta(\nu-3)] [\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -4}}}{\beta\theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma(s)\bigr)^{\underline{\nu-2}} \bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert \\& \qquad {}+\biggl\vert \frac{(\nu-3)(\nu-4)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-5}} -\theta(\nu-1)(\nu-2) t^{\underline{\nu-3}}}{\beta_{0}\theta^{2}\eta ^{\underline{\nu-3}}\Gamma(\nu)} \\& \qquad {}+\frac{(\nu-3)[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} \bigl\vert y_{1}(s)-y_{2}(s) \bigr\vert +\sum_{s=0}^{t-\nu+2}\frac{(t-\sigma(s))^{\underline{\nu-3}}}{ \Gamma(\nu-2)} \bigl\vert y_{1}(s)-y_{2}(s)\bigr\vert \\& \quad \leq\max_{t\in\mathbb{N}_{0}^{b+1}}\bigl\vert y_{1}(t)-y_{2}(t) \bigr\vert \\ & \qquad {}\times \max_{t\in \mathbb{N}_{\nu-3}^{b+1+\nu}} \Biggl\{ \biggl\vert \frac{(\nu-3) (\nu-4)[\gamma+\delta(\nu-1)][(\eta+2-\nu)(\eta+3-\nu)]t^{\underline{\nu -5}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{(\nu-1)(\nu-2)\theta[\gamma+\delta(\nu-1)]t^{\underline{\nu-3}}}{ \theta\beta_{0}\mu\Gamma(\nu)(b+\nu)^{\underline{\nu-4}}} \\& \qquad {}-\frac{(\nu-3)[\xi-\beta(\nu-3)][\gamma+\delta(\nu-1)][(\eta+2-\nu )(\eta+3-\nu)] t^{\underline{\nu-4}}}{\beta\theta\beta_{0}\mu\Gamma(\nu)(b+\nu )^{\underline{\nu-4}}}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{b+1}(b-s+2) \bigl(b+\nu-\sigma (s)\bigr)^{\underline{\nu-2}} \\& \qquad {}+\biggl\vert \frac{(\nu-3)(\nu-4)[(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-5}} -\theta(\nu-1)(\nu-2) t^{\underline{\nu-3}}}{\beta_{0}\theta^{2}\eta ^{\underline{\nu-3}}\Gamma(\nu)} \\& \qquad {}+\frac{(\nu-3)[-\xi+\beta(\nu-3)][(\eta+2-\nu)(\eta+3-\nu)-\theta\beta _{0}]t^{\underline{\nu-4}}}{\beta\theta^{2}\beta_{0}\eta^{\underline{\nu -3}}\Gamma(\nu)}\biggr\vert \\& \qquad {}\times\sum_{s=0}^{\eta-\nu} \bigl(\eta-\sigma(s)\bigr)^{\underline{\nu-1}} +\sum_{s=0}^{t-\nu+2}\frac{(t-\sigma(s))^{\underline{\nu-3}}}{\Gamma(\nu -2)} \Biggr\} \\& \quad \leq\psi\bigl(\bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)-\Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)- \Delta^{2} z(t)\bigr\vert \bigr)\times G_{3}. \end{aligned}$$
Hence, we obtain
$$\begin{aligned} \|h_{1}-h_{2}\| =&\max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}}\bigl\vert h_{1}(t)-h_{2}(t)\bigr\vert + \max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}} \bigl\vert \Delta h_{1}(t)-\Delta h_{2}(t)\bigr\vert \\ &{}+ \max_{t\in\mathbb{N}_{\nu-3}^{b+1+\nu}}\bigl\vert \Delta^{2} h_{1}(t)- \Delta^{2} h_{2}(t)\bigr\vert \\ \leq&\psi\bigl(\bigl\vert x(t)-z(t)\bigr\vert +\bigl\vert \Delta x(t)- \Delta z(t)\bigr\vert +\bigl\vert \Delta^{2} x(t)- \Delta^{2} z(t)\bigr\vert \bigr) (G_{1}+G_{2}+G_{3}) \\ \leq&(G_{1}+G_{2}+G_{3})\psi\bigl(\Vert x-z \Vert \bigr) \end{aligned}$$
for all \(x,z\in\mathcal{X}\), \(h_{1}\in\mathcal{F}(x)\), and \(h_{2}\in \mathcal{F}(z)\). So \(H_{d}(\mathcal{F}(x),\mathcal{F}(z))\leq(G_{1}+G_{2}+G_{3})\psi(\|x-z\|)\) for all \(x,z\in\mathcal{X}\).
Define the function α on \(\mathcal{X}\times\mathcal{X}\) by \(\alpha(x,z)=1\) whenever \(G_{1}+G_{2}+G_{3}< 1\) and \(\alpha(x,z)=\frac{1}{G_{1}+G_{2}+G_{3}}\) otherwise. Thus,
$$\alpha(x,z) H_{d}\bigl(\mathcal{F}(x),\mathcal{F}(z)\bigr)\leq\psi \bigl(\Vert x-z\Vert \bigr) $$
for all \(x,z\in\mathcal{X}\). Let \(\{x_{n}\}\) be a sequence in \(\mathcal {X}\) with \(\alpha(x_{n}, x_{n+1})\geq1\) for all n and \(x_{n}\to x\). Then it is easy to check that there exists a subsequence \(\{x_{n_{k}}\}\) of \(\{ x_{n}\}\) such that \(\alpha(x_{n_{k}},x)\geq1\) for all k. This implies that \(\mathcal{X}\) obeys the condition (\(C_{\alpha}\)). If \(x\in\mathcal {X}\) and \(y\in\mathcal{F}(x)\) with \(\alpha(x, y)\geq1\), then it is easy to see that \(\alpha(y, z)\geq1\) for all \(z\in\mathcal{F}(y)\). Thus, \(\mathcal{F}\) is an α-admissible α-ψ-contractive multifunction. Hence by using Theorem 2.2, there exists \(x^{*}\in\mathcal{X}\) such that \(x^{*}\in\mathcal{F}(x^{*})\). One can check that \(x^{*}\) is a solution for the problem (3). □
Example 3.1
Consider the fractional finite difference inclusion
$$ \Delta^{2.5}_{-0.5}x(t)\in \biggl[1 , e^{t^{2}}+2+\frac{\sin x(t)}{e^{2|t|}}+\sinh^{2} t+\frac{|\Delta x(t)|}{4|t|}+ \frac {3}{6t^{2}-1}+\frac{|\Delta^{2}x(t)|}{\cosh|3t|} \biggr] $$
(4)
via the boundary value conditions \(\xi x(-0.5)+\beta\Delta x(-0.5)=0\), \(\gamma x(6.5)+\delta\Delta x(6.5)=0\), and \(x(3.5)=0\), where ξ, β, γ, δ are non-zero numbers. In fact, this problem is a special case of the problem (3), where \(\nu=2.5\), \(\eta =3.5\), \(b=4\), and
$$F(t,x_{1},x_{2},x_{3})= \biggl[1 , e^{t^{2}}+2+\frac{\sin x_{1}}{e^{2|t|}}+\sinh^{2} t+\frac{|x_{2}|}{4|t|}+ \frac{3}{6t^{2}-1}+\frac {|x_{3}|}{\cosh|3t|} \biggr]. $$
Note that \(e^{t^{2}}+2+\frac{\sin x_{1}}{e^{2|t|}}+\sinh^{2} t+\frac {|x_{2}|}{4|t|}+\frac{3}{6t^{2}-1}+\frac{|x_{3}|}{\cosh|3t|}>1\) for all \(t\in \mathbb{N}_{-0.5}^{7.5}\) and \(x_{1},x_{2},x_{3}\in\mathbb{R}\). Also, \(e^{2|t|}\geq2\), \(4|t|\geq2\), and \(\cosh|3t|\geq2\) for all \(t\in \mathbb{N}_{-0.5}^{7.5}\) and F is a compact valued multifunction on \(\mathbb{N}_{-0.5}^{7.5}\times\mathbb{R}\times\mathbb{R}\times\mathbb {R}\). Now, define \(\psi\in\Psi\) by \(\psi(z)=\frac{z}{2}\) for all \(z\geq0\). Since
$$\begin{aligned}& H_{d}\bigl(F(t,x_{1},x_{2},x_{3}),F(t,z_{1},z_{2},z_{3}) \bigr) \\& \quad \leq\biggl\vert \frac{\sin x_{1}}{e^{2|t|}}-\frac{x_{2}}{4|t|}+ \frac{x_{3}}{\cosh|3t|}-\frac{\sin z_{1}}{e^{2|t|}}+\frac{z_{2}}{4|t|}-\frac{z_{3}}{\cosh|3t|}\biggr\vert \\& \quad \leq\frac{|x_{1}-z_{1}|+|x_{2}-z_{2}|+|x_{3}-z_{3}|}{2} \\& \quad =\psi\bigl(\vert x_{1}-z_{1} \vert +\vert x_{2}-z_{2}\vert +\vert x_{3}-z_{3}\vert \bigr) \end{aligned}$$
for all \(t\in\mathbb{N}_{-0.5}^{7.5}\) and \(x_{1},x_{2},x_{3},z_{1},z_{2},z_{3}\in \mathbb{R}\), by using Theorem 3.2 the problem (4) has at least one solution.