- Research
- Open access
- Published:
On modified degenerate Carlitz q-Bernoulli numbers and polynomials
Advances in Difference Equations volume 2017, Article number: 22 (2017)
Abstract
In a recent study by Kim (Bull. Korean Math. Soc. 53(4):1149-1156, 2016) an attempt was made to examine some of the identities and properties that are related to the degenerate Carlitz q-Bernoulli numbers and polynomials. In our paper we define the modified degenerate q-Bernoulli numbers and polynomials. As part of this we investigate some of the identities and properties that are associated with these numbers and polynomials which are derived from the generating functions and p-adic integral equations.
1 Introduction
Let p be a fixed prime number. In our study, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\), and \(\mathbb{C}_{p}\) refer to the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the algebraic closure of \(\mathbb{Q}_{p}\); meanwhile \(\nu_{p}\) will be the normalized exponential valuation of \(\mathbb{C}_{p}\) with \(|p|_{p} = p^{-\nu_{p} (p)} = {1 \over p}\). In terms of the q-extension, q is considered to be as indeterminate, a complex number \(q \in\mathbb{C}\), or p-adic number \(q \in\mathbb{C}_{p}\). If \(q \in\mathbb{C}\), we suppose that \(|q|<1\). If \(q \in\mathbb{C}_{p}\), we suppose that \(|q-1|_{p} < p^{- \frac{1}{p-1}}\) so that \(q^{x} = \exp(x \log q)\) for \(|x|_{p} \leq1\). We use the notation \([x]_{q} = \frac{1- q^{x}}{1-q}\). Note that \(\lim_{q \rightarrow1} [x]_{q} =x\).
It is well known that the Bernoulli numbers are defined by the generating function to be
By (1), we derive
For (2), we have
In [2], Carlitz (1948) defined the recurrence relation as
Observe that for \(n=1\), by (4), we have
By (5), we see that if \(q \ne1\), then \(\gamma_{1} \), \(q=0\).
For \(n=2\), as stated in (4), we conclude that
By (6), we find that \(\gamma_{2,q} = - \frac{1}{q^{2} -1}\). Therefore we state that \(\lim_{q \rightarrow1} \gamma_{2,q} = \frac {1}{0} =\infty\). As a consequence we examine the following recurrence equation which remodels equation (4):
For \(n=1\), by (7), we have
By (8), we see that \(1-q =(q^{2} -1) \beta_{1,q}\) and hence \(\beta_{1,q} =- \frac{1}{q+1} = - \frac{1}{[2]_{q}}\).
Therefore we state that \(\lim_{q \rightarrow1} \beta_{1,q} = - \frac {1}{2} =B_{1} \).
For \(n=2\), by (7), we have
By (9), we see that \(\beta_{2,q} = \frac{q}{[2]_{q} [3]_{q}}\). Therefore we state that \(\lim_{q \rightarrow1}\beta_{2,q} = \frac {1}{6} =B_{2}\).
Let \(\operatorname{UD} (\mathbb{Z}_{p})\) be the space of \({\mathbb {C}_{p}}\)-valued uniformly differentiable functions on \(\mathbb{Z}_{p}\). For \(f \in\operatorname{UD}(\mathbb{Z}_{p} )\), the p-adic q-integral on \(\mathbb{Z}_{p}\) has been defined by Kim as being:
The Carlitz’s q-Bernoulli numbers are represented by the p-adic q-integrals on \(\mathbb{Z}_{p}\) accordingly:
Therefore, for (11), we get
From (12), we are able to derive the following equation:
Recently, Kim [9] studied some identities and properties of the degenerate Carlitz q-Bernoulli numbers and polynomials. In our paper we define the modified degenerate q-Bernoulli numbers and polynomials. As part of this we investigate some of the identities and properties that are associated with these numbers and polynomials which are calculated from the generating functions and p-adic integral equations.
2 Modified Carlitz q-Bernoulli numbers and polynomials
As a result of (11), we define the modified Carlitz q-Bernoulli numbers as follows:
Observe that, for \(n=0\), we state
We also observe that if \(f_{1} (x)=f(x+1)\), then
Therefore, by (16), we are able to obtain the p-adic integral equation on \(\mathbb{Z}_{p}\) as follows:
Therefore, examining (14) and (17), if we take \(f(x)=q^{-x} [x]^{n}_{q}\), then we have
Hence, we are able to obtain the following recurrence relation results:
By (19), we state that
From (14), we are able to define the modified Carlitz’s q-Bernoulli polynomials as follows:
For (21), we are able to state
For (22), we calculate
3 Modified degenerate Carlitz q-Bernoulli numbers and polynomials
Here, we assume that \(\lambda, t \in\mathbb{C}_{p} \), \(0<|\lambda|_{p} \le 1\), \(|t|_{p} < p^{- \frac{1}{p-1}}\).
In terms of (21), we define the modified degenerate Carlitz q-Bernoulli polynomials as
when \(x=0\), \(B_{n,\lambda, q} =B_{n, \lambda,q} (0)\) are called the modified degenerate Carlitz q-Bernoulli numbers.
We observe that
where \((\frac{[x+y]_{q}}{\lambda} )_{n} =\frac {[x+y]_{q}}{\lambda} \times (\frac{[x+y]_{q}}{\lambda} -1 ) \times\cdots\times (\frac{[x+y]_{q}}{\lambda} -n+1 )\). Note that \([x+y]_{q,n,\lambda} =[x+y]_{q} ([x+y]_{q} -\lambda ) \cdots ( [x+y]_{q} -(n-1)\lambda )\) (\(n \ge1\)).
For (25), we are able to derive the following theorem.
Theorem 3.1
For \(n \ge0\), we have
Let \(S_{1} (n,m)\) be the Stirling numbers of the first kind, which are defined by \((x)_{n} =\sum_{l=0}^{n} S_{1} (n,l)x^{l}\) (\(n \ge0\)). Note that \(\lim_{\lambda\rightarrow0} B_{n,\lambda,q} (x) =B_{n,q}(x)\).
Then, by using (25), we are able to state
Therefore, by using (26) and (27), we are able to derive the following theorem.
Theorem 3.2
For \(n \ge0\), we have
By using (23) and (27), we are able to present details of the following corollary.
Corollary 3.3
For \(n \ge0\), we have
Observe that
Therefore by using (30), we are able to state
By substituting t by \(\frac{1}{\lambda} (e^{\lambda t} -1)\) in (24), we find
where \(S_{2} (n,m)\) are the Stirling numbers of the second kind as follows:
Note that the left-hand side of (32) is derived as
Therefore, by using (32) and (34), the following theorem can be derived.
Theorem 3.4
For \(n \ge0\), we have
Note that
Thus, by (36), we get
Therefore, by (37), we obtain the following theorem.
Theorem 3.5
For \(r \in\mathbb{N}\), we define the modified degenerate Carlitz q-Bernoulli polynomials of order r as follows:
We observe that
where \(B^{(r)}_{m,q} (x)\) are the modified Carlitz q-Bernoulli polynomials of order r.
As a consequence of using (39) and (40), the following theorem can be derived.
Theorem 3.6
For \(n \ge0\), we have
Replacing t by \(\frac{1}{\lambda} (e^{\lambda t} -1)\) in (39), we have
By comparing the coefficients on the right hand sides of (42), the following theorem can be obtained.
Theorem 3.7
For \(n \ge0\), we have
References
Bayad, A, Kim, T: Higher recurrences for Apostol-Bernoulli-Euler numbers. Russ. J. Math. Phys. 19(1), 1-10 (2012)
Carlitz, L: q-Bernoulli numbers and polynomials. Duke Math. J. 15, 987-1000 (1948)
Carlitz, L: A degenerate Staudt-Clausen theorem. Arch. Math. (Basel) 7, 28-33 (1956)
Carlitz, L: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51-88 (1979)
Kim, DS, Kim, T: Generalized Boole numbers and polynomials. Rev. R. Acad. Cienc. Exactas FÃs. Nat., Ser. A Mat. 110(2), 823-839 (2016)
Kim, DS, Kim, T: Some identities of symmetry for q-Bernoulli polynomials under symmetric group of degree n. Ars Comb. 126, 435-441 (2016)
Kim, T, Dolgy, V, Kim, DS: Some identities of symmetry for q-Bernoulli polynomials under symmetric group of \(S_{3}\). J. Nonlinear Convex Anal. 16(9), 1869-1880 (2016)
Kim, T, Kim, DS, Kwon, H-I: Some identities relating to degenerate Bernoulli polynomials. Filomat 30(4), 905-912 (2016)
Kim, T: On degenerate q-Bernoulli polynomials. Bull. Korean Math. Soc. 53(4), 1149-1156 (2016)
Kim, T: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288-299 (2002)
Kim, T: q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 15, 51-57 (2007)
Kim, T: On the weighted q-Bernoulli numbers and polynomials. Adv. Stud. Contemp. Math. 21(2), 201-2015 (2011)
Kim, T, Kim, DS, Seo, J-J: Fully degenerate poly-Bernoulli numbers and polynomials. Open Math. 14, 545-556 (2016)
Kim, T, Kwon, H-I, Seo, J-J: Degenerate q-Changhee polynomials. J. Nonlinear Sci. Appl. 9(5), 2389-2393 (2016)
Kim, T, Kim, DS, Dolgy, DV: Degenerate q-Euler polynomials. Adv. Differ. Equ. 2015, 246 (2015)
Park, JW: New approach to q-Bernoulli polynomials with weight or weak weight. Adv. Stud. Contemp. Math. 24(1), 39-44 (2014)
Seo, J-J, Rim, SH, Lee, SH, Dolgy, DV, Kim, T: q-Bernoulli numbers and polynomials related to p-adic invariant integral on \(\mathbb{Z}_{p}\). Proc. Jangjeon Math. Soc. 16(3), 321-326 (2013)
Acknowledgements
This paper was supported by Wonkwang University in 2016.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.