- Research
- Open access
- Published:
On nonoscillatory solutions tending to zero of third-order nonlinear dynamic equations on time scales
Advances in Difference Equations volume 2016, Article number: 10 (2016)
Abstract
By Kranoselskii’s fixed point theorem, we state some sufficient conditions of the existence of nonoscillatory solutions tending to zero as \(t\rightarrow\infty\) of a class of third-order nonlinear dynamic equations on time scales. Two examples are presented to show the significance of the results.
1 Introduction
In 1988, Hilger introduced the theory of time scales in his Ph.D. thesis [1]; see also [2]. We refer the reader to [3, 4] for details on time scales. We remark that some researchers have studied the existence of nonoscillatory solutions of several kinds of nonlinear dynamic equations on time scales, which can be found in [5–10].
Zhu and Wang [10] studied first-order nonlinear neutral dynamic equations
on a time scale \(\mathbb{T}\). Then Gao and Wang [7], Deng and Wang [6] discussed second-order nonlinear neutral dynamic equations
under different conditions successively. Inspired by [6, 7], Qiu [9] considered third-order nonlinear neutral dynamic equations
under the condition \(g(t)\leq t\), and established the existence of nonoscillatory solutions of equation (1). However, the conditions ensuring the existence of the nonoscillatory solutions tending to zero as \(t\rightarrow\infty\) of equation (1) were exceptional, and as a result, the applications were within limits (see [9], Theorems 3.5 and 3.6).
In 2011, Mojsej and Tartal’ová [8] studied the asymptotic behavior of nonoscillatory solutions of third-order nonlinear differential equations with quasiderivatives of the form
and stated the necessary and sufficient conditions ensuring the existence of nonoscillatory solutions tending to zero as \(t\rightarrow\infty\).
In this paper, we investigate the existence of nonoscillatory solutions tending to zero as \(t\rightarrow\infty\) of equation (1) on a time scale \(\mathbb{T}\), which satisfies \(\inf \mathbb{T}=t_{0}\) and \(\sup\mathbb{T}=\infty\). We state the following conditions, which hold throughout this paper:
-
(C1)
\(r_{1}, r_{2}\in C_{rd}(\mathbb{T}, (0,\infty))\).
-
(C2)
\(p\in C_{rd}(\mathbb{T}, [0,\infty))\) and there exists a constant \(p_{0}\) with \(0\leq p_{0}<1\) such that \(\lim_{t \rightarrow\infty}p(t)=p_{0}\).
-
(C3)
\(g,h\in C_{rd}(\mathbb{T}, \mathbb{T})\), \(g(t)\geq t\), and \(\lim_{t \rightarrow\infty}h(t)=\infty\).
-
(C4)
\(f\in C(\mathbb{T}\times\mathbb{R}, \mathbb{R})\) and \(xf(t,x)>0\) for \(t\in\mathbb{T}\) and \(x\neq0\).
In the sequel, there are two cases of the function f to be considered:
-
(C4A)
There exist \(q\in C(\mathbb{T}, (0,\infty))\) and \(f_{0}\in C(\mathbb{R}, \mathbb{R})\) such that \(xf(t,x)\leq xq(t)f_{0}(x)\).
-
(C4B)
\(f(t,x)\) is nondecreasing in x.
Motivated by [8, 9], we will establish the existence of nonoscillatory solutions tending to a zero of equation (1) by employing Kranoselskii’s fixed point theorem and, finally, two examples are given to show the versatility of the conclusions.
Definition 1.1
A solution x of equation (1) is said to be eventually positive (or eventually negative) if there exists \(c\in\mathbb{T}\) such that \(x(t)>0\) (or \(x(t)<0\)) for all \(t\geq c\) in \(\mathbb{T}\). x is said to be nonoscillatory if it is either eventually positive or eventually negative; otherwise, it is oscillatory.
2 Auxiliary results
Let \(BC(\left.[T_{0},\infty)\right._{\mathbb{T}},\mathbb{R})\) denote the Banach space of all bounded continuous functions on \(\left.[T_{0},\infty)\right._{\mathbb{T}}\) with the norm
Definition 2.1
Let \(X \subseteq BC\left.[T_{0},\infty)\right._{\mathbb{T}}\), we say that X is uniformly Cauchy, if for any given \(\epsilon>0\), there exists a \(T_{1}\in \left.[T_{0},\infty)\right._{\mathbb{T}}\) such that \(|x(t_{1})-x(t_{2})|<\epsilon\) for any \(x\in X\) and \(t_{1},t_{2}\in \left.[T_{1},\infty)\right._{\mathbb{T}}\).
Definition 2.2
X is said to be equi-continuous on \([a,b]_{\mathbb{T}}\), if for any given \(\epsilon>0\), there exists \(\delta>0\) such that \(|x(t_{1})-x(t_{2})|<\epsilon\) for any \(x\in X\) and \(t_{1},t_{2}\in [a,b]_{\mathbb{T}}\) with \(|t_{1}-t_{2}|<\delta\).
Lemma 2.3
([10], Lemma 4)
Suppose that \(X \subseteq BC\left.[T_{0},\infty)\right._{\mathbb{T}}\) is bounded and uniformly Cauchy. Further, suppose that X is equi-continuous on \([T_{0},T_{1}]_{\mathbb{T}}\) for any \(T_{1}\in \left.[T_{0},\infty)\right._{\mathbb{T}}\). Then X is relatively compact.
Lemma 2.4
(Kranoselskii’s fixed point theorem, see [5])
Suppose that X is a Banach space and Ω is a bounded, convex, and closed subset of X. Suppose further that there exist two operators \(U,S:\varOmega \rightarrow X\) such that
-
(1)
\(Ux+Sy\in \varOmega \) for all \(x,y\in \varOmega \);
-
(2)
U is a contraction mapping;
-
(3)
S is completely continuous.
Then \(U+S\) has a fixed point in Ω.
Without loss of generality, we shall consider the case that eventually positive solutions of equation (1) in the following. It is because if \(x(t)\) is an eventually negative solution of equation (1), then \(y(t)=-x(t)\) will satisfy
Note that \(\overline{f}(t,u):=-f(t,-u)\) satisfies (C4), and (C4A) or (C4B) similarly as \(f(t,u)\).
Define
then we will have the following lemma.
Lemma 2.5
Suppose that \(x(t)\) is an eventually positive solution of equation (1), and there exists a constant \(a\geq0\) such that \(\lim_{t\rightarrow \infty}z(t)=a\). Then we have
Proof
Suppose that \(x(t)\) is an eventually positive solution of equation (1). In view of (C3), there exists \(t_{1}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that \(x(t)>0\), \(x(g(t))>0\) for \(t\in \left.[t_{1},\infty)\right._{\mathbb{T}}\). We claim that \(x(t)\) is bounded on \(\left.[t_{1},\infty)\right._{\mathbb{T}}\). Assume not; then we have
which contradicts the fact that \(\lim_{t\rightarrow\infty}z(t)=a\). Therefore, \(x(t)\) is bounded. Then assume that
Since \(0\leq p_{0}<1\), we have
which implies that \(\overline{x}\leq\underline{x}\). So \(\overline{x}=\underline{x}\), and we see that \(\lim_{t\rightarrow \infty}x(t)\) exists and \(\lim_{t\rightarrow \infty}x(t)=a/(1+p_{0})\). The proof is complete. □
3 Main results
In this section, we state and prove our existence criteria for eventually positive solutions tending to zero as \(t\rightarrow \infty\) of equation (1).
Theorem 3.1
Assume that the function f satisfies (C4A) and there exists \(M_{1}>0\) such that
and
Define \(H_{1}(t)=\int_{t}^{\infty}\frac{1}{r_{2}(v)}\varDelta v\), which satisfies \(\lim_{t\rightarrow \infty}\frac{H_{1}(g(t))}{H_{1}(t)}=\eta_{1}\in(0,1]\). If there exists \(L>0\) such that
then equation (1) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow\infty}x(t)=0\), and there exists \(T_{1}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
Proof
From (C2), for \(0\leq p_{0}<1\), choose \(p_{1}\) such that \(p_{0}< p_{1}<(1+4p_{0})/5<1\). By (4) and (5), there exists \(T_{0}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
and
where \(K=\max\{|f_{0}(x)|:x\in[0,2M_{1}]\}\). From (C3), there always exists \(T_{1}\in(T_{0},\infty)_{\mathbb{T}}\) such that
Define
It is clear that \(\varOmega _{1}\) is a bounded, convex, and closed subset of \(BC\left.[T_{0},\infty)\right._{\mathbb{T}}\). For any \(x\in \varOmega _{1}\), by (C4A) we have
Define the operators \(U_{1}\) and \(S_{1}\): \(\varOmega _{1}\rightarrow BC\left.[T_{0},\infty)\right._{\mathbb{T}}\) as
and
Then we prove that \(U_{1}\) and \(S_{1}\) satisfy all the conditions in Lemma 2.4.
(1) For any \(x,y\in \varOmega _{1}\) and \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), by (7)-(9) we obtain
and
Similarly, \(H_{1}(t)\leq(U_{1}x)(t)+(S_{1}y)(t)\leq2H_{1}(t)\) also holds for any \(x,y\in \varOmega _{1}\) and \(t\in [T_{0},T_{1}]_{\mathbb{T}}\). It follows that \(U_{1}x+S_{1}y\in \varOmega _{1}\) for any \(x,y\in \varOmega _{1}\).
(2) For any \(x,y\in \varOmega _{1}\) and \(t\in \left.[T_{0},\infty)\right._{\mathbb{T}}\), we always have
It follows that \(\|U_{1}x-U_{1}y\|\leq p_{1}\|x-y\|\) for any \(x,y\in \varOmega _{1}\). That is, \(U_{1}\) is a contraction mapping.
(3) For \(t\in \left.[T_{0},\infty)\right._{\mathbb{T}}\), we have
and
It is easy to see that \(S_{1}\) maps \(\varOmega _{1}\) into \(\varOmega _{1}\).
For any \(x\in \varOmega _{1}\) and \(t\in \left.[T_{0},\infty)\right._{\mathbb{T}}\), let \(x_{n}\in \varOmega _{1}\) and \(\|x_{n}-x\|\rightarrow0\) as \(n\rightarrow\infty\). For \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), by (4), (6), and (8), we have
For \(t\in[T_{0},T_{1}]_{\mathbb{T}}\), we also have the result above. By Lebesgue’s dominated convergence theorem (see Chapter 5 in [11]), it follows that
Therefore, \(S_{1}\) is continuous.
It is obvious that \(S_{1}\varOmega _{1}\) is bounded. On the other hand, by (4), for any \(\epsilon>0\) there exists \(T_{2}\in \left.[T_{1},\infty)\right._{\mathbb{T}}\) such that
For \(t_{1},t_{2}\in[T_{0},T_{1}]_{\mathbb{T}}\), we always have \(|(S_{1}x)(t_{1})-(S_{1}x)(t_{2})|=0\). Then, for any \(x\in \varOmega _{1}\) and \(t_{1},t_{2}\in \left.[T_{2},\infty)\right._{\mathbb{T}}\), we have
It is clear that \(S_{1}\varOmega _{1}\) is uniformly Cauchy.
For \(x\in \varOmega _{1}\) and \(t_{1},t_{2}\in [\min\{T_{1}-1,T_{0}\},T_{2}+1]_{\mathbb{T}}\), we have
Therefore, there exists \(0<\delta<1\) such that \(|(S_{1}x)(t_{1})-(S_{1}x)(t_{2})|<\epsilon\) for any \(t_{1},t_{2}\in [T_{0}, T_{2}+1]_{\mathbb{T}}\) with \(|t_{1}-t_{2}|<\delta\). We conclude that \(S_{1}\varOmega _{1}\) is equi-continuous.
According to Lemma 2.3, it follows that \(S_{1}\varOmega _{1}\) is relatively compact and \(S_{1}\) is completely continuous. Then by Lemma 2.4, there exists \(x\in \varOmega _{1}\) such that \((U_{1}+S_{1})x=x\). It means that \(x(t)\) is an eventually positive solution of equation (1), and for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), we have
As
for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), and
it follows that \(\lim_{t\rightarrow\infty}z(t)=0\). By Lemma 2.5, we obtain \(\lim_{t\rightarrow\infty}x(t)=0\). Furthermore, for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), we have
and
The proof is complete. □
Theorem 3.2
Assume that
Then equation (1) has no eventually positive solution \(x(t)\), for which \(r_{2}(t)z^{\varDelta }(t)\) and \(r_{1}(t) (r_{2}(t)z^{\varDelta }(t) )^{\varDelta }\) are both eventually negative.
Proof
Suppose that \(x(t)\) is an eventually positive solution of equation (1), and there exists \(T_{0}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
By (C3), there exists \(T_{1}\in(T_{0},\infty)_{\mathbb{T}}\) such that \(h(t)\geq T_{0}\) for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\). Integrating (1) from \(T_{1}\) to \(s\in \left.[\sigma(T_{1}),\infty)\right._{\mathbb{T}}\), by (C4) we obtain
which implies that
Integrating (11) from \(T_{1}\) to \(v\in \left.[\sigma(T_{1}),\infty)\right._{\mathbb{T}}\), we obtain
or
Integrating (12) from \(T_{1}\) to \(t\in \left.[\sigma(T_{1}),\infty)\right._{\mathbb{T}}\), we obtain
Letting \(t\rightarrow\infty\), we have \(z(t)\rightarrow-\infty\). It is a contradiction because \(z(t)=x(t)+p(t)x(g(t))\) is eventually positive. The proof is complete. □
By Theorems 3.1 and 3.2, we have the following corollary.
Corollary 3.3
Assume that
If the function f satisfies (C4A) and there exists \(L>0\) such that
then \(\int_{t_{0}}^{\infty}\frac{1}{r_{2}(t)}\varDelta t<\infty\) is a necessary and sufficient condition for equation (1) to have an eventually positive solution \(x(t)\) satisfying the requirement that \(\lim_{t\rightarrow\infty}x(t)=0\) and \(r_{2}(t)z^{\varDelta }(t)\), \(r_{1}(t) (r_{2}(t)z^{\varDelta }(t) )^{\varDelta }\) are both eventually negative.
Theorem 3.4
Assume that the function f satisfies (C4A) and there exists \(M_{2}>0\) such that
and
Define \(H_{2}(t)=\int_{t}^{\infty}\int_{v}^{\infty}\frac {1}{r_{1}(s)r_{2}(v)}\varDelta s\varDelta v\), which satisfies \(\lim_{t\rightarrow \infty}\frac{H_{2}(g(t))}{H_{2}(t)}=\eta_{2}\in(0,1]\). If there exists \(L>0\) such that
then equation (1) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow\infty}x(t)=0\), and there exists \(T_{1}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
Proof
From (C2), for \(0\leq p_{0}<1\), choose \(p_{1}\) such that \(p_{0}< p_{1}<(1+4p_{0})/5<1\). By (13) and (14), there exists \(T_{0}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
and
where \(K=\max\{|f_{0}(x)|:x\in[0,2M_{2}]\}\). Similarly, there always exists \(T_{1}\in(T_{0},\infty)_{\mathbb{T}}\) such that \(h(t)\geq T_{0}\) for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\).
Define
Then \(\varOmega _{2}\) is also a bounded, convex, and closed subset of \(BC\left.[T_{0},\infty)\right._{\mathbb{T}}\). For any \(x\in \varOmega _{2}\), by (C4A) we have
Define the operators \(U_{2}\) and \(S_{2}: \varOmega _{2}\rightarrow BC\left.[T_{0},\infty)\right._{\mathbb{T}}\) as
and
Similarly to the proof of Theorem 3.1, we can conclude that \(U_{2}\) and \(S_{2}\) satisfy all the conditions in Lemma 2.4. Therefore, there exists \(x\in \varOmega _{2}\) such that \((U_{2}+S_{2})x=x\), which means that \(x(t)\) is an eventually positive solution of equation (1). It follows that for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), we have
As
for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), and
we have \(\lim_{t\rightarrow\infty}z(t)=0\), which implies that \(\lim_{t\rightarrow\infty}x(t)=0\) by Lemma 2.5. For \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), we obtain
and
The proof is complete. □
Remark 3.5
Actually, (6) in Theorem 3.1 and (15) in Theorem 3.4 will hold especially when \(f(t,x)=q(t)f_{0}(x)\) and \(f_{0}(x)\) satisfies the Lipschitz condition on \([0,2M_{1}]\) and \([0,2M_{2}]\), respectively.
Remark 3.6
Letting \(\mathbb{T}=[a,\infty)\), \(r_{1}(t)=\frac{1}{p(t)}\), \(r_{2}(t)=\frac{1}{r(t)}\), \(p(t)=0\), and the function f satisfying (C4A), equation (1) is simplified as (2). Therefore, Theorems 3.1, 3.2, 3.4, and Corollary 3.3 complement and extend the results in Mojsej and Tartal’ová [8].
In the sequel, we change the condition of the function f from (C4A) to (C4B), and get some similar conclusions as follows.
Theorem 3.7
Assume that the function f satisfies (C4B) and
and
where \(H_{1}(t)=\int_{t}^{\infty}\frac{1}{r_{2}(v)}\varDelta v\), which satisfies \(\lim_{t\rightarrow \infty}\frac{H_{1}(g(t))}{H_{1}(t)}=\eta_{1}\in(0,1]\). Then equation (1) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow\infty}x(t)=0\), and there exists \(T_{1}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
Proof
From (C2), for \(0\leq p_{0}<1\), choose \(p_{1}\) such that \(p_{0}< p_{1}<(1+4p_{0})/5<1\). By (17) and (18), there exists \(T_{0}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that (7) holds and
Similarly, there always exists \(T_{1}\in (T_{0},\infty)_{\mathbb{T}}\) such that \(h(t)\geq T_{0}\) for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\).
Define \(\varOmega _{1}\) as in Theorem 3.1. For any \(x\in \varOmega _{1}\), by (C4B) we have
In addition, define \(U_{1}\) and \(S_{1}\) as in Theorem 3.1. It is obvious that \(U_{1}\) and \(S_{1}\) also satisfy all the conditions in Lemma 2.4. Hence, there exists \(x\in \varOmega _{1}\) such that \((U_{1}+S_{1})x=x\). That is, \(x(t)\) is an eventually positive solution of equation (1). For \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), it follows that
As
for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), and
it follows that \(\lim_{t\rightarrow\infty}z(t)=0\). By Lemma 2.5, we obtain \(\lim_{t\rightarrow\infty}x(t)=0\). Furthermore, for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), it satisfies
The proof is complete. □
Theorem 3.8
Assume that the function f satisfies (C4B) and
and
where \(H_{2}(t)=\int_{t}^{\infty}\int_{v}^{\infty}\frac {1}{r_{1}(s)r_{2}(v)}\varDelta s\varDelta v\), which satisfies \(\lim_{t\rightarrow \infty}\frac{H_{2}(g(t))}{H_{2}(t)}=\eta_{2}\in(0,1]\). Then equation (1) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow\infty}x(t)=0\), and there exists \(T_{1}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that
Proof
From (C2), for \(0\leq p_{0}<1\), choose \(p_{1}\) such that \(p_{0}< p_{1}<(1+4p_{0})/5<1\). By (19) and (20), there exists \(T_{0}\in \left.[t_{0},\infty)\right._{\mathbb{T}}\) such that (16) holds and
From (C3), there always exists \(T_{1}\in (T_{0},\infty)_{\mathbb{T}}\) such that \(h(t)\geq T_{0}\) for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\).
Define \(\varOmega _{2}\) as in Theorem 3.4. For any \(x\in \varOmega _{1}\), by (C4B) we have
In addition, define the operators \(U_{2}\) and \(S_{2}\) as in Theorem 3.4. It is obvious that \(U_{2}\) and \(S_{2}\) also satisfy all the conditions in Lemma 2.4. Then there exists \(x\in \varOmega _{2}\) such that \((U_{2}+S_{2})x=x\), which means that \(x(t)\) is an eventually positive solution of equation (1). For \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), it follows that
As
for \(t\in \left.[T_{1},\infty)\right._{\mathbb{T}}\), and
we have \(\lim_{t\rightarrow\infty}z(t)=0\), which implies that \(\lim_{t\rightarrow\infty}x(t)=0\) by Lemma 2.5. We also obtain
The proof is complete. □
Remark 3.9
Indeed, if the function f satisfies both of (C4A) and (C4B), compared to Theorems 3.1 and 3.4, Theorems 3.7 and 3.8 are more convenient to employ, respectively.
4 Examples
In this section, we give two examples to show the application of our results. The first example is presented to illustrate Theorems 3.1 and 3.7.
Example 4.1
Let \(\mathbb{T}=\bigcup_{n=1}^{\infty}[2n-1,2n]\). Consider
where \(r_{1}(t)=t^{5}\), \(r_{2}(t)=t^{2}\), \(p(t)=\frac{t-1}{2t}\), \(g(t)=t+2\), \(h(t)=t\), \(f(t,x)=t^{2}x+\frac{x^{3}}{t}\), \(t_{0}=1\).
Take \(q(t)=t^{2}\) and \(f_{0}(x)=x+x^{3}\). It is obvious that the coefficients of equation (21) satisfy (C1)-(C4), (C4A), and (C4B). Since
and, for any \(x_{1},x_{2}\in[0,4]\),
by Theorem 3.1 we see that equation (21) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow \infty}x(t)=0\), and \(r_{2}(t)z^{\varDelta }(t)\), \(r_{1}(t) (r_{2}(t)z^{\varDelta }(t) )^{\varDelta }\) are both eventually negative.
On the other hand, since \(H_{1}(t)<2\), we obtain
and
By Theorem 3.7 we have the same conclusion.
Then the second example demonstrates Theorems 3.4 and 3.8.
Example 4.2
Let \(\mathbb{T}=\bigcup_{n=1}^{\infty}[2^{n}-1,2^{n}]\). Consider
where \(r_{1}(t)=t^{2}\), \(r_{2}(t)=t\), \(p(t)=\frac{1}{t}\), \(g(t)=t\), \(h(t)=\frac{t}{2}\), \(f(t,x)=\frac{x}{t^{2}}\), \(t_{0}=1\).
Take \(q(t)=\frac{1}{t^{2}}\) and \(f_{0}(x)=x\). It is obvious that the coefficients of equation (22) satisfy (C1)-(C4), (C4A), and (C4B). Since
and for any \(x_{1},x_{2}\in[0,2M_{2}]\),
by Theorem 3.4 we see that equation (22) has an eventually positive solution \(x(t)\) with \(\lim_{t\rightarrow \infty}x(t)=0\), \(r_{2}(t)z^{\varDelta }(t)\) is eventually negative and \(r_{1}(t) (r_{2}(t)z^{\varDelta }(t) )^{\varDelta }\) is eventually positive.
On the other hand, since \(H_{2}(t)\leq M_{2}\), we obtain
and
By Theorem 3.8 we have the same conclusion.
References
Hilger, S: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg (1988)
Hilger, S: Analysis on measure chain - a unified approach to continuous and discrete calculus. Results Math. 18, 18-56 (1990)
Agarwal, RP, Bohner, M: Basic calculus on time scales and some of its applications. Results Math. 35, 3-22 (1999)
Agarwal, RP, Bohner, M, O’Regan, D, Peterson, A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1-26 (2002)
Chen, YS: Existence of nonoscillatory solutions of nth order neutral delay differential equations. Funkc. Ekvacioj 35, 557-570 (1992)
Deng, XH, Wang, QR: Nonoscillatory solutions to second-order neutral functional dynamic equations on time scales. Commun. Appl. Anal. 18, 261-280 (2014)
Gao, J, Wang, QR: Existence of nonoscillatory solutions to second-order nonlinear neutral dynamic equations on time scales. Rocky Mt. J. Math. 43, 1521-1535 (2013)
Mojsej, I, Tartal’ová, A: On nonoscillatory solutions tending to zero of third-order nonlinear differential equations. Tatra Mt. Math. Publ. 48, 135-143 (2011)
Qiu, YC: Nonoscillatory solutions to third-order neutral dynamic equations on time scales. Adv. Differ. Equ. 2014, 309 (2014)
Zhu, ZQ, Wang, QR: Existence of nonoscillatory solutions to neutral dynamic equations on time scales. J. Math. Anal. Appl. 335, 751-762 (2007)
Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
Acknowledgements
This project was supported by the NNSF of China (no. 11271379), the Program of Cultivation for Outstanding Young Scholars Sponsored by Guangdong Province (ZX03240302) and the Program of Cultivation for Young Scholars Sponsored by Shunde Polytechnic (2015-KJZX080).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The author declares that he has no competing interests.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Qiu, YC. On nonoscillatory solutions tending to zero of third-order nonlinear dynamic equations on time scales. Adv Differ Equ 2016, 10 (2016). https://doi.org/10.1186/s13662-016-0742-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-016-0742-5