 Research
 Open access
 Published:
Monotone iterative method for nonlinear fractional qdifference equations with integral boundary conditions
Advances in Difference Equations volume 2015, Article number: 294 (2015)
Abstract
This paper investigates the existence of positive solutions for a class of nonlinear fractional qdifference equations with integral boundary conditions. By applying monotone iterative method and some inequalities associated with the Green’s function, the existence results of positive solutions and two iterative schemes approximating the solutions are established. An explicit example is given to illustrate the main result.
1 Introduction
We consider the following nonlinear fractional qdifference equation with integral boundary conditions:
where \(\alpha\in(n1,n]\) are a real number and \(n\geq3\) is an integer, \(D_{q}^{\alpha}\) are the fractional qderivative of the RiemannLiouville type, \(\mu>0\) and \(0< q<1\) are two constants, g, h are two given continuous functions, and \(f:[0,1]\times[0,\infty)\rightarrow[0,\infty )\)is continuous and \(f(t,0)\not\equiv0\) on \([0,1]\). To the best of authors’ knowledge, there is still little utilization of the monotone iterative method to study the existence of positive solutions for boundary value problems of nonlinear fractional qdifference equations with integral boundary conditions.
The monotone iterative method is an interesting and effective technique for investigating the existence of solutions/positive solutions for nonlinear boundary value problems. This method has been paid more and more attention due to the advantage that the first term of the iterative sequences may be taken to be a constant function or a simple function; see [1–8] and the references therein. For instance, by means of the monotone iterative technique and the method of lower and upper solutions, Xu and Liu [9] studied the maximal and minimal solutions for a coupled system of fractional differentialintegral equations with twopoint boundary conditions. In [10], by means of monotone iterative technique, Zhang et al. investigated the existence and uniqueness of the positive solution for a fractional differential equation with derivatives. By applying the monotone iteration method, Zhang et al. [11] obtained the positive extremal solutions and iterative schemes for approximating the solution of fractional differential equations with nonlinear terms depending on the lowerorder derivatives on a halfline.
Since 2010, fractional qdifference equations have gained considerable popularity and importance due to the fact that they can describe the natural phenomena and the mathematical model more accurately. For some recent contributions on the topic, see [12–18] and the references incited therein. For example, under different conditions, Graef and Kong [19, 20] investigated the existence of positive solutions for boundary value problems with fractional qderivatives in terms of different ranges of λ, respectively. By applying the nonlinear alternative of LeraySchauder type and Krasnoselskii fixed point theorems, the author [21] established sufficient conditions for the existence of positive solutions for nonlinear semipositone fractional qdifference system with coupled integral boundary conditions. By applying some standard fixed point theorems, Agarwal et al. [22] and Ahmad et al. [23] showed some existence results for sequential qfractional integrodifferential equations with qantiperiodic boundary conditions and nonlocal fourpoint boundary conditions, respectively. In [24], relying on the contraction mapping principle and a fixed point theorem due to O’Regan, Ahmad et al. were concerned with new boundary value problems of nonlinear qfractional differential equations with nonlocal and substrip type boundary conditions. In [25], Yang et al. obtained the existence and uniqueness of positive solutions for a class of nonlinear qfractional boundary value problems and established the iterative schemes for approximating the solutions.
Motivated by the results mentioned above and the effectiveness and feasibility of monotone iterative method, we consider the existence of positive solutions for fractional qdifference boundary value problem (1.1). In Section 2, we present some preliminaries and lemmas that will be used to prove our main results. The main theorems are formulated and proved in Section 3. At last, an explicit example is given to illustrate the main result in Section 4.
2 Preliminaries
For the convenience of the reader, we present some necessary definitions and lemmas of fractional qcalculus theory. These details can be found in the recent literature; see [26] and references therein.
Definition 2.1
([26])
Let \(\alpha\geq0\), \(0< q<1\), and f be function defined on \([0,1]\). The fractional qintegral of the RiemannLiouville type is \((I_{q}^{0}f)(x)=f(x)\) and
where \(\Gamma_{q}(\alpha)=(1q)^{(\alpha1)}(1q)^{1\alpha}\), \(0< q<1\), and satisfies the relation \(\Gamma_{q}(\alpha+1)=[\alpha]_{q}\Gamma_{q}(\alpha )\), with
More generally, if \(\alpha\in\mathbb{R}\), then \((1q)^{(\alpha)}=\prod_{n=0}^{\infty}((1q^{n+1})/(1q^{1+\alpha +n}) )\).
For \(0< q<1\), the qderivative of a real valued function f is here defined by
and qderivatives of higher order by
Definition 2.2
([26])
The fractional qderivative of the RiemannLiouville type of order \(\alpha\geq0\) is defined by \(D_{q}^{0}f(x)=f(x)\) and
where m is the smallest integer greater than or equal to α.
Lemma 2.3
([26])
Let \(\alpha,\beta\geq0\), and f be a function defined on \([0,1]\). Then the next formulas hold:

(1)
\((I_{q}^{\beta}I_{q}^{\alpha}f)(x)=I_{q}^{\alpha+\beta}f(x)\),

(2)
\((D_{q}^{\alpha}I_{q}^{\alpha}f)(x)=f(x)\).
Lemma 2.4
([12])
Let \(\alpha>0\) and p be a positive integer. Then the following equality holds:
For the our analysis, we need the following assumptions:

(H1)
\(g:[0,1]\rightarrow[0,\infty)\) is continuous and \(\sigma=\mu \int_{0}^{1}s^{\alpha1}g(s)\, d_{q}s<1\), \(\theta=\mu\int_{0}^{1}s^{\alpha}g(s)\, d_{q}s\).

(H2)
\(h:[0,1]\rightarrow[0,\infty)\) is continuous and \(0<\int_{0}^{1}(1qs)^{(\alpha1)} h(s)\, d_{q}s<\infty\).
Now we derive the corresponding Green’s function for boundary value problem (1.1), and obtain some properties of the Green’s function.
Lemma 2.5
For any \(x\in C[0,1]\), then the boundary value problem
has an unique solution given by
where
Proof
In view of Definition 2.2 and Lemma 2.3, we see that
From (2.5) and Lemma 2.4, we can reduce (2.1) to the following equivalent integral equations:
From \(D_{q}^{j}u(0)=0\), \(0\leq j\leq n2\), we have \(c_{n}=c_{n1}=\cdots= c_{2}=0\). Thus, (2.6) reduces to
Using the integral boundary condition: \(u(1)=\mu\int_{0}^{1}g(s)u(s)\, d_{q}s\) in (2.7), we obtain
Combining (2.7) and (2.8), we have
Multiplying both sides of (2.9) by \(g(t)\) and integrating the resulting identity with respect to t from 0 to 1, we obtain
Solving for \(\int_{0}^{1}g(t)u(t)\, d_{q}t\), we have
Combining (2.9) and (2.10), we get
This completes the proof of the lemma. □
Lemma 2.6
([21])
The function \(H(t,s)\) defined by (2.4) has the following properties:
Lemma 2.7
The function \(G(t,s)\) defined by (2.3) satisfies the following inequalities:
where \(\delta=\mu\int_{0}^{1}g(t)\, d_{q}t\), σ, θ are given in (H1), and
Proof
It is evident by (2.4) that
Thus, by (2.3), (2.4), and (2.13), we have
For any \(t,s\in[0,1]\), by (2.3), (2.4), and the right inequality of (2.11), we get
On the other hand, by (2.3), (2.4), and the left inequality of (2.11), we have
Then the proof is completed. □
3 Main results
Consider the Banach space \(\mathscr{E}=C[0,1]\) with norm \(\u\=\max_{0\leq t\leq1}u(t)\) and define the cone \(\mathscr{K}\subset\mathscr{E}\) by
where \(\psi(t)\) is defined as Lemma 2.7. We also define the operator \(\mathscr{T}:\mathscr{K}\rightarrow\mathscr{E}\) by
It is easy to prove that problem (1.1) is equivalent to the fixed point equation \(\mathscr{T}u=u\), \(u\in\mathscr{C}\).
Lemma 3.1
Assume that (H1) and (H2) hold. \(\mathscr{T}\) is a completely continuous operator and \(\mathscr{T}(\mathscr {K})\subseteq\mathscr{K}\).
Proof
In view of (2.12) we conclude that \(\mathscr {T}(\mathscr{K})\subseteq\mathscr{K}\). Applying the ArzelaAscoli theorem and standard arguments, we conclude that \(\mathscr{T}\) is a completely continuous operator. The proof is completed. □
For convenience, we denote
By the condition (H2) we deduce that \(\Lambda>0\) is well defined.
Theorem 3.2
Assume that (H1) and (H2) hold. In addition, we assume that there exists \(a>0\) such that
where Λ is given by (3.1). Then problem (1.1) has two positive solutions \(v^{\ast}\) and \(w^{\ast}\) satisfying \(0\leq\v^{\ast}\ \leq\w^{\ast}\\leq a\). In addition, the iterative sequences \(v_{k+1}=\mathscr{T}v_{k}\), \(w_{k+1}=\mathscr{T}w_{k}\), \(k=0,1,2,\ldots\) , converge to positive solutions \(v^{\ast}\) and \(w^{\ast}\), respectively, where \(v_{0}(t)=0\), \(w_{0}(t)=at^{\alpha1}\), \(t\in[0,1]\). Moreover,
Proof
We will divide our proof into four steps.
Step 1. Let \(\mathscr{K}_{a}=\{u\in\mathscr{K}:\u\\leq a\}\), then \(\mathscr{T}(\mathscr{K}_{a})\subseteq\mathscr{K}_{a}\). In fact, if \(u\in\mathscr{K}_{a}\), then we have \(0\leq u(s)\leq\u\\leq a\), for \(s\in[0,1]\). Thus by (2.12) and (3.2), we get
which implies that \(\u\\leq a\), thus \(\mathscr{T}(\mathscr {K}_{a})\subseteq\mathscr{K}_{a}\).
Step 2. The iterative sequence \(\{v_{k}\}\) is increasing, and there exists \(v^{\ast}\in\mathscr{K}_{a}\) such that \(\lim_{k\rightarrow\infty}\v_{k}v^{\ast}\=0\), and \(v^{\ast}\) is a positive solution of problem (1.1).
Obviously, \(v_{0}\in\mathscr{K}_{a}\). Since \(\mathscr{T}:\mathscr {K}_{a}\rightarrow\mathscr{K}_{a}\), we have \(v_{k}\in\mathscr{T}(\mathscr {K}_{a})\subseteq\mathscr{K}_{a}\), \(k=1,2,\ldots\) . Since \(\mathscr{T}\) is completely continuous, we assert that \(\{v_{k}\} _{k=1}^{\infty}\) is a sequentially compact set. Since \(v_{1}=\mathscr{T}v_{0}=\mathscr{T}0\in\mathscr{K}_{a}\), we obtain
It follows from (3.2) that \(\mathscr{T}\) is nondecreasing, and then
Thus, by the induction, we have
Hence, there exists \(v^{\ast}\in\mathscr{K}_{a}\) such that \(\lim_{k\rightarrow\infty}\v_{k}v^{\ast}\=0\). By the continuity of \(\mathscr {T}\) and equation \(v_{k+1}=\mathscr{T}v_{k}\), we get \(v^{\ast}=\mathscr {T}v^{\ast}\). Moreover, since the zero function is not a solution of problem (1.1), \(\v^{\ast}\>0\). It follows from the definition of the cone \(\mathscr{K}_{a}\) that we have \(v^{\ast}(t)\geq\psi(t)\v^{\ast}\ >0\), \(t\in(0,1)\), i.e. \(v^{\ast}(t)\) is a positive solution of problem (1.1).
Step 3. The iterative sequence \(\{w_{k}\}\) is decreasing, and there exists \(w^{\ast}\in\mathscr{K}_{a}\) such that \(\lim_{k\rightarrow\infty}\w_{k}w^{\ast}\=0\), and \(w^{\ast}\) is a positive solution of problem (1.1).
Obviously, \(w_{0}\in\mathscr{K}_{a}\). Since \(\mathscr{T}:\mathscr {K}_{a}\rightarrow\mathscr{K}_{a}\), we have \(w_{k}\in\mathscr{T}(\mathscr {K}_{a})\subseteq\mathscr{K}_{a}\), \(k=1,2,\ldots\) . Since \(\mathscr{T}\) is completely continuous, we assert that \(\{w_{k}\} _{k=1}^{\infty}\) is a sequentially compact set. Since \(w_{1}=\mathscr{T}w_{0}\in\mathscr{K}_{a}\), by (2.12) and (3.2), we obtain
Thus we obtain \(w_{1}(t)\leq w_{0}(t)\), \(t\in[0,1]\), which together with (3.2) implies that
Thus, by the induction, we have
Hence, there exists \(w^{\ast}\in\mathscr{K}_{a}\) such that \(\lim_{k\rightarrow\infty}\w_{k}w^{\ast}\=0\). Applying the continuity of \(\mathscr{T}\) and the definition of \(\mathscr{K}\), we can concluded that \(w^{\ast}(t)\) is a positive solution of problem (1.1).
Step 4. From \(w_{0}(t)\leq w_{0}(t)\), \(t\in[0,1]\), we get
By the induction, we have
The proof is complete. □
Corollary 3.3
Assume that (H1) and (H2) hold. Suppose further that \(f(t,u)\) is nondecreasing in u for each \(t\in[0,1]\) and
The conclusion of Theorem 3.2 is valid.
Remark 3.4
The iterative schemes in Theorem 3.2 start off with the zero function and a known simple function which is helpful for computational purpose, respectively.
Remark 3.5
Of course, \(w^{\ast}=v^{\ast}\) may happen and then problem (1.1) has only one solution in \(\mathscr{K}_{a}\). For example, in the case the Lipschitz condition is satisfied by the functions involved, the solutions \(v^{\ast}\) and \(w^{\ast}\) coincide, and then problem (1.1) will have a unique solution in \(\mathscr{K}_{a}\).
4 An example
Example 4.1
Consider the fractional qdifference equation with integral boundary conditions
Here, \(q=1/2\), \(\alpha=7/2\), \(\mu=1\), \(g(t)=h(t)=t\), and \(f(t,u)=3u^{2}+6t+2\). It is easy to see that (H1) and (H2) hold. If we let \(a=2\), by simple computation, we have
and
Then (3.2) is satisfied. Consequently, Theorem 3.2 guarantees that problem (4.1) has at least two positive solutions \(v^{\ast}\) and \(w^{\ast}\), satisfying \(0\leq \v^{\ast}\\leq\w^{\ast}\\leq a\).
References
Li, S, Zhang, X, Wu, Y, Caccetta, L: Extremal solutions for pLaplacian differential systems via iterative computation. Appl. Math. Lett. 26, 11511158 (2013)
Hu, C, Liu, B, Xie, S: Monotone iterative solutions for nonlinear boundary value problems of fractional differential equation with deviating arguments. Appl. Math. Comput. 222, 7281 (2013)
McRae, FA: Monotone iterative technique and existence results for fractional differential equations. Nonlinear Anal. 71, 60936096 (2009)
Jiang, M, Zhong, S: Successively iterative method for fractional differential equations with integral boundary conditions. Appl. Math. Lett. 38, 9499 (2014)
Sun, Y, Sun, Y: Positive solutions and monotone iterative sequences for a fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2014, 29 (2014)
Wang, G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments. J. Comput. Appl. Math. 236, 24252430 (2012)
Wang, G, Agarwal, RP, Cabada, A: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 10191024 (2012)
Sun, Y, Zhao, M: Positive solutions for a class of fractional differential equations with integral boundary conditions. Appl. Math. Lett. 34, 1721 (2014)
Xu, N, Liu, W: Iterative solutions for a coupled system of fractional differentialintegral equations with twopoint boundary conditions. Appl. Math. Comput. 244, 903911 (2014)
Zhang, X, Liu, L, Wu, Y, Lu, Y: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 219, 46804691 (2013)
Zhang, L, Ahmad, B, Wang, G: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a halfline. Bull. Aust. Math. Soc. 91, 116128 (2015)
Ferreira, RAC: Nontrivial solutions for fractional qdifference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)
Ferreira, RAC: Positive solutions for a class of boundary value problems with fractional qdifferences. Comput. Math. Appl. 61, 367373 (2011)
Yuan, Q, Yang, W: Positive solutions of nonlinear boundary value problems for delayed fractional qdifference systems. Adv. Differ. Equ. 2014, 16 (2014)
Yuan, Q, Yang, W: Positive solution for qfractional fourpoint boundary value problems with pLaplacian operator. J. Inequal. Appl. 2014, 14 (2014)
Zhao, Y, Chen, H, Zhang, Q: Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional qderivative. Bound. Value Probl. 2013, 15 (2013)
Zhao, Y, Ye, G, Chen, H: Multiple positive solutions of a singular semipositone integral boundary value problem for fractional qderivatives equation. Abstr. Appl. Anal. 2013, Article ID 643571 (2013)
Alsaedi, A, Ahmad, B, AlHutami, H: A study of nonlinear fractional qdifference equations with nonlocal integral boundary conditions. Abstr. Appl. Anal. 2013, Article ID 410505 (2013)
Graef, JR, Kong, L: Positive solutions for a class of higher order boundary value problems with fractional qderivatives. Appl. Math. Comput. 218, 96829689 (2012)
Graef, JR, Kong, L: Existence of positive solutions to a higher order singular boundary value problem with fractional qderivatives. Fract. Calc. Appl. Anal. 16, 695708 (2013)
Yang, W: Positive solutions for nonlinear semipositone fractional qdifference system with coupled integral boundary conditions. Appl. Math. Comput. 244, 702725 (2014)
Agarwal, RP, Ahmad, B, Alsaedi, A, AlHutami, H: Existence theory for qantiperiodic boundary value problems of sequential qfractional integrodifferential equations. Abstr. Appl. Anal. 2014, Article ID 207547 (2014)
Ahmad, B, Nieto, JJ, Alsaedi, A, AlHutami, H: Existence of solutions for nonlinear fractional qdifference integral equations with two fractional orders and nonlocal fourpoint boundary conditions. J. Franklin Inst. 351, 28902909 (2014)
Ahmad, B, Ntouyas, SK, Alsaedi, A, AlHutami, H: Nonlinear qfractional differential equations with nonlocal and substrip type boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2014, 26 (2014)
Yang, L, Chen, H, Luo, L, Luo, Z: Successive iteration and positive solutions for boundary value problem of nonlinear fractional qdifference equation. J. Appl. Math. Comput. 42, 89102 (2013)
Annaby, MH, Mansour, ZS: qFractional Calculus and Equations. Lect. Notes Math., vol. 2056. Springer, Berlin (2012)
Acknowledgements
The authors sincerely thank the editor and reviewers for their valuable suggestions and useful comments to improve the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
Both authors contributed to each part of this work equally and read and approved the final version of the manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, Y., Yang, W. Monotone iterative method for nonlinear fractional qdifference equations with integral boundary conditions. Adv Differ Equ 2015, 294 (2015). https://doi.org/10.1186/s1366201506304
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366201506304