Skip to main content

Theory and Modern Applications

Positive solutions of fractional differential equation nonlocal boundary value problems

Abstract

In this paper, we study the existence and uniqueness of positive solutions for a class of higher-order nonlocal fractional differential equations with Riemann-Stieltjes integral boundary conditions. We firstly convert the problem to an equivalent integral equation, and then by applying a fixed point theorem of a sum operator, the existence and uniqueness of positive solutions is established. Furthermore, an iterative scheme to approximate the solution is constructed and an example is given to illuminate the application of the main results.

1 Introduction

In this paper, we are interested in the existence and uniqueness of positive solutions for a fractional differential equation nonlocal boundary value problem (BVP for short):

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t), x(t))+g(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{(k)}(0)=0, \quad 0\leq k\leq n-2, \qquad x(1)=\int_{0}^{1}x(s)\,dA(s), \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$
(1)

where \(D_{0+}^{\alpha}\) is the standard Riemann-Liouville fractional derivative, \(f: [0, 1]\times[0, +\infty)\times[0, +\infty)\rightarrow[0, +\infty )\) and \(g: [0, 1]\times[0, +\infty)\rightarrow[0, +\infty)\) are continuous, \(\int_{0}^{1}x(s)\,dA(s)\) denotes the Riemann-Stieltjes integral of x with respect to A, \(A: [0, 1]\rightarrow R\) is a function of bounded variation and dA can be a signed measure. Here we also recall that the idea using a Riemann-Stieltjes integral with a signed measures is due to Webb and Infante in [1, 2], which can cover the multi-point boundary conditions and the integral boundary conditions in a single framework as special cases.

Differential equations have recently been proved to be a valuable tool in modeling many phenomena arising from various fields of science and engineering. In consequence, the subject of differential equations has received much attention and many results on boundary value problems of differential equations have been reported. In particular, since many phenomena arising in a variety of different areas of applied mathematics and physics, such as heat conduction, polymer rheology, chemistry physics, fluid flows and electrical networks can be reduced to nonlocal Riemann-Stieltjes integral boundary value problems, a lot of work has been carried out to deal with the existence of solutions of nonlocal boundary value problems by using techniques of functional analysis (see [3–13]). In [14], the existence and uniqueness of positive solutions for the following nonlocal BVP:

$$ \left \{ \textstyle\begin{array}{l} -x''(t)=f(t, x(t))-k^{2}x, \quad 0< t< 1,\\ x(0)=0, \qquad x(1)=\int_{0}^{1}x(s)\,dA(s), \end{array}\displaystyle \displaystyle \displaystyle \right . $$

is investigated by using the monotone iterative technique, where dA is allowed to be a signed measure. The same problem was studied by Webb and Zima [15] and the existence of multiple positive solutions under suitable conditions on \(f(t, x)\) was established.

On the other hand, fractional differential operator is nonlocal and thus fractional differential equations serve as an excellent tool for the description of hereditary properties of various materials and processes and many physical phenomena in natural sciences and engineering, such as earthquake, traffic flow, measurement of viscoelastic material properties, electrodynamics of a complex medium, polymer rheology (see [16–24]). Recently, Ahmad and Nieto [25] discussed the nonlinear Dirichlet boundary value problems of sequential fractional integro-differential equations in the sense of the Caputo fractional derivative, and the existence results are established by means of some standard tools of fixed point theory. Some special cases of the BVP (1) were also studied, for example, Salm [26] studied the case of multi-point boundary vale problems when \(x(1)=\sum_{i = 1}^{m-2}\zeta_{i}x(\eta_{i})\) and \(g(t, x(t))\equiv0\), and Zhang and Han [27] considered a singular \((n-1, n)\) conjugate-type fractional differential equation

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t)), \quad 0< t< 1, \alpha\in(n-1, n], \alpha\geq2,\\ x(0)=x'(0)=\cdots=x^{(n-2)}(0)=0, \qquad x(1)=\int_{0}^{1}x(s)\,dA(s), \end{array}\displaystyle \displaystyle \displaystyle \right . $$

and the existence and uniqueness of the positive solutions was obtained provided that \(f(t, x)\) satisfies some growth conditions.

Motivated by the work mentioned above, we focus on the existence and uniqueness of positive solutions for the nonlocal BVP (1) based on a fixed point theorem of a sum operator. Our work presented in this work has the following new features. Firstly, the existence and uniqueness of positive solutions are obtained, which possess a nice estimate, i.e., there exist \(\lambda>\mu >0\) such that \(\mu t^{\alpha-1} \leq x^{*}(t)\leq\lambda t^{\alpha-1}\); secondly, the boundary conditions are nonlocal which involve the Riemann-Stieltjes integral of x with respect to A, moreover, dA can be a signed measure, this implies that it can cover the multi-point and integral boundary value problems as special cases; thirdly, we also construct an iterative sequence to approximate the positive solution.

The rest of this paper is organized as follows. In Section 2, we recall some definitions and facts. In Section 3, the main results are discussed by using the properties of the Green function and a fixed point theorem of a sum operator. Finally, in Section 4, an illustrative example is also presented.

2 Preliminaries

We use the following notations in this paper:

$$\Lambda=\int_{0}^{1}t^{\alpha-1}\,dA(t),\qquad \Gamma(\alpha)=\int_{0}^{\infty}t^{\alpha-1}e^{-t}\,dt. $$

Now we begin this section with some preliminaries of cone and fractional calculus. Recall that a non-empty closed convex set \(P\subset E\) is called a cone if it satisfies

  1. (i)

    \(x\in P\), \(\lambda\geq0\Rightarrow\lambda x\in P \), and

  2. (ii)

    \(x\in P\), \(-x\in P\Rightarrow x=\theta\),

where \((E,\Vert \cdot \Vert )\) is a real Banach space with partially ordered by a cone \(P \subset E\), i.e., \(x\leq y\) if and only if \(y-x\in P\). Cone P is called normal if there exists a constant \(N>0\) such that, for all \(x, y \in E\), \(\theta\leq x\leq y\) implies \(\Vert x\Vert \leq N\Vert y\Vert \), and N is called the normal constant. If \(x, y\in E\), the set \([x, y]=\{z\in E\mid x\leq z\leq y\}\) is called the order interval, and denote \(x\sim y\) if there exist \(\lambda>0\) and \(\mu>0\) such that \(\lambda x\leq y\leq\mu x\). Clearly, ∼ is an equivalence relation. Given \(h> \theta\) (i.e., \(h\geq\theta\) and \(h\neq \theta\)), let \(P_{h}=\{x\in E\mid x\sim h\}\).

We say that an operator \(A: E\rightarrow E\) is increasing (decreasing) if \(x\leq y\) implies \(Ax\leq Ay\) (\(Ax\geq Ay\)).

Definition 2.1

([28])

Let \(x:[a, \infty)\rightarrow R\) and \(\alpha>0\) with \(\alpha\in R\). Then the Riemann-Liouville fractional integral is defined to be

$$I_{0+}^{\alpha}x(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t}(t-s)^{\alpha-1}x(s)\,ds, $$

whenever the right side is defined. Similarly, \(\alpha>0\) with \(\alpha\in R\), we define the αth Riemann-Liouville fractional derivative to be

$$D_{0+}^{\alpha}x(t)=\frac{1}{\Gamma(n-\alpha)} \biggl( \frac{d}{dt} \biggr)^{(n)}\int_{a}^{t}(t-s)^{n-\alpha-1}x(s)\,ds, $$

where \(n\in N\) is the unique positive integer satisfying \(n-1\leq\alpha< n\) and \(t>a\).

Proposition 2.1

([28])

The equality

$$D_{0+}^{\alpha}I_{0+}^{\alpha}f(x)=f(x),\quad \alpha>0, $$

holds for \(f\in L^{1}(a, b)\).

In [29], the authors obtained the following results.

Lemma 2.1

([29])

Given \(y\in C[0, 1]\). Then the BVP:

$$ \left \{ \textstyle\begin{array}{l} D_{0+}^{\alpha}x(t)+y(t)=0, \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x(0)=x'(0)=\cdots=x^{(n-2)}(0)=0,\qquad x(1)=0,\end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$
(2)

has a unique solution

$$x(t)=\int_{0}^{1}G(t, s)y(s)\,ds, $$

where

$$G(t, s) = \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{[t(1-s)]^{\alpha-1}}{\Gamma(\alpha)}, & 0\leq t\leq s\leq1,\\ \frac{[t(1-s)]^{\alpha-1}-(t-s)^{\alpha-1}}{\Gamma(\alpha)}, &0\leq s\leq t\leq1, \end{array}\displaystyle \right . $$

is the Green function of BVP (2).

Lemma 2.2

([29])

The Green function \(G(t, s)\) satisfies the following properties:

  1. (1)

    \(G(t, s)>0\), for all \(t, s\in(0, 1)\);

  2. (2)
    $$ (1-t)t^{\alpha-1}s(1-s)^{\alpha-1} \leq\Gamma(\alpha)G(t, s) \leq (\alpha-1) (1-t)t^{\alpha-1}, \quad \textit{for } t, s\in[0, 1]. $$

The following lemmas are obtained by Zhang and Han [27].

Lemma 2.3

([27])

Given \(y\in L^{1}[0, 1]\). Then the BVP:

$$ \left \{ \textstyle\begin{array}{l} D_{0+}^{\alpha}x(t)+y(t)=0, \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x(0)=x'(0)=\cdots=x^{(n-2)}(0)=0,\qquad x(1)=\int_{0}^{1}x(s)\,dA(s),\end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$
(3)

has a unique solution

$$x(t)=\int_{0}^{1}H(t, s)y(s)\,ds, $$

where \(H(t, s)\) is the Green function of BVP (3) and is given by

$$ H(t, s)=\frac{t^{\alpha-1}}{1-\Lambda}\mathscr{G}_{A}(s)+G(t, s), \quad \mathscr{G}_{A}(s)=\int_{0}^{1}G(t, s)\,dA(t). $$
(4)

Lemma 2.4

Let \(0\leq\Lambda<1\) and \(\mathscr{G}_{A}(s)\geq0\) for \(s\in[0, 1]\). Then the Green function defined by (4) satisfies the following properties:

  1. (1)

    \(H(t, s)>0\), for all \(t, s\in(0, 1)\);

  2. (2)
    $$ \frac{1}{1-\Lambda}t^{\alpha-1}\mathscr{G}_{A}(s) \leq H(t, s)\leq \biggl(\frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda} +\frac{1}{\Gamma(\alpha-1)} \biggr)t^{\alpha-1}, \quad \textit{for } t, s\in[0, 1]. $$

We recall the following lemmas and definitions which are important to prove our main results.

Definition 2.2

([30])

An operator \(A: E\rightarrow E\) is said to be positive homogeneous if it satisfies \(A(tx)=tAx\), \(\forall t>0\), \(x\in E\). An operator \(A: P\rightarrow P\) is said to be sub-homogeneous if it satisfies

$$A(tx)\geq tAx, \quad \forall t\in(0,1), x\in P. $$

Definition 2.3

([30])

Let r be a real number with \(0\leq r<1\). An operator \(A: P\rightarrow P\) is said to be r-concave if it satisfies

$$A(tx)\geq t^{r}Ax, \quad \forall t\in(0, 1), x\in P. $$

Lemma 2.5

([31])

Let \(h>\theta \) and \(\beta\in(0, 1)\), \(A: P\times P\rightarrow P\) is a mixed monotone operator satisfying

$$ A\bigl(tx, t^{-1}y\bigr)\geq t^{\beta}A(x, y), \quad \forall t\in(0, 1), x, y\in P, $$
(5)

and \(B: P \rightarrow P\) is an increasing sub-homogeneous operator. Assume that

  1. (i)

    there is a \(h_{0}\in P_{h}\) such that \(A(h_{0}, h_{0})\in P_{h}\) and \(Bh_{0}\in P_{h}\);

  2. (ii)

    there exists a constant \(\delta_{0}>0\) such that \(A(x, y)\geq\delta_{0}Bx\), \(\forall x, y\in P\).

Then

  1. (1)

    \(A: P_{h}\times P_{h}\rightarrow P_{h}\), \(B: P_{h}\rightarrow P_{h}\);

  2. (2)

    there exist \(u_{0}, v_{0}\in P_{h}\) and \(\gamma\in(0, 1)\) such that

    $$\gamma v_{0}\leq u_{0}< v_{0},\qquad u_{0} \leq A(u_{0}, v_{0})+ Bu_{0}\leq A(v_{0}, u_{0})+Bv_{0}\leq v_{0}; $$
  3. (3)

    the operator equation \(A(x, x)+Bx=x\) has a unique solution \(x^{*}\) in \(P_{h}\);

  4. (4)

    for any initial values \(x_{0}, y_{0} \in P_{h}\), constructing successively sequences

    $$x_{n}= A(x_{n-1}, y_{n-1})+Bx_{n-1}, y_{n}=A(y_{n-1}, x_{n-1})+By_{n-1},\quad n=1, 2, \ldots, $$

    then \(x_{n}\rightarrow x^{*}\) and \(y_{n}\rightarrow x^{*}\) as \(n\rightarrow \infty\).

Lemma 2.6

([32])

Let \(A: P\rightarrow P\) be an increasing γ-concave operator and \(B: P \rightarrow P\) is an increasing sub-homogeneous operator. Assume that

  1. (i)

    there exists a \(h>\theta\) such that \(Ah\in P_{h}\) and \(Bh\in P_{h}\);

  2. (ii)

    there exists a constant \(\delta_{0}>0\) such that \(Ax\geq\delta_{0}Bx\), \(\forall x\in P\).

Then the operator equation \(Ax+Bx=x\) has a unique solution \(x^{*}\) in \(P_{h}\). Moreover, for any initial value \(y_{0} \in P_{h}\), constructing successively sequences \(y_{n}=Ay_{n-1}+By_{n-1}\), \(n=1, 2, \ldots\) , then \(y_{n}\rightarrow x^{*}\) as \(n\rightarrow\infty\).

Remark 2.1

If operator \(B\equiv0\), Lemma 2.5, and Lemma 2.6 still hold.

Lemma 2.7

([31])

Let \(h>\theta\) and \(\alpha\in(0, 1)\). \(A: P\times P\rightarrow P\) is a mixed monotone operator and satisfies

$$ A\bigl(tx, t^{-1}y\bigr)\geq tA(x, y), \quad \forall t \in(0, 1), x, y \in P. $$
(6)

\(B: P\rightarrow P\) is an increasing α-concave operator. Assume that

  1. (i)

    there is a \(h_{0}\in P_{h}\) such that \(A(h_{0}, h_{0})\in P_{h}\) and \(Bh_{0}\in P_{h}\);

  2. (ii)

    there exists a constant \(\delta_{0}>0\) such that \(A(x, y)\leq\delta_{0}Bx\), \(\forall x, y\in P\).

Then

  1. (1)

    \(A: P_{h}\times P_{h}\rightarrow P_{h}\) and \(B: P_{h}\rightarrow P_{h}\);

  2. (2)

    there exist \(u_{0}, v_{0}\in P_{h}\) and \(\gamma\in(0, 1)\) such that

    $$\gamma v_{0}\leq u_{0}< v_{0}, \qquad u_{0}\leq A(u_{0}, v_{0})+ Bu_{0}\leq A(v_{0}, u_{0})+Bv_{0}\leq v_{0}; $$
  3. (3)

    the operator equation \(A(x, x)+Bx=x\) has a unique solution \(x^{*}\) in \(P_{h}\);

  4. (4)

    for any initial values \(x_{0}, y_{0} \in P_{h}\), constructing successively the sequences

    $$x_{n}= A(x_{n-1}, y_{n-1})+Bx_{n-1},\qquad y_{n}=A(y_{n-1}, x_{n-1})+By_{n-1}, \quad n=1, 2, \ldots, $$

    we have \(x_{n}\rightarrow x^{*}\) and \(y_{n}\rightarrow x^{*}\) as \(n\rightarrow\infty\).

Lemma 2.8

Assume that \(f[0, 1]\times[0, \infty)\times[0, \infty) \rightarrow[0, \infty)\) and \(g: [0, 1]\times[0, \infty) \rightarrow[0, \infty) \) are continuous. Then the BVP (1) has a unique solution

$$x(t)=\int_{0}^{1}H(t, s)\bigl[f\bigl(s, x(s), x(s)\bigr)+g\bigl(s, x(s)\bigr)\bigr]\,ds, $$

where \(H(t, s)\) is defined by (4).

Proof

By using similar method to Lemma 2.3 and standard arguments, we can show the conclusion. □

3 Main results

The basic space used in this paper is the space \(C[0, 1]\), it is a Banach space if it is endowed with the norm \(\Vert x\Vert ={\sup}\{\vert x(t)\vert : t\in[0, 1]\}\) for any \(x\in C[0, 1]\), and E can equip with a partial order \(x, y\in C[0, 1]\), \(x\leq y\Longleftrightarrow x(t)\leq y(t)\) for \(t\in[0, 1]\). Let \(P=\{x\in C[0, 1]\mid x(t)\geq0, t\in [0, 1]\}\). Clear P is a normal cone in \(C[0, 1]\) and the normality constant is 1.

First, we give the existence and uniqueness of positive solutions to the BVP (1).

Theorem 3.1

Assume that

(H1):

A is a function of bounded variation such that \(\mathscr{G}_{A}(s)\geq0\) for \(s\in[0, 1]\) and \(\Lambda\in[0, 1)\);

(H2):

\(f(t, x, y): [0, 1]\times[0, +\infty)\times[0, +\infty )\rightarrow[0, +\infty)\) is continuous and increasing in x and y decreasing, and there exists a constant \(\gamma\in(0, 1) \) such that

$$f\bigl(t, \lambda x, \lambda^{-1}y\bigr)\geq\lambda^{\gamma}f(t, x, y),\quad \forall t\in[0, 1], x, y\in[0, +\infty); $$
(H3):

\(g(t, x): [0, 1]\times[0, +\infty)\rightarrow[0, +\infty)\) is continuous and increasing in \(x\in[0, +\infty)\), \(g(t, \lambda x)\geq\lambda g(t, x)\) for \(\lambda\in(0, 1)\), \((t,x)\in [0, 1]\times[0, +\infty)\), and \(g(t, 0) \not\equiv0\);

(H4):

there exists a constant \(\delta_{0}>0\) such that \(f(t, x, y)\geq\delta_{0}g(t, x)\), \(t\in[0, 1]\), \(x, y\geq0\).

Then the BVP (1) has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=t^{\alpha-1}\), \(t\in[0, 1]\). And for any initial value \(x_{0}, y_{0}\in P_{h}\), constructing successively the sequences

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}H(t, s)\bigl[f \bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr)+g\bigl(s, x_{n-1}(s)\bigr)\bigr]\,ds, \quad n= 1, 2,\ldots, \\& y_{n}(t)=\int_{0}^{1}H(t, s)\bigl[f \bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds, \quad n= 1, 2,\ldots, \end{aligned}$$

we have \(x_{n}(t)\rightarrow x^{*}(t)\) and \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

Proof

Applying Lemma 2.8, BVP (1) is equivalent to the integral equation

$$x(t)=\int_{0}^{1}H(t, s)\bigl[f\bigl(s, x(s), x(s)\bigr)+g\bigl(s, x(s)\bigr)\bigr]\,ds. $$

Let \(A: P\times P\rightarrow E\) be the operator defined by

$$A(x, y) (t)=\int_{0}^{1}H(t, s)f\bigl(s, x(s), y(s)\bigr)\,ds, $$

and \(B: P\rightarrow E\) be the operator defined by

$$(Bx) (t)=\int_{0}^{1}H(t, s)g\bigl(s, x(s) \bigr)\,ds. $$

It is simple to show that x is the solution of BVP (1) if and only if x solves the operator equation \(x=A(x, x)+ Bx\). From (H1) and (H2) we know that \(A: P\times P\rightarrow P\) and \(B: P\rightarrow P\). We shall prove the theorem through two steps.

Step 1. We assert that A is a mixed monotone operator and satisfies (5) and B is an increasing sub-homogeneous operator. In fact, for \(x_{i}\), \(y_{i}\in P\), \(i= 1, 2\) with \(x_{1}\geq x_{2}\), \(y_{1}\leq y_{2}\), we know that \(x_{1}(t)\geq x_{2}(t)\) and \(y_{1}(t)\leq y_{2}(t)\) for all \(t\in [0, 1]\). It follows from (H1), (H2), and Lemma 2.4 that

$$\begin{aligned} A(x_{1}, y_{1}) (t) = & \int _{0}^{1}H(t, s)f\bigl(s, x_{1}(s), y_{1}(s)\bigr)\,ds \\ \geq& \int_{0}^{1}H(t, s)f\bigl(s, x_{2}(s), y_{2}(s)\bigr)\,ds \\ =&A(x_{2}, y_{2}) (t), \end{aligned}$$
(7)

which implies that \(A(x_{1}, y_{1})\geq A(x_{2}, y_{2})\). Similar to the argument of (7), we get \(Bx_{1}\geq Bx_{2}\). For any \(\lambda\in(0, 1)\) and \(x, y \in P\), together with (H2), we obtain

$$\begin{aligned} A\bigl(\lambda x, \lambda^{-1}y\bigr) (t) = &\int _{0}^{1}H(t, s)f\bigl(s, \lambda x(s), \lambda^{-1}y(s)\bigr)\,ds \\ \geq& \lambda^{\gamma}\int_{0}^{1}H(t, s)f \bigl(s, x(s), y(s)\bigr)\,ds \\ = &\lambda^{\gamma}A(x, y) (t). \end{aligned}$$

This means \(A(\lambda x, \lambda^{-1}y)\geq\lambda^{\gamma}A(x, y)\) holds for \(\lambda\in(0, 1)\), \(x, y\in P\). Therefore the operator A satisfies (5). Also, for any \(\lambda\in(0, 1)\), \(x\in P\), by (H3), we get

$$B(\lambda x) (t)=\int_{0}^{1}H(t, s)g\bigl(s, \lambda x(s)\bigr)\,ds\geq\lambda\int_{0}^{1}H(t, s)g \bigl(s, x(s)\bigr)\,ds=\lambda Bx(t), $$

that is, \(B(\lambda x)\geq\lambda B(x)\) for any \(\lambda\in(0, 1)\), \(x\in P\). Hence the operator B is sub-homogeneous.

Step 2. Now we verify that conditions (i) and (ii) of Lemma 2.5. First, we prove that \(A(h, h)\in P_{h}\) and \(Bh\in P_{h}\). It is enough to address the following conclusions:

  1. (a)

    there exist \(a_{1}, a_{2}>0\) such that \(a_{2}h(t)\leq A_{1}(h, h)(t)\leq a_{1}h(t)\), \(t\in[0, 1]\);

  2. (b)

    there exist \(b_{1}, b_{2}>0\) such that \(b_{2}h(t)\leq B_{1}h(t)\leq b_{1}h(t)\), \(t\in[0, 1]\).

Let

$$\begin{aligned}& a_{1}=\int_{0}^{1} \biggl( \frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda} +\frac{1}{\Gamma(\alpha-1)} \biggr)f(s, 1, 0)\,ds, \\& a_{2}=\frac{1}{1-\Lambda}\int_{0}^{1} \mathscr{G}_{A}(s)f(s, 0, 1)\,ds. \end{aligned}$$

It follows from (H2) and Lemma 2.4 that, for any \(t\in[0, 1]\),

$$\begin{aligned} A(h, h) (t) =&\int_{0}^{1}H(t, s)f\bigl(s, h(s), h(s)\bigr)\,ds \\ \leq&\int_{0}^{1} \biggl(\frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda} + \frac{1}{\Gamma(\alpha-1)} \biggr)t^{\alpha-1} f(s, 1, 0)\,ds \\ =&a_{1}h(t) \end{aligned}$$

and

$$A(h, h) (t)\geq\frac{1}{1-\Lambda}t^{\alpha-1}\int_{0}^{1} \mathscr{G}_{A}(s)f(s, 0, 1)\,ds=a_{2}h(t). $$

According to (H2)-(H4), we get

$$f(s, 1, 0)\geq f(s, 0, 1)\geq\delta_{0}g(s, 0)\geq0. $$

Due to \(g(t, 0) \not\equiv0\), we obtain

$$\int_{0}^{1}f(s, 1, 0)\,ds\geq\int _{0}^{1}f(s, 0, 1)\,ds \geq\delta_{0}\int _{0}^{1}g(s, 0)\,ds>0, $$

and in consequence, \(a_{1}>0\) and \(a_{2}>0\). Thus, \(a_{2}h(t)\leq A(h, h)(t)\leq a_{1}h(t)\), \(t\in[0, 1]\), and hence we get (a). An argument similar to the one used in (a) shows that (b) holds with

$$b_{1}= \biggl(\frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda}+\frac{1}{ \Gamma(\alpha-1)} \biggr) \int _{0}^{1}g(s,1)\,ds,\qquad b_{2}= \frac{1}{1-\Lambda}\int_{0}^{1}\mathscr{G}_{A}(s)g(s, 0)\,ds. $$

Hence the condition (i) of Lemma 2.5 is proved. It remains to show that the condition (ii) of Lemma 2.5 is satisfied. For \(x\in P\), and for any \(t\in[0, 1]\), taking (H4) into consideration, we get

$$A(x, y) (t)=\int_{0}^{1}H(t, s)f\bigl(s, x(s), y(s)\bigr)\,ds \geq\delta_{0}\int_{0}^{1}H(t, s)g\bigl(s, x(s)\bigr)\,ds=\delta_{0}Bx(t), $$

in other words, \(A(x, y)\geq\delta_{0}Bx\), \(\forall x\in P\). Therefore, an application of Lemma 2.5 implies: the operator equation \(x=A(x, x)+Bx\) has a unique positive solution \(x^{*}(t)\) in \(P_{h}\). Consequently, BVP (1) has a unique positive solution \(x^{*}(t)\) in \(P_{h}\). Moreover, for any initial value \(x_{0}, y_{0}\in P_{h}\), constructing successively the sequence

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}H(t, s)\bigl[f \bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr)+g\bigl(s, x_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2, \ldots, \\& y_{n}(t)=\int_{0}^{1}H(t, s)\bigl[f \bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2, \ldots, \end{aligned}$$

we have \(x_{n}(t)\rightarrow x^{*}(t)\), \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\). □

Remark 3.1

In Theorem 3.1, we cannot only obtain the existence of unique positive solution, but also construct an iterative sequence for approximate the unique positive solution for any initial value in \(P_{h}\). Moreover, the estimate of unique positive solution is derived with \(\mu t^{\alpha-1}\leq x^{*}(t)\leq\lambda t^{\alpha-1}\) for some \(\lambda> \mu>0\). Thus the property of the unique positive solution is more clear.

If \(g(t, x(t))\equiv0\), from Remark 2.1, we have the following corollary.

Corollary 3.1

Assume that (H1) and (H2) hold. If \(f(t, 0) \not\equiv0\).

Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t), x(t)), \quad 0< t< 1, n-1< \alpha \leq n, n\geq3, \\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=\int_{0}^{1}x(s)\,dA(s) , \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, constructing successively the sequence

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}H(t, s)f\bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr)\,ds,\quad n=1, 2, \ldots, \\& y_{n}(t)=\int_{0}^{1}H(t, s)f\bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)\,ds,\quad n=1, 2, \ldots, \end{aligned}$$

for any initial value \(x_{0}, y_{0}\in P_{h}\), we have \(x_{n}(t)\rightarrow x^{*}(t)\), \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

If the nonlinear term \(f(t, x, x)\) is replaced by \(f(t, x)\), we can get the following results.

Theorem 3.2

Assume that (H1) and (H3) hold and

(H5):

\(f(t, x): [0, 1]\times[0, +\infty)\rightarrow[0, +\infty)\) is continuous and increasing with respect to the second argument, and there exists a constant \(\gamma\in(0, 1)\) such that \(f(t, \lambda x)\geq\lambda^{\gamma} f(t, x)\), \(\forall t\in[0, 1]\), \(\lambda\in(0, 1)\), \(x\in[0, \infty)\);

(H6):

there exists a constant \(\delta_{0}>0\) such that \(f(t, x)\geq\delta_{0}g(t, x)\) for \(t\in[0, 1]\), \(x\geq0\).

Then the BVP

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t))+g(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{k}(0)=0, \quad 0\leq k\leq n-2,\qquad x(1)=\int_{0}^{1}x(s)\,dA(s), \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$
(8)

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(y_{0}\in P_{h}\), constructing successively the sequences

$$y_{n}(t)=\int_{0}^{1}H(t, s)\bigl[f \bigl(s, y_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds, \quad n=1, 2,\ldots, $$

we have \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

Proof

Applying Lemma 2.3, BVP (8) is equivalent to the integral formulation given by

$$x(t)=\int_{0}^{1}H(t, s)\bigl[f\bigl(s, x(s) \bigr)+g\bigl(s, x(s)\bigr)\bigr]\,ds. $$

Let \(A: P\rightarrow E\) be the operator defined by

$$(Ax) (t)=\int_{0}^{1}H(t, s)f\bigl(s, x(s) \bigr)\,ds $$

and \(B: P\rightarrow E\) be the operator defined by

$$(Bx) (t)=\int_{0}^{1}H(t, s)g\bigl(s, x(s) \bigr)\,ds. $$

It is simple to show that \(x^{*}\) is the solution of BVP (1) if and only if \(x^{*}\) solves the operator equation \(x=Ax+Bx\). Similar to the proof of Theorem 3.1, we know A is an increasing γ-concave operator and B is an increasing sub-homogeneous operator.

Take

$$\begin{aligned}& a_{1}=\int_{0}^{1} \biggl( \frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda} +\frac{1}{\Gamma(\alpha-1)} \biggr)f(s,1)\,ds, \\& a_{2}=\frac{1}{1-\Lambda}\int_{0}^{1} \mathscr{G}_{A}(s)f(s, 0)\,ds, \\& b_{1}=\int_{0}^{1} \biggl( \frac{\Vert \mathscr{G}_{A}(s)\Vert }{1-\Lambda}+\frac{1}{ \Gamma(\alpha-1)} \biggr) g(s,1)\,ds, \\& b_{2}=\frac{1}{1-\Lambda}\int_{0}^{1} \mathscr{G}_{A}(s)g(s, 0)\,ds. \end{aligned}$$

Combining the proof of Theorem 3.1 with (H3), (H5), (H6), and Lemma 2.4, the conditions (i) and (ii) of Lemma 2.6 are satisfied. Therefore, an application of Lemma 2.6 implies: the operator equation \(x=Ax+Bx\) has a unique positive solution \(x^{*}\) in \(P_{h}\). Consequently, BVP (8) has a unique positive solution \(x^{*}\) in \(P_{h}\). Moreover, constructing successively the sequence

$$\begin{aligned} y_{n}(t)&= Ay_{n-1}(t)+By_{n-1}(t)\\ &=\int_{0}^{1}H(t, s)\bigl[f\bigl(s, y_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2, \ldots, \end{aligned}$$

for any initial value \(y_{0}\in P_{h}\), we have \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\). □

Corollary 3.2

Assume that (H1) and (H5) hold.

Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=\int_{0}^{1}x(s)\,dA(s), \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(y_{0}\in P_{h}\), constructing successively the sequences

$$y_{n}(t)=\int_{0}^{1}H(t, s)f\bigl(s, y_{n-1}(s)\bigr)\,ds, \quad n=1, 2,\ldots, $$

we have \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

From the proof of Theorem 3.1 and using Lemma 2.7, we can prove the following conclusion.

Theorem 3.3

Assume that (H1) holds and

(H7):

\(f(t, x, y): [0, 1]\times[0, +\infty)\times[0, +\infty )\rightarrow[0, +\infty)\) is continuous and increasing in \(x\in[0, +\infty)\) for fixed \(t\in[0, 1]\), \(y\in[0, +\infty)\) decreasing in \(y\in[0, +\infty)\) for fixed \(t\in[0, 1]\), \(x\in[0, +\infty)\), and \(f(t, \lambda x, \lambda^{-1}y)\geq\lambda f(t, x, y)\), \(\forall t\in [0, 1]\), \(x, y\in[0, +\infty)\);

(H8):

\(g(t, x): [0, 1]\times[0, +\infty)\rightarrow[0, +\infty)\) is continuous and increasing in \(x\in[0, +\infty)\) for fixed \(t\in[0, 1]\), and there exists a constant \(\gamma\in(0, 1) \) such that \(g(t, \lambda x)\geq\lambda^{\gamma} g(t, x)\) for \(\lambda\in(0, 1)\), \(t\in[0, 1]\), \(u\in[0, +\infty)\) and \(g(t, 0) \not\equiv0\);

(H9):

there exists a constant \(\delta_{0}>0\) such that \(f(t, x, y)\leq\delta_{0}g(t, x)\), \(t\in[0, 1]\), \(x, y\geq0\).

Then BVP (1) has a unique positive solution \(x^{*}\) in \(P_{h}\) and for any \(x_{0}, y_{0}\in P_{h}\), constructing successively the sequences

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr)+g\bigl(s, x_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2,\ldots, \\& y_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2,\ldots, \end{aligned}$$

we have \(x_{n}(t)\rightarrow x^{*}(t)\) and \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

If the nonlocal boundary condition \(x(1)=\int_{0}^{1}x(s)\,dA(s)\) replace by local boundary condition \(u(1)=0\), we can obtain the following results.

Corollary 3.3

Assume that (H2)-(H4) hold. Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t), x(t))+g(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=0 , \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=(1-t)t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(x_{0}, y_{0}\in P_{h}\), constructing successively the sequences

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr)+g\bigl(s, x_{n-1}(s)\bigr)\bigr]\,ds,\quad n=1, 2,\ldots, \\& y_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds, \quad n=1, 2,\ldots, \end{aligned}$$

we have \(x_{n}(t)\rightarrow x^{*}(t)\) and \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

Corollary 3.4

Assume that (H2) holds. Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t), x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3,\\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=0, \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=(1-t)t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(x_{0}, y_{0}\in P_{h}\), constructing successively the sequences

$$\begin{aligned}& x_{n}(t)=\int_{0}^{1}G(t, s)f\bigl(s, x_{n-1}(s), y_{n-1}(s)\bigr), \quad n=1, 2,\ldots, \\& y_{n}(t)=\int_{0}^{1}G(t, s)f\bigl(s, y_{n-1}(s), x_{n-1}(s)\bigr)\,ds, \quad n=1, 2,\ldots, \end{aligned}$$

we have \(x_{n}(t)\rightarrow x^{*}(t)\) and \(y_{n}(t)\rightarrow x^{*}(t)\) as \(n\rightarrow\infty\).

Corollary 3.5

Assume that (H3), (H5), and (H6) hold. Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t))+g(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=0 , \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=(1-t)t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(y_{0}\in P_{h}\), constructing successively the sequences

$$y_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, y_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds, \quad n=1, 2,\ldots, $$

we have \(y_{n}(t)\rightarrow x^{*}(t) \) as \(n\rightarrow\infty\).

Corollary 3.6

Assume that (H5) holds. Then the problem

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\alpha}x(t)=f(t, x(t)), \quad 0< t< 1, n-1< \alpha\leq n, n\geq3, \\ x^{(k)}(0)=0,\quad 0\leq k\leq n-2,\qquad x(1)=0 , \end{array}\displaystyle \displaystyle \displaystyle \displaystyle \right . $$

has a unique positive solution \(x^{*}\) in \(P_{h}\), where \(h(t)=(1-t)t^{\alpha-1}\), \(t\in[0, 1]\). Moreover, for any initial value \(y_{0}\in P_{h}\), constructing successively the sequences

$$y_{n}(t)=\int_{0}^{1}G(t, s)\bigl[f \bigl(s, y_{n-1}(s)\bigr)+g\bigl(s, y_{n-1}(s)\bigr)\bigr]\,ds, \quad n=1, 2,\ldots, $$

we have \(y_{n}(t)\rightarrow x^{*}(t) \) as \(n\rightarrow\infty\).

4 Example

Consider the following boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} -D_{0+}^{\frac{5}{2}}x=x^{\frac{1}{2}}+y^{-\frac{1}{2}}+\arctan x+t^{2} +t^{3}+\frac{\pi}{2}, \quad 0< t< 1,\\ x(0)=x'(0)=0,\qquad x(1)=2x(\frac{1}{2})-x(\frac{3}{4}). \end{array}\displaystyle \displaystyle \displaystyle \right . $$
(9)

In this case, \(\alpha=\frac{5}{2}\). Problem (9) can be regard as a boundary value problem of form (1) with

$$ f(t, x)=x^{\frac{1}{2}}+y^{-\frac{1}{2}}+t^{2}+ \frac{\pi}{2} $$
(10)

and

$$ g(t, x)=\arctan x+t^{3}. $$
(11)

Now we verify that conditions (H1)-(H4) are satisfied. By a simple computation, we have

$$ G(t, s) = \left \{ \textstyle\begin{array}{l@{\quad}l} \frac{[t(1-s)]^{\frac{3}{2}}}{\Gamma(\frac{5}{2})}, & 0\leq t\leq s\leq1, \\ \frac{[t(1-s)]^{\frac{3}{2}}-(t-s)^{\frac{3}{2}}}{\Gamma(\frac{5}{2})},& 0\leq s\leq t\leq1, \end{array}\displaystyle \right . $$

and

$$ \mathscr{G}_{A}(s)= \left \{ \textstyle\begin{array}{l@{\quad}l}\frac{2[\frac{1}{2}(1-s)]^{\frac{3}{2}} -(\frac{1}{2}-s)^{\frac{3}{2}}}{\Gamma(\frac{5}{2})} -\frac{2[\frac{3}{4}(1-s)]^{\frac{3}{2}} -(\frac{3}{4}-s)^{\frac{3}{2}}}{\Gamma(\frac{5}{2})}, & 0\leq s< \frac{1}{2}, \\ \frac{2[\frac{1}{2}(1-s)]^{\frac{3}{2}}}{\Gamma(\frac{5}{2})} -\frac{2[\frac{3}{4}(1-s)]^{\frac{3}{2}} -(\frac{3}{4}-s)^{\frac{3}{2}}}{\Gamma(\frac{5}{2})}, &\frac{1}{2}\leq s\leq\frac{3}{4}, \\ \frac{2[\frac{1}{2}(1-s)]^{\frac{3}{2}}}{\Gamma(\frac{5}{2})} -\frac{[\frac{3}{4}(1-s)]^{\frac{3}{2}}}{\Gamma(\frac{5}{2})}, &\frac{3}{4}< s\leq1. \end{array}\displaystyle \displaystyle \displaystyle \right . $$

Then \(\Lambda\approx0.0576\) and \(\mathscr{G}_{A}(s)\geq0\) for all \(s\in [0, 1]\). This implies that (H1) holds. From (10) and (11) we have f and g are continuous and increasing in \(x\in[0, \infty)\) for fixed \(t\in[0, 1]\). Moreover, for any \(\lambda\in(0, 1)\), \(t\in[0,1]\), \(x\in(0, \infty )\), we get \(\arctan(\lambda x)\geq\lambda\arctan x\). Therefore

$$f\bigl(t, \lambda x, \lambda^{-1}y\bigr)=\lambda^{\frac{1}{2}}x^{\frac {1}{2}}+ \lambda^{\frac{1}{2}}y^{-\frac{1}{2}}+t^{2}+\frac{\pi}{2} \geq \lambda^{\frac{1}{2}}\biggl(x^{\frac{1}{2}}+y^{-\frac{1}{2}}+t^{2}+ \frac {\pi}{2}\biggr) =\lambda^{\gamma}f(t, x, y) $$

and

$$g(t, \lambda x)=\arctan(\lambda x)+t^{3} \geq\lambda\bigl(\arctan x+t^{3}\bigr) =\lambda g(t, x), $$

where \(\gamma=\frac{1}{2}\). Thus (H2) and (H3) are proved and \(g(t, 0)=t^{3}\not\equiv0\). It remains to show that (H4) holds. Take \(\delta_{0}\in(0, 1]\), and we obtain

$$f(t, x, y)=x^{\frac{1}{2}}+y^{-\frac{1}{2}}+t^{2}+\frac{\pi}{2} \geq t^{2}+\frac{\pi}{2} \geq t^{3}+\arctan x \geq \delta_{0}\bigl(t^{3}+\arctan x\bigr) =\delta_{0}g(t, x). $$

Therefore, all of the conditions in Theorem 3.1 are satisfied. By using Theorem 3.1, we know that the BVP (9) has a unique positive solution in \(P_{h}\) with \(h(t)=t^{\frac{3}{2}}\).

References

  1. Webb, JRL, Infante, G: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc. 74, 673-693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Webb, JRL, Infante, G: Positive solutions of nonlocal boundary value problems involving integral conditions. Nonlinear Differ. Equ. Appl. 15, 45-67 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elsaid, A: Fractional differential transfer method combined with the Adomian polynomials. Appl. Math. Comput. 218(12), 6889-6911 (2012)

    Article  MathSciNet  Google Scholar 

  4. Krasnosel’skii, MA: Positive Solutions of Operator Equations. Noordhoff, Gronigen (1964)

    Google Scholar 

  5. Lakshmikantham, V, Vatsala, AS: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21(8), 828-834 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhang, KM, Sun, JX: The relation between sign-changing solution and positive-negative solutions for nonlinear operator equations and its applications. Acta Math. Sci. Ser. B Engl. Ed. 24(3), 463-468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sun, XB, Su, J, Han, MA: On the number of zeros Abelian integral for some Lienard system of type \((4, 3)\). Chaos Solitons Fractals 51, 1-12 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rudin, W: Functional Analysis, 2nd edn. International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  9. Zhang, XG, Liu, LS, Wu, YH: The uniqueness of positive solutions for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26-33 (2014)

    Article  MathSciNet  Google Scholar 

  10. Zhang, XQ, Sun, JX: On multiple sign-changing solutions for some second-order integral boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 44 (2010)

    Google Scholar 

  11. Du, XS, Zhao, ZQ: Existence and uniqueness of positive solutions to a class of singular m-point boundary value problems. Appl. Math. Comput. 198, 487-493 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, XG, Liu, LS, Wu, YH: The uniqueness of positive solution for a singular fractional differential system involving derivatives. Commun. Nonlinear Sci. Numer. Simul. 18, 1400-1409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhang, XG, Liu, LS, Wiwatanapataphee, B, Wu, YH: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann-Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412-422 (2014)

    Article  MathSciNet  Google Scholar 

  14. Mao, J, Zhao, J, Xu, N: On existence and uniqueness of positive solutions for integral boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 16 (2010)

    MathSciNet  Google Scholar 

  15. Webb, JRL, Zima, M: Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems. Nonlinear Anal. 71, 1369-1378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, XL, Zhao, ZQ: Existence and uniqueness of symmetric positive solutions of 2n-order nonlinear singular boundary value problems. Appl. Math. Lett. 26(7), 692-698 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, RK, Ma, RY: Existence of positive solutions for an elastic beam equation with nonlinear boundary conditions. J. Appl. Math. 2014, Article ID 972135 (2014)

    Google Scholar 

  18. Dai, GW, Ma, RY: Bifurcation from intervals for Sturm-Liouville problems and its applications. Electron. J. Differ. Equ. 2014, 3 (2014)

    Article  MathSciNet  Google Scholar 

  19. Cheng, ZB: Existence of positive periodic solutions for third-order differential equations with strong singularity. Adv. Differ. Equ. (2014). doi:10.1186/1687-1847-2014-162

    Google Scholar 

  20. Kosmatov, N: A singular boundary value problem for nonlinear differential equations of fractional order. J. Appl. Math. Comput. (2008). doi:10.1007/s12190-008-0104-X

    Google Scholar 

  21. Xu, XJ, Jiang, DQ, Hu, WM, O’Regan, D, Agarwal, PR: Positive properties of Green’s function for three-point boundary value problems of nonlinear fractional differential equations and its applications. Appl. Anal. 91(2), 323-343 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Samko, SG, Kilbas, AA, Marichev, OI: Freactional Integral and Derivatives: Theory and Applications. Gordon & Breach, Switzerland (1993)

    Google Scholar 

  23. Agarwal, PR, O’Regan, D, Stanĕk, S: Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations. J. Math. Anal. Appl. 371, 57-68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, MQ, Zhang, XM, Ge, WG: New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions. Bound. Value Probl. (2011). doi:10.1155/2011/720702

    MathSciNet  Google Scholar 

  25. Ahmad, B, Nieto, JJ: Boundary value problems for a class of sequential integro differential equations of fractional order. J. Funct. Spaces Appl. 2013, 149659 (2013)

    Article  MathSciNet  Google Scholar 

  26. Salm, HAH: On the fractional order m-point boundary value problem in reflexive Banach spaces and weak topologies. Comput. Math. Appl. 224, 565-572 (2009)

    Article  Google Scholar 

  27. Zhang, XG, Han, YF: Existence and uniquness of positive solutions for higher order nonlocal fractional differential equations. Appl. Math. Lett. 25, 555-560 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  29. Yuan, CJ: Multiple positive solutions for \((n-1, n)\)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 2010, 36 (2010)

    Google Scholar 

  30. Zhai, CB, Yan, WP, Yang, C: A sum operator method for the existence and uniqueness of positive solution to Riemann-Liouville fractional differential equation boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 18, 858-866 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhai, CB, Hoo, M: Fixed point theorem for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems. Nonlinear Anal. 75, 2542-2551 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhai, CB, Anderson, DR: A sum operator equation and applications to nonlinear elastic beam equations and Lane-Emden-Fouler equations. J. Math. Anal. Appl. 375, 388-400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Tan.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors typed, read, and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Cheng, C. & Zhang, X. Positive solutions of fractional differential equation nonlocal boundary value problems. Adv Differ Equ 2015, 256 (2015). https://doi.org/10.1186/s13662-015-0582-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-015-0582-8

Keywords