- Research
- Open Access
- Published:
Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels
Advances in Difference Equations volume 2016, Article number: 232 (2016)
Abstract
In this manuscript we propose the discrete versions for the recently introduced fractional derivatives with nonsingular Mittag-Leffler function. The properties of such fractional differences are studied and the discrete integration by parts formulas are proved. Then a discrete variational problem is considered with an illustrative example. Finally, some more tools for these derivatives and their discrete versions have been obtained.
1 Introduction and preliminaries
Fractional calculus has become an important mathematical tool used in several branches of science and engineering in order to describe better the properties of non-local complex systems [1–5]. Recently some authors have introduced new non-local derivatives with nonsingular kernels and they applied them successfully to some real world problems [6–14]. However, several areas where the fractional calculus can be applied successfully remain still not deeply investigated, e.g. the thermoelasticity of bodies with microstructure (see [15–17] for example and the references therein). Finding the discrete counterparts of these new fractional operators is an important step to apply them to model the dynamics of complex systems.
In the following we recall and prove some results in discrete fractional calculus that will be necessary in proceeding to obtain our discrete results (see [18–29]).
Definition 1
[30]
-
(i)
Let m be a natural number, then the m rising factorial of t is written as
$$ t^{\overline{m}}= \prod_{k=0}^{m-1}(t+k), \qquad t^{\overline{0}}=1. $$(1) -
(ii)
For any real number the α rising function becomes
$$ t^{\overline{\alpha}}=\frac{\Gamma(t+\alpha)}{\Gamma(t)}, \quad\mbox{such that } t \in \mathbb{R}\setminus\{\ldots,-2,-1,0\}, 0^{\overline {\alpha}}=0. $$(2)
In addition, we have
hence \(t^{\overline{\alpha}}\) is increasing on \(\mathbb{N}_{0}\), where \(\rho(t)=t-1\).
Definition 2
Let \(\rho(t)=t-1\) be the backward jump operator. Thus, for a function \(f:\mathbb{N}_{a}=\{ a,a+1,a+2,\ldots\}\rightarrow\mathbb{R}\), the nabla left fractional sum of order \(\alpha>0\) becomes
The nabla right fractional sum of order \(\alpha>0\) for \(f: {}_{b}\mathbb{N}=\{b,b-1,b-2,\ldots\}\rightarrow\mathbb {R}\) is written as
The nabla left fractional difference of order \(\alpha>0\) has the form
and the nabla right fractional difference of order \(\alpha>0\) is defined as
The left Caputo fractional difference of order \(\alpha>0\) started by \(a(\alpha)=a+n-1, n=[\alpha]+1\) is written as
and the right Caputo fractional difference of order \(\alpha>0\) ending at \(b(\alpha)=b-n+1\) has the following form:
The Q-operator action, \((Qf)(t)=f(a+b-t)\), was used in [31, 32] to connect left and right fractional sums and differences. We recall the following results:
-
\((\nabla_{a}^{-\alpha} Qf)(t)=Q {}_{b}\nabla^{-\alpha} f(t)\).
-
\((\nabla_{a}^{\alpha} Qf)(t)=Q {}_{b}\nabla^{\alpha}f(t)\).
-
\(({}^{C}\nabla_{a}^{\alpha} Qf)(t)=Q {}_{b}^{C}\nabla^{\alpha}f(t)\).
The mixing of nabla and delta operators in defining right fractional differences plays a crucial role in obtaining the above dual identities.
In our manuscript, we use the properties of the discrete version of Q-operator to define and confirm our definitions of fractional differences with discrete Mittag-Leffler function kernels.
Definition 3
[33]
Let a function f be defined on \(\mathbb{N}_{0}\). Then the nabla discrete Laplace transform has the form
More generally for a function f it is defined on \(\mathbb{N}_{a}\) by
If \(f(t,s)\) denotes a function of two variables, we have explicitly to show to which parameter we use the transform.
Lemma 1
[30]
For any \(\alpha\in\mathbb{R}\setminus\{\ldots,-2,-1,0\}\),
-
(i)
\(\mathcal{N}(t^{\overline{{\alpha-1}}})(z)=\frac{\Gamma(\alpha )}{z^{\alpha}}, |1-z|<1\),
-
(ii)
\(\mathcal{N}(t^{\overline{{\alpha-1}}}b^{-t})(z)=\frac {b^{\alpha-1}\Gamma(\alpha)}{(z+b-1)^{\alpha}}, |1-z|< b\).
Remark 1
We can generalize (i) of Lemma 1 to \((\mathcal {N}_{a}(t-a)^{\overline{\alpha-1}})(s)=(1-s)^{a} \frac{\Gamma(\alpha )}{s^{\alpha}}\). Here we accept \(\mathcal{N}_{0}=\mathcal{N}\).
Definition 4
[2]
The Mittag-Leffler function of one parameter has the following form:
and the one with two parameters α and β becomes
where \(E_{\alpha,1}(z)=E_{\alpha}(z)\).
Since in general it is not true that \((t^{\alpha})^{\overline{\beta }}=t^{\overline{\alpha\beta}}\) and \((ab)^{\overline{\alpha }}=a^{\overline{\alpha}} b^{\overline{\alpha}}\) in general, we define for the sake of discretization the following (modified) versions of Mittag-Leffler functions which also agree with the time scale calculus notations.
Definition 5
(Modified classical Mittag-Leffler functions)
The Mittag-Leffler function of one parameter is defined by
and the one with two parameters α and β by
where \(E_{\alpha,1}(\lambda,z)=E_{\alpha}(\lambda,z)\).
Agreeing with Definition 5, the author in [31, 32] defined the following discrete versions of Mittag-Leffler functions.
Definition 6
(Nabla discrete Mittag-Leffler) (see [31–33])
For \(\lambda\in\mathbb{R}, |\lambda |<1\), and \(\alpha, \beta, z \in\mathbb{C}\) with \(\operatorname{Re}(\alpha)>0\), the nabla discrete Mittag-Leffler functions is
For \(\beta=1\), we have
The generalized ML of three parameters was defined in the literature by
where \((\rho)_{k}=\rho(\rho+1)\cdots(\rho+k-1)\). Notice that \((1)_{k}=k!\) so that \(E^{1}_{\alpha,\beta} ( z)=E_{\alpha,\beta} ( z)\).
To pass to the discrete process we define the following version of ML function of three parameters:
Definition 7
The (nabla) discrete general ML function of three parameters \(\alpha, \beta\), and ρ is defined by
Notice that \(E^{1}_{\overline{\alpha,\beta}} (\lambda, z)=E_{\overline {\alpha,\beta}} (\lambda, z)\).
Proposition 1
(Summation and difference of discrete ML functions)
-
\(\nabla_{t} E_{\overline{\alpha}} (\lambda, z)= \lambda E_{\overline {\alpha,\alpha}} (\lambda, z)\).
-
\(\nabla_{t} E_{\overline{1,\beta}} (\lambda, z)= \lambda E_{\overline{1,\beta+1}} (\lambda, z)\).
-
\(\nabla_{t} E^{\gamma}_{\overline{\alpha,\beta}} (\lambda, z)=E^{\gamma}_{\overline{\alpha,\beta-1}} (\lambda, z)\).
-
\(\sum_{t=a+1}^{z} E_{\overline{\alpha,\beta}} (\lambda, t-a) =E_{\overline{\alpha,\beta+1}} (\lambda, z-a)\).
Definition 8
Let a function f be defined on \(\mathbb{N}_{0}\). Thus, for \(0<\alpha \leq1\) its α-order Caputo fractional derivative is
where \(\rho(s)=s-1\) and \(\nabla_{0}^{-\alpha} f(t)=\frac{1}{\Gamma(\alpha )}\sum_{s=1}^{t} (t-\rho(s))^{\overline{\alpha-1}} f(s)\) is the nabla left fractional sum of order α.
We recall that if f is defined on \(\mathbb{N}_{0}\), then \({}^{C}\nabla _{0}^{\alpha}f(t)\) is defined on \(\mathbb{N}_{1}=\{1,2,3,\ldots\}\).
For the Caputo fractional difference of order \(n-1< \alpha\leq n\) starting from \(a(\alpha)=a+n-1\) we refer to Section 5 in [31].
Example 1
Let \(0<\alpha\leq1\), \(a \in\mathbb{R}\), and consider the nabla left Caputo nonhomogeneous fractional difference equation
Thus, the solution of (15) is written as
Remark 2
The solution of (15) with \(\alpha=1\) and \(a_{0}=1\) is
The nabla discrete exponential function \(\widehat{e}_{\lambda }(t,0)=(1-\lambda)^{-t}\) represents the first part of the above solution, with \(|\lambda|<1\). For more details see [34], p.118.
For the rest of this section, we summarize some facts as regards the discrete Laplace transform of Mittag-Leffler type and convolution type functions (see [33] for some details).
Definition 9
(See [33])
Let \(s \in\mathbb{R}\), \(0<\alpha<1\), and \(f,g:\mathbb{N}_{a}\rightarrow \mathbb{R}\) be functions. The nabla discrete convolution of f with g is defined by
In the above, \(\rho(s)=s-1\) is the backward jumping operator used in ∇-analysis for the time scale \(\mathbb{Z}\). This operator is necessary to prove for example a discrete convolution theorem as shown below. Also it is necessary to obtain dual relations between the left and right fractional sums and differences via the Q-operator.
Proposition 2
For any \(\alpha\in\mathbb{R}\setminus\{\ldots,-2,-1,0\}\), \(s \in\mathbb {R}\), and \(f,g\) defined on \(\mathbb{N}_{a}\) we have
Proof
where the change of variable \(r=t-\rho(s)\) was used. □
For the case \(a=0\) and \(g(t)=t^{\overline{\alpha}}\) we refer to [33].
Lemma 2
[33]
Let f be a function defined on \(\mathbb{N}_{0}\). Thus,
We can generalize Lemma 2 as follows.
Lemma 3
Let f be a function defined on \(\mathbb{N}_{a}\). The following result holds:
More generally,
Lemma 4
[30]
For any positive real number ν,
For the following lemma we will present an alternative proof without using convolutions as was done in [33].
Lemma 5
[33]
Let f be defined on \(\mathbb{N}_{0}\) and \(0<\alpha\leq1\). Then
Proof
From the definition and Lemma 3.2 in [35] we have
Apply the nabla discrete Laplace transform and make use of Lemma 2 and Lemma 1 to get
Then the result follows by Lemma 4 with \(a=1\) and \((\nabla _{0}^{-(1-\alpha)} f)(0)=0\). □
Remark 3
Lemma 5 can be generalized as follows. For f defined on \(\mathbb{N}_{a}\) and \(0<\alpha\leq1\), we have
This can be proved by making use of Remark 1.
Lemma 6
[33]
Let \(0<\alpha\leq1\) and f be defined on \(\mathbb{N}_{0}\). Then:
-
(i)
\((\mathcal{N} E_{\overline{\alpha}}(\lambda,t))(z)= \frac{z^{\alpha -1}}{z^{\alpha}-\lambda}\).
-
(ii)
\((\mathcal{N} E_{\overline{\alpha,\alpha}}(\lambda,t))(z)= \frac {1}{z^{\alpha}-\lambda}\).
Proof
We just repeat the proof of (ii) due to the calculation error in Lemma 4(ii) in [33].
(ii) First it is easy to see that \(\nabla E_{\overline{\alpha}}(\lambda ,t)= \lambda E_{\overline{\alpha,\alpha}}(\lambda,t)\). Indeed,
Since dividing by balls of Gamma function leads to zero, we then have \(\nabla E_{\overline{\alpha}}(\lambda,t)=\sum_{k=1}^{\infty}\lambda^{k} \frac{ z^{\overline{k\alpha-1}}}{\Gamma(\alpha k)}=\lambda\sum_{k=0}^{\infty}\lambda^{k} \frac{ z^{\overline{k\alpha+\alpha-1}}}{\Gamma (\alpha k+\alpha)}=\lambda E_{\overline{\alpha,\alpha}}(\lambda,t) \). If we use \(\mathcal{N}\) together with (i) and Lemma 2, we conclude that
□
2 Discrete fractional differences with discrete Mittag-Leffler kernels
Definition 10
Let f be defined on \(\mathbb{N}_{a}\cap {}_{b}\mathbb{N}, a< b, \alpha \in[0,1]\), then the nabla discrete new (left Caputo) fractional difference in the sense of Atangana and Baleanu is defined by
and in the left Riemann sense by
It is be noted that since for \(0<\alpha< \frac{1}{2}\) we have \(-1<\lambda=-\frac{\alpha}{1-\alpha}<0\), then \(E_{\overline{\alpha}} (\lambda, t)\) is convergent for any \(t \in\mathbb{N}\). For example, \(E_{\overline{\alpha}} (\lambda, 1)=(1-\alpha)\) provided that \(0<\alpha < \frac{1}{2}\). Hence, all the AB-type fractional differences will converge under the restriction \(0<\alpha< \frac{1}{2}\). Also note that since \(t^{\overline{\alpha}}\) is increasing on \(\mathbb {N}_{0}\), \(E_{\overline{\alpha}}(\lambda,t)\) is monotone decreasing for \(0<\alpha< \frac{1}{2}, t>0\), and \(\lambda= \frac{ -\alpha}{1-\alpha }<0\) (see [36] for the continuous case \(E_{\alpha}(-t^{\alpha})\)). We can show that \(\lim_{\sigma\rightarrow0} \frac{1}{\sigma} E_{\overline{\alpha}}(\frac{-1}{\sigma}, t-\rho(s))=\delta_{s} (t)=\big\{ \scriptsize{\begin{array}{@{}ll} 1, & t=s, \\ 0, & t\neq s, \end{array}} \) \(\alpha=1\), which is the delta Dirac function on the time scale \(\mathbb{Z}\), and hence as in [6] we can show that, for \(\alpha\rightarrow0\), we have \(({}^{ABR} _{a}\nabla^{\alpha}f)(t)\rightarrow f(t)\) and for \(\alpha\rightarrow1\), we have \(( {}^{ABR} _{a}\nabla^{\alpha}f)(t)\rightarrow\nabla f(t)\). Notice that \(E_{\overline{1}}(\frac{-1}{\sigma}, t-\rho(s))=(1-\alpha)^{t-\rho (s)}\), \(\sigma=\frac{1-\alpha}{\alpha}\), and hence for example
Above we have made used of the fact that the nabla discrete exponential function has the form \(e_{\lambda}(t,\rho(s))=(\frac{1}{1-\lambda })^{t-\rho(s)}\) and \(E_{\overline{1}}(\lambda, t-\rho(s))=e_{\lambda}(t,\rho(s))\).
To derive the proper fractional difference for the above proposed fractional difference we consider the equation
Apply \(\mathcal{N}_{a}\) to (26) above and make use of Lemma 3, Proposition 2 with \(g(t)= E_{\overline{\alpha}}(\lambda,t)\) with \(\lambda= \frac{-\alpha}{1-\alpha }\), and Lemma 6,
That is,
Apply the inverse of \(\mathcal{N}_{a}\) and use of Proposition 2 and Lemma 1 to conclude that
This suggests the following definition for the fractional sum corresponding to the fractional difference with discrete Mittag-Leffler function kernel.
Definition 11
The fractional sum associated to \(( {}^{ABR} _{a}\nabla^{\alpha} f)(t)\) with order \(0<\alpha<1\) is defined by
It is clear that \(\alpha=0\) gives the function f and \(\alpha=1\) gives \(\sum_{s=a+1}^{t}f(s)\).
From the definition of the discrete fractional integral we have
On the other hand we have the following.
Theorem 1
For any \(0<\alpha\leq1\) and f defined on \(\mathbb{N}_{a}\), \(( {}^{ABR} _{a}\nabla^{\alpha} f)(t)\) satisfies the equation
Proof
From the definition of fractional sum the equation in the statement of the theorem is equivalent to
Apply the discrete Laplace transform \(\mathcal{N}_{a}\) and make use of Lemma 4 to obtain
where \(G(s)=(\mathcal{N}_{a} g)(s)\) and \(F(s)=(\mathcal{N}_{a} f)(s)\). From this it follows that
where \(\lambda=\frac{-\alpha}{1-\alpha}\). Finally, apply the inverse of \(\mathcal{N}_{a}\) and use the discrete convolution theorem, Proposition 2, or (27) to conclude that \(g(t)=( {}^{ABR} _{a}\nabla^{\alpha} f)(t)\). □
Theorem 2
(The relation between the Caputo and Riemann fractional differences with ML kernels)
We have
Proof
From (27) we have
where \(\lambda=\frac{-\alpha}{1-\alpha}\). On the other hand, we have
From (36) and (37), we see that
Apply the inverse of \(\mathcal{N}_{a}\) to (38) to conclude (35). The fact that \((\mathcal{N}_{a} f(t-a))(z)=(1-z)^{a} (\mathcal{N} f(t))(z)\) was used above. □
By means of the action of the Q-operator on left and right fractional sums and differences, we can define the right fractional sums \(( {}^{AB}\nabla^{-\alpha} _{b} f)(t)\) and differences \(({}^{AB}\nabla^{\alpha}_{b} f)(t)\) as follows.
Definition 12
(The new right fractional difference with ML kernel)
For \(0<\alpha<1\), and f defined on \({}_{b}\mathbb{N}\), the right fractional difference of f is defined by
and the right Caputo one by
Definition 13
(The new right fractional sum with ML kernel)
For \(0<\alpha<1\), and f defined on \({}_{b}\mathbb{N}\), the right fractional sum of f is defined by
Theorem 3
For a function f defined on \({}_{b}\mathbb{N}\) and \(0< \alpha<1\), we have \(( {}^{ABR}\nabla_{b}^{\alpha}{}^{AB}\nabla_{b}^{-\alpha}f)(t)=f(t)\) and \(( {}^{AB}\nabla_{b}^{-\alpha} {}^{ABR}\nabla_{b}^{\alpha}f)(t)=f(t)\).
If we apply the Q-operator to both sides and then replace \(f(t)\) by \((Qf)(t)=f(a+b-t)\), then we can state the following.
Theorem 4
(The relation between the new right Caputo fractional difference and the new right Riemann fractional difference)
We have
3 Integration by parts for fractional sums and differences with discrete ML
First we state and prove an integration by parts formula for fractional sums.
Theorem 5
(Integration by parts for the fractional sums with ML kernels)
For f and g defined on \(\mathbb{N}_{a} \cap {}_{b}\mathbb{N}\), \(a\equiv b\ (\operatorname{mod} 1)\), and \(0<\alpha<1\), one has
Similarly, we have
Proof
The proof follows by the definition of the new left fractional sum, the integration by parts formula for nabla classical fractional sums (see Proposition 37 in [31]), and the definition of the new right fractional sum. □
Theorem 6
(Integration by parts for the fractional differences with ML kernels)
For f and g defined on \(\mathbb{N}_{a} \cap {}_{b}\mathbb{N}\), \(a\equiv b\ (\operatorname{mod} 1)\), and \(0<\alpha<1\), one has
Similarly,
Proof
The proof is achieved by Theorem 5 and the previously proved fact that the new fractional sums and differences are the inverses to each other. Indeed,
□
Next, in order to present an integration by parts formula for Caputo type fractional differences with ML kernels, we first define the discrete versions of the (left) generalized fractional integral operator introduced and studied in [37],
where \(E_{\rho,\mu}^{\gamma}(z)=\sum_{k=0}^{\infty}\frac{(\gamma)_{k} z^{k}}{\Gamma(\rho k+\mu)k!}\) is the generalized Mittag-Leffler function which is defined for complex \(\rho,\mu,\gamma \) (\(\operatorname{Re}(\rho)>0\)) [3, 37]. For our purposes we just introduce the discrete version for \(\gamma=1\).
Definition 14
-
The discrete (left) generalized fractional integral operator is defined by
$$\bigl( \mathbf{ E}^{1}_{\overline{\rho, \mu}, \omega,a^{+}}\varphi\bigr) (t)=\sum _{s=a+1}^{t} \bigl(t-\rho(s)\bigr)^{\overline{\mu-1}} E_{\overline{\rho,\mu}} \bigl(\omega, t-\rho(s) \bigr)\varphi(s) , \quad t\in \mathbb{N}_{a}. $$ -
The discrete (right) generalized fractional integral operator is defined by
$$\bigl( \mathbf{ E}^{1}_{\overline{\rho, \mu}, \omega,b^{-}}\varphi\bigr) (t)=\sum _{s=t}^{b-1} \bigl(s-\rho(t)\bigr)^{\overline{\mu-1}} E_{\overline{\rho,\mu}} \bigl(\omega, s-\rho(t)\bigr)\varphi(s) , \quad t\in {}_{b}\mathbb{N}. $$
Theorem 7
(Integration by parts for Caputo fractional differences with ML kernels)
For functions f and g defined on \(\mathbb{N}_{a} \cap {}_{b}\mathbb {N}\), we have
Similarly,
where \(\lambda=\frac{-\alpha}{1-\alpha}\).
Proof
By (35) and Theorem 6, we have
The second part follows by (42) and the second part of Theorem 6. □
4 Discrete fractional Euler-Lagrange equations
We prove the Euler-Lagrange equations for a Lagrangian containing the left new discrete Caputo derivative.
Theorem 8
Let \(0<\alpha\leq1\) be non-integer, \(a,b \in\mathbb {R}, a< b, a\equiv b\ (\operatorname{mod} 1)\). Assume that the functional of the form
has a local extremum in \(S=\{y:(\mathbb{N}_{a-1} \cap {}_{b-1}\mathbb {N})\rightarrow\mathbb{R}: y(a-1)=A, y(b-1)=B\}\) at some \(f \in S\), where \(L:(\mathbb{N}_{a-1} \cap {}_{b-1}\mathbb{N})\times\mathbb{R}\times \mathbb{R}\rightarrow\mathbb{R}\). Then
where \(L_{1}(s)= \frac{\partial L}{\partial f^{\rho}}(s)\) and \(L_{2}(s)=\frac {\partial L}{\partial {}^{ABC} _{a-1}\nabla^{\alpha}f}(s)\).
Proof
Without loss of generality, assume that J has local maximum in S at f. Hence, there exists an \(\epsilon>0\) such that \(J(\widehat {f})-J(f)\leq0\) for all \(\widehat{f}\in S\) with \(\|\widehat{f}-f\|=\sup_{t \in\mathbb{N}_{a} \cap {}_{b}\mathbb{N}} |\widehat{f}(t)-f(t)|< \epsilon\). For any \(\widehat{f} \in S\) there is an \(\eta\in H=\{y :(\mathbb{N}_{a-1} \cap {}_{b-1}\mathbb{N})\rightarrow\mathbb{R}: y(a-1)=y(b-1)=0\}\) such that \(\widehat{f}=f+\epsilon\eta\). Then the ϵ-Taylor’s theorem and the assumption implies that the first variation quantity \(\delta J(\eta,y)=\sum_{t=a}^{b-1}[\eta^{\rho}(t) L_{1}(t)+ ( {}^{ABC} _{a-1}\nabla^{\alpha}\eta)(t) L_{2}(t)]\,dt=0\), for all \(\eta\in H\). To make the parameter η free, we use the integration by parts equation (49) to obtain
for all \(\eta\in H\), and hence the result follows by the discrete fundamental lemma of the calculus of variation. □
The term \((\mathbf{ E}^{1}_{\overline{\alpha,1}, \frac{-\alpha}{1-\alpha },b^{-}}L_{2} )(t)|_{a}^{b} =0\) above is called the natural boundary condition.
Similarly, if we allow the Lagrangian to depend on the discrete right Caputo fractional derivative, we can state the following.
Theorem 9
Let \(0<\alpha\leq1\) be non-integer, \(a,b \in\mathbb {R}, a< b, a\equiv b\ (\operatorname{mod} 1)\). Assume that the functional J of the form
has a local extremum in \(S=\{y :(\mathbb{N}_{a+1} \cap _{b+1}\mathbb {N})\rightarrow\mathbb{R}: y(a+1)=A, y(b+1)=B\}\) at some \(f \in S\), where \(L:(\mathbb{N}_{a+1} \cap _{b+1}\mathbb{N})\times\mathbb{R}\times \mathbb{R}\rightarrow\mathbb{R}\). Then
where \(L_{1}(s)= \frac{\partial L}{\partial f^{\sigma}}(s)\) and \(L_{2}(s)=\frac{\partial L}{\partial {}^{ABC}\nabla_{b+1}^{\alpha}f}(s)\).
Proof
The proof is similar to Theorem 8 by applying the second integration by parts equation (50) to get the natural boundary condition of the form \((\mathbf{ E}^{1}_{\overline{\alpha,1}, \frac {-\alpha}{1-\alpha},a^{+}}L_{2} )(t)|_{a}^{b} =0\). □
Example 2
We here study an interested physical action to support Theorem 8. Namely, let us consider the following fractional discrete action:
\(J(y)=\sum_{t=a}^{b-1}[\frac{1}{2}( {}^{ABC} _{a-1}\nabla^{\alpha}y(t))^{2}-V(y^{\rho}(t))]\), where \(0<\alpha<1\) and with \(y(a-1), y(b-1)\) are assigned or with the natural boundary condition
Then the Euler-Lagrange equation by applying Theorem 8 is
Here, we remark that it is of interest to deal with the above Euler-Lagrange equations obtained in the above example, where we have a composition of discrete right and discrete left type fractional derivatives. For the sake of comparisons with the classical discrete fractional Euler-Lagrange equations within nabla we refer to [38]. For classical fractional dynamical systems composed by the left and right fractional operators under the presence of delay we refer to [39].
5 Some tools and properties for fractional derivatives with nonsingular ML kernels and their discrete versions
Theorem 10
[37]
Let \(\rho, \mu,\gamma, \nu, \sigma, \lambda\in\mathbb{C}\) (\(\operatorname{Re}(\rho), \operatorname{Re}(\mu), \operatorname{Re}(\nu)>0\)), then
In particular, if \(\gamma=1, \mu=1\) and \(\rho=\alpha\), we have
Remark 4
If we use the modified notation of ML functions, then (53) takes the form
and (54) takes the form
From [3] we recall also the following differentiation formula, expressed in a modified way, which will be helpful.
For \(\alpha, \mu,\gamma, \lambda\in\mathbb{C}\) (\(\operatorname{Re}(\alpha)>0\)) and \(n \in\mathbb{N}\) we have
Now, with the help of (56) and (57), we have
Similarly, with the help of (57) and (56), we have
Remark 5
Noting that
and
one can conclude from (58) and (59) with \(\sigma=-1\) that the function
is a nonzero function whose fractional \(ABR\) and \(ABC\) derivative is zero. Note that the function \(g(x)\) tends to the constant function \(\frac{\alpha}{B(\alpha)\Gamma(\alpha)}\) as α tends to 1.
The proof of the following lemma follows by Lemma 1(i) and the definition of discrete ML functions in Definition 7.
Lemma 7
For \(\gamma, \alpha, \beta, \lambda\in \mathbb{C}\) (\(\operatorname{Re}(\beta)>0\)), and \(s \in\mathbb{C}\) with \(\operatorname{Re}(s)>0, |\lambda s^{-\alpha}|<1\), we have
In particular
The proof of the following lemma just follows by applying the discrete Laplace transform \(\mathcal{N}\) and its inverse in final step via the help of Lemma 7 and the discrete convolution theorem.
Lemma 8
Let \(\rho, \mu,\gamma, \nu, \sigma, \lambda\in\mathbb{C}\) (\(\operatorname{Re}(\rho), \operatorname{Re}(\mu), \operatorname{Re}(\nu)>0\)), then
Now, with the help of Proposition 1(iii) and Lemma 8, we have
Similarly, with the help of Proposition 1(iii) and Lemma 8, we have
Remark 6
Noting that
and
one can conclude from (61) and (62) with \(\sigma=-1\) that the function
is a nonzero function whose discrete fractional \(ABR\) and \(ABC\) derivative is zero. Note that the function \(h(t)\) tends to the constant function 1 as α tends to 1. As a result of this, if the potential function V in Example 2, with \(a=1\), is 0, then the solution takes the form
Using the following a-version of equation (14) in [7]:
and the identity (see [3], p.78, for example)
we can state the following result which is very useful tool to solve fractional dynamical systems with a Caputo fractional derivative with ML kernels.
Proposition 3
For \(0< \alpha< 1\), we have
Similarly,
Similarly, in the discrete case by recalling that (see [32], Proposition 3.9 or [35])
we can state the following important result in classical discrete fractional calculus.
Theorem 11
Let \(a \in[0,\infty)\), and let \(\alpha, \rho, \mu,\gamma, \lambda\in \mathbb{C}\) (\(\operatorname{Re}(\alpha)>0, \operatorname{Re}(\mu)>0, \operatorname{Re}(\rho)>0\)). Then for \(t>a\) the relations hold:
-
\(\nabla_{a}^{-\alpha} E^{\gamma}_{\overline{\rho,\mu}}(\lambda, t-a)=E^{\gamma}_{\overline{\rho,\mu+\alpha}}(\lambda, t-a)\).
-
\(\nabla_{a}^{\alpha} E^{\gamma}_{\overline{\rho,\mu}}(\lambda, t-a)=E^{\gamma}_{\overline{\rho,\mu-\alpha}}(\lambda, t-a)\).
Then we can state the following.
Proposition 4
For \(0< \alpha< 1\), we have
Similarly, by the first part and the action of the Q-operator
6 Conclusions
The modified versions of Mittag-Leffler functions enable us to treat easily the fractional type derivatives with ML kernels and enable us to obtain successfully their discrete versions. The Q-operator and its discrete version always provide an effective tool to confirm dual definitions and relations when passing from left to right or vice versa. There exist nonconstant functions whose usual or discrete \(ABC\) fractional derivatives are zeros. Hence a zero potential function in a usual or discrete variational problem does not imply only constant solution. The results obtained tend to the ordinary case when α tends to 1. The discrete versions for AB type fractional derivatives have been defined and their discrete fractional integrals given with the help of the discrete Laplace transform.
References
Samko, G, Kilbas, AA, Marichev, S: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
Kilbas, AA, Srivastava, MH, Trujillo, JJ: Theory and Application of Fractional Differential Equations. Mathematics Studies, vol. 204. North-Holland, Amsterdam (2006)
Magin, RL: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)
Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)
Caputo, M, Fabrizio, M: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73-85 (2015)
Atagana, A, Baleanu, D: New fractional derivative with non-local and non-singular kernel. Therm. Sci. 20(2), 757-763 (2016)
Caputo, M, Fabrizio, M: Applications of new time and spatial fractional derivatives with exponential kernels. Prog. Fract. Differ. Appl. 2(1), 1-11 (2016)
Atangana, A, Baleanu, D: Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer. J. Eng. Mech. (2016). doi:10.1061/(ASCE)EM.1943-7889.0001091, D4016005
Alkahtani, BST: Chua’s circuit model with Atangana-Baleanu derivative with fractional order. Chaos (2016, in press)
Atangana, A, Koca, I: Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos (2016, in press)
Losada, J, Nieto, JJ: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87-92 (2015)
Hristov, J: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 765-770 (2016)
Hristov, J: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions. Therm. Sci. (2016). doi:10.2298/TSCI160229115H
Marin, M: The Lagrange identity method in thermoelasticity of bodies with microstructure. Int. J. Eng. Sci. 32(8), 1229-1240 (1994)
Marin, M: On existence and uniqueness in thermoelasticity of micropolar bodies. C. R. Math. Acad. Sci. Paris 321, 475-480 (1995)
Marin, M, Marinescu, C: Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies. Int. J. Eng. Sci. 36(1), 73-86 (1998)
Atıcı, FM, Şengül, S: Modelling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010)
Boros, G, Moll, V: Irresistible Integrals; Symbols, Analysis and Experiments in the Evaluation of Integrals. Cambridge University Press, Cambridge (2004)
Atıcı, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Difference Equ. 2(2), 165-176 (2007)
Atıcı, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981-989 (2009)
Anastassiou, GA: Nabla discrete calculus and nabla inequalities. Math. Comput. Model. 51, 562-571 (2010)
Gray, HL, Zhang, NF: On a new definition of the fractional difference. Math. Comput. 50(182), 513-529 (1988)
Atıcı, FM, Eloe, PW: Gronwall’s inequality on discrete fractional calculus. Comput. Math. Appl. 64, 3193-3200 (2012). doi:10.1016/j.camwa.2011.11.029
Peng, J, Li, K: A note on property of the Mittag-Leffler function. J. Math. Anal. Appl. 370, 635-638 (2010)
Miller, KS, Ross, B: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, pp. 139-152. Nihon University, Koriyama (1989)
Bastos, NRO, Ferreira, RAC, Torres, DFM: Discrete-time fractional variational problems. Signal Process. 91(3), 513-524 (2011)
Abdeljawad, T, Baleanu, D: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574-582 (2011)
Abdeljawad, T: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602-1611 (2011)
Atıcı, FM, Eloe, PW: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I 2009, 3 (2009)
Abdeljawad, T: On Delta and Nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, Article ID 406910 (2013)
Abdeljawad, T: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, Article ID 36 (2013)
Abdeljawad, T, Jarad, F, Baleanu, D: A semigroup-like property for discrete Mittag-Leffler functions. Adv. Differ. Equ. 2012, Article ID 72 (2012)
Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
Abdeljawad, T, Atici, F: On the definitions of nabla fractional differences. Abstr. Appl. Anal. 2012, Article ID 406757 (2012). doi:10.1155/2012/406757
Mainardi, F: On some properties of the Mittag-Leffler function \(E_{\alpha}(-t^{\alpha})\) completely monotone for \(t>0\) with \(0<\alpha <1\). Discrete Contin. Dyn. Syst., Ser. B 19(7), 2267-2278 (2014). doi:10.3934/dcdsb.2014.19.2267
Kilbas, AA, Saigo, M, Saxena, K: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31-49 (2004)
Abdeljawad, T: Nabla Euler-Lagrange equations in discrete fractional variational calculus within Riemann and Caputo. Int. J. Math. Comput. 22(1), 144-153 (2014)
Abdeljawad (Maraaba), T, Baleanu, D, Jarad, F: Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives. J. Math. Phys. 49, 083507 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally in this article. They read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Abdeljawad, T., Baleanu, D. Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels. Adv Differ Equ 2016, 232 (2016). https://doi.org/10.1186/s13662-016-0949-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-016-0949-5
Keywords
- discrete fractional derivative
- modified Mittag-Leffler function
- discrete Mittag-Leffler function
- discrete nabla Laplace transform
- convolution
- discrete \(ABR\) fractional derivative