- Research
- Open Access
- Published:
On the asymptotic and oscillatory behavior of solutions of third-order neutral dynamic equations on time scales
Advances in Difference Equations volume 2017, Article number: 127 (2017)
Abstract
The oscillatory and asymptotic behavior results for a class of third-order nonlinear neutral dynamic equations on time scales are presented. The results obtained can be extended to more general third-order neutral dynamic equations of the type considered here. Examples are provided to illustrate the applicability of the results.
1 Introduction
This work is concerned with oscillation and asymptotic behavior of solutions to a third-order nonlinear neutral dynamic equation
on an arbitrary time scale \(\mathbb{T}\), where α is a quotient of odd positive integers. Since we are interested in the oscillation and asymptotic behavior of solutions for large t, we assume that \(\sup \mathbb{T}=\infty\) and define the time scale interval \([t_{0},\infty )_{\mathbb{T}}\) by \([t_{0},\infty)_{\mathbb{T}}:=[t_{0},\infty)\cap\mathbb{T}\) with \(t_{0}\in\mathbb{T}\). The usual notation and concepts from the time scale calculus as can be found in Bohner and Peterson [1, 2] will be used throughout the paper without further mention.
In the rest of the paper we assume that:
-
(C1)
\(r:[t_{0},\infty)_{\mathbb{T}}\rightarrow\mathbb{R}\) is a positive rd-continuous function and \(\int _{t_{0}}^{\infty}r^{-1/\alpha}(s)\Delta s=\infty\);
-
(C2)
\(p:[t_{0},\infty)_{\mathbb{T}}\rightarrow\mathbb{R}\) is an rd-continuous function with \(p(t)\geq1\), and \(p(t)\not\equiv1\) for large t;
-
(C3)
\(g,h :[t_{0},\infty)_{\mathbb{T}}\rightarrow\mathbb{T}\) are rd-continuous functions such that \(g (t)< t\), g is strictly increasing, and \(\lim_{t\rightarrow\infty}g (t)=\lim_{t\rightarrow \infty}h(t)=\infty\);
-
(C4)
\(f(t,u):[t_{0},\infty)_{\mathbb{T}}\times\mathbb {R}\rightarrow\mathbb{R}\) is a continuous function such that \(uf(t,u)>0\) for all \(u\neq0\), and there exists a positive rd-continuous function \(q:[t_{0},\infty )_{\mathbb{T}}\rightarrow\mathbb{R}\) such that \(f(t,u)/u^{\alpha }\geq q(t)\).
The cases
and
are both considered.
Defining the function
equation (1.1) can be written as
Wherever we write ‘\(t\geq t_{n}\)’ we mean ‘\(t\in{}[ t_{n},\infty)_{\mathbb{T}}\)’.
By a solution of (1.1) we mean a function \(x\in C_{\mathrm{rd}} ( [t_{x},\infty)_{\mathbb{T}},\mathbb{R} ) \) such that \(z\in C_{\mathrm{rd}}^{3} ( [t_{x},\infty)_{\mathbb{T}},\mathbb{R} ) \) and \(r ( z^{\Delta\Delta} ) ^{\alpha}\in C_{\mathrm{rd}}^{1} ( [t_{x},\infty)_{\mathbb{T}},\mathbb{R} ) \), and which satisfies equation (1.1) on \([t_{x},\infty )_{\mathbb{T}}\). Without further mention, we will assume throughout that every solution \(x(t)\) of (1.1) under consideration here is continuable to the right and nontrivial, i.e., \(x(t)\) is defined on some ray \([t_{x},\infty)_{\mathbb{T}}\), for some \(t_{x}\geq t_{0}\), and \(\sup \{ \vert x(t) \vert :t\geq T_{1} \} >0\) for every \(T_{1}\geq t_{x}\). Moreover, we tacitly assume that (1.1) possesses such solutions. Such a solution is said to be oscillatory if it is neither eventually positive nor eventually negative, and it is nonoscillatory otherwise.
In recent years, there has been much research activity concerning the oscillation of solutions of various functional differential equations and functional dynamic equations on time scales, and we refer the reader to the papers [3–31] and the references therein as examples of recent results on this topic. In reviewing the literature, it becomes apparent that results on the oscillatory and asymptotic behavior of third-order neutral dynamic equations on time scales are relatively scarce and most such results are concerned with the cases where \(0\leq p(t)< p_{0}<1\), \(-1\leq p(t)<0\), and/or \(0\leq\int _{a}^{b}p(t,\mu)\Delta \mu\leq p_{0}<1\); see, for example, [8, 10, 11, 15, 17, 18, 29] and the references cited therein as examples of recent results on this topic.
However, to the best of our knowledge, there does not appear to be any results for the third-order neutral dynamic equations on time scales in the case \(p(t)\geq1\). The main aim of this paper is to establish some new criteria for the oscillation and asymptotic behavior of solutions of (1.1) in the case \(p(t)\geq1\). It should be noted that the results in this paper are new even for \(\alpha=1\), \(r(t)=1\), \(f(t,x(h(t)))=q(t)x^{\alpha}(h(t))\), and for the constant delays such as \(g(t)=t-b\) and \(h(t)=t-c\) with \(b>0\) and \(c>0\). Furthermore, the results in this paper can easily be extended to more general third-order neutral dynamic equations of the type (1.1). It is therefore hoped that the present paper will contribute significantly to the study of oscillatory and asymptotic properties of solutions of third-order neutral dynamic equations on time scales.
2 Main results
The next four lemmas will be used to prove our main results. For convenience, we will use the following notations:
Throughout this paper, we assume that
and
for all sufficiently large t, where \(g^{-1}\) is the inverse function of g.
and
Lemma 2.1
[32]
If U and V are nonnegative and \(\lambda >1\), then
where equality holds if and only if \(U=V\).
Lemma 2.2
Assume that conditions (C1)-(C4) hold, and let \(x(t)\) be a positive solution of (1.1) with \(z(t)\) defined as in (1.4). Then, for sufficiently large t, either
-
(I)
\(z(t)>0\), \(z^{\Delta}(t)>0\), \(z^{\Delta\Delta}(t)>0\), and \(( r(t) ( z^{\Delta\Delta}(t) ) ^{\alpha} ) ^{\Delta }<0\), or
-
(II)
\(z(t)>0\), \(z^{\Delta}(t)<0\), \(z^{\Delta\Delta}(t)>0\), and \(( r(t) ( z^{\Delta\Delta}(t) ) ^{\alpha} ) ^{\Delta }<0\).
Proof
The proof is standard and so the details will be omitted. □
Lemma 2.3
Assume that conditions (C1)-(C4) and (2.1) hold, and let \(x(t)\) be an eventually positive solution of (1.1) with \(z(t)\) satisfying Case (II) of Lemma 2.2. If
then \(\lim_{t\rightarrow\infty}x(t)=0\).
Proof
Let \(x(t)\) be an eventually positive solution of (1.1). Then there exists \(t_{1}\in{}[ t_{0},\infty)_{\mathbb{T}}\) such that \(x(t)>0\), \(x(g(t))>0\), and \(x(h(t))>0\) for \(t\geq t_{1}\). Now, in view of (C4), equation (1.1) or (1.5) takes the form
From (1.4) (see also (8.6) in [3]), we have
Since \(z(t)\) is decreasing and \(g(t)< t\), we get
and so from (2.5) we obtain
Since \(\lim_{t\rightarrow\infty}h(t)=\infty\), we can choose \(t_{2}\geq t_{1}\) such that \(h(t)\geq t_{1}\) for all \(t\geq t_{2}\). Thus, from (2.6), we have
In view of (2.7), equation (2.4) can be written as
Since \(z(t)>0\) and \(z^{\Delta}(t)<0\), there exists a constant M such that
where \(M \geq0\). If \(M>0\), then there exists \(t_{3}\geq t_{2}\) such that \(g ^{-1}(h(t))>t_{2}\) and
Integrating (2.8) two times from t to ∞, we have
An integration of the last inequality from \(t_{3}\) to t yields
which contradicts (2.3), and so we have \(M=0\). Hence, \(\lim_{t\rightarrow\infty}z(t)=0\). Since \(0< x(t)\leq z(t)\) on \([t_{1},\infty)_{\mathbb{T}}\), we get \(\lim_{t\rightarrow\infty }x(t)=0\). This completes the proof of Lemma 2.3. □
Lemma 2.4
Assume that conditions (C1)-(C4) and (2.2) hold, and \(x(t)\) is an eventually positive solution of (1.1) with \(z(t)\) satisfying Case (I) of Lemma 2.2. Then \(z(t)\) satisfies the inequality
for large t.
Proof
Let \(x(t)\) be an eventually positive solution of (1.1) such that \(x(t)>0\), \(x(g(t))>0\), and \(x(h (t))>0\), and \(z(t)\) satisfies Case (I) for \(t\geq t_{1}\) for some \(t_{1}\geq t_{0}\). Proceeding exactly as in Lemma 2.3, we see that (2.4) and (2.5) hold. Since \(r(t) ( z^{\Delta\Delta}(t) ) ^{\alpha}\) is decreasing, we have
Thus
Hence there exists \(t_{2}\in{}[ t_{1},\infty)_{\mathbb{{T}}}\) such that
which implies that
Noting that \(g ^{-1}(t)\leq g ^{-1}(g ^{-1}(t))\), we have by (2.14) that
Using (2.15) in (2.5), we obtain
Since \(\lim_{t\rightarrow\infty}h (t)=\infty\), we can choose \(t_{3}\geq t_{2}\) such that \(h(t)\geq t_{2}\) for all \(t\geq t_{3}\). Hence, from (2.16), we have
Substituting (2.17) into (2.4), we arrive at (2.10) and this completes the proof of Lemma 2.4. □
We now give oscillation results for the case where (1.2) holds.
Theorem 2.1
Assume that conditions (C1)-(C4), (1.2), (2.1)-(2.3) hold and there exists a positive function \(\beta\in C_{\mathrm{rd}}^{1} ([t_{0},\infty)_{\mathbb{T}},\mathbb{R} )\) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\). Then a solution x of equation (1.1) either oscillates or satisfies \(\lim_{t\rightarrow\infty}x(t)=0\).
Proof
Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that there exists \(t_{1}\in{}[ t_{0,}\infty)_{\mathbb{T}}\) such that \(x(t)>0\), \(x(g (t))>0\), and \(x(h (t))>0\), (2.1)-(2.2) hold, and \(z(t)\) satisfies either Case (I) or Case (II) for \(t\geq t_{1}\). We only consider this case, since the proof when x is eventually negative is similar.
If Case (II) holds, then by Lemma 2.3 we have \(\lim_{t\rightarrow\infty}x(t)=0\).
Next, assume that Case (I) holds, and proceeding as in the proof of Lemma 2.4, we again arrive at (2.10), (2.11), (2.12), (2.13), and (2.14). Now define the Riccati-type substitution
Clearly, \(w(t)>0\), and from (2.19) and (2.10), we see that
From \(g ^{-1} (h(t) ) \leq\sigma(t)\), we obtain from (2.14) that
By virtue of (2.13) and the fact that \(t\leq\sigma(t)\), we have
Using (2.21) and (2.22) in (2.20), we get
From [1], Theorem 1.90, we have
If \(0<\alpha\leq1\), then we obtain by (2.23) and (2.24) that
If \(\alpha>1\), then we obtain from (2.23) and (2.24) that
By the fact that \(t\leq\sigma(t)\), it follows from (2.12) that
Next, in view of (2.27), combining (2.25) and (2.26), we obtain, for \(\alpha>0\),
From (2.11), we have
Thus, from (2.29), \(z^{\Delta}(t)>0\) and \(z^{\Delta\Delta}(t)>0\), inequality (2.28) yields
An integration of (2.30) from \(t_{3}\) to t yields
which contradicts (2.18), therefore any solution \(x(t)\) of equation (1.1) is either oscillatory or tends to zero as \(t\rightarrow\infty\). This completes the proof of Theorem 2.1. □
Theorem 2.2
Suppose that conditions (C1)-(C4), (1.2), and (2.1)-(2.3) are satisfied. If there exists a positive function \(\beta\in C_{\mathrm{rd}}^{1} ( [t_{0},\infty)_{\mathbb{T}},\mathbb{R} ) \) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\), then any solution of (1.1) is either oscillatory or tends to zero as \(t\rightarrow \infty\).
Proof
Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that there exists \(t_{1}\in{}[ t_{0,}\infty)_{\mathbb{T}}\) such that \(x(t)>0\), \(x(g(t))>0\), and \(x(h(t))>0\), (2.1)-(2.2) hold, and \(z(t)\) satisfies either Case (I) or Case (II) for \(t\geq t_{1}\). We only consider this case since the proof when x is eventually negative is similar.
If Case (II) holds, then by Lemma 2.3 we have \(\lim_{t\rightarrow\infty}x(t)=0\).
Assume that Case (I) holds. Proceeding exactly as in Theorem 2.1, we again arrive at (2.28). In view of (2.19), inequality (2.28) takes the form
If we apply Lemma 2.1 with
and
we see that
substituting this into (2.32) gives
Integrating the last inequality from \(t_{3}\) to t yields
which contradicts (2.31), therefore any solution \(x(t)\) of equation (1.1) is either oscillatory or tends to zero as \(t\rightarrow\infty\). This proves the theorem. □
Theorem 2.3
Suppose that \(\alpha\geq1\), and conditions (C1)-(C4), (1.2) and (2.1)-(2.3) hold. If there is a positive function \(\beta\in C_{\mathrm{rd}}^{1} ( [t_{0},\infty )_{\mathbb{T}},\mathbb{R} ) \) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\), then any solution of (1.1) either oscillates or converges to zero as \(t\rightarrow \infty\).
Proof
Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that there exists \(t_{1}\in{}[ t_{0,}\infty)_{\mathbb{T}}\) such that \(x(t)>0\), \(x(g(t))>0\), and \(x(h(t))>0\), (2.1)-(2.2) hold, and \(z(t)\) satisfies either Case (I) or Case (II) for \(t\geq t_{1}\). We only consider this case, since the proof when x is eventually negative is similar.
If Case (II) holds, then from Lemma 2.3 we have \(\lim_{t\rightarrow\infty}x(t)=0\).
Assume that Case (I) holds and proceeding as in the proof of Theorem 2.2, we again arrive at (2.32), which can be rewritten as
By (2.11) and (2.19), we see that
Using (2.35) in (2.34), we conclude that
Completing square with respect to w, it follows from (2.36) that
Integrating this inequality from \(t_{3}\) to t gives
which contradicts (2.33), therefore any solution \(x(t)\) of equation (1.1) is either oscillatory or tends to zero as \(t\rightarrow\infty\). The proof is complete. □
Next, we give oscillation results in the case where (1.3) holds.
Theorem 2.4
Assume that conditions (C1)-(C4), (1.3), and (2.1)-(2.3) are satisfied. If there is a positive function \(\beta\in C_{\mathrm{rd}}^{1} ( [t_{0},\infty)_{\mathbb{T}},\mathbb{R} ) \) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\), then a solution x of equation (1.1) either oscillates or satisfies \(\lim_{t\rightarrow\infty}x(t)=0\).
Proof
Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that there exists \(t_{1}\in{}[ t_{0},\infty)\) such that \(x(t)>0\), \(x(g(t))>0\), and \(x(h(t))>0\), (2.1)-(2.2) hold, and \(z(t)\) satisfies either Case (I) or Case (II) for \(t\geq t_{1}\). We only consider this case, since the proof when x is eventually negative is similar.
If Case (II) holds, then from Lemma 2.3 we have \(\lim_{t\rightarrow\infty}x(t)=0\).
Assume that Case (I) holds. Proceeding as in the proof of Theorem 2.1, we again arrive at (2.20) and (2.22). Since
we get
Using (2.39) and (2.22) in (2.20), we obtain
The remainder of the proof is similar to that of Theorem 2.1, and so the details are omitted. □
Theorem 2.5
Assume that conditions (C1)-(C4), (1.3), (2.1)-(2.3) hold and there exists a positive function \(\beta\in C_{\mathrm{rd}}^{1} ( [t_{0},\infty)_{\mathbb{T}},\mathbb{R} ) \) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\). Then any solution of (1.1) is either oscillatory or tends to zero as \(t\rightarrow \infty\).
Proof
The proof follows easily from (2.39) and Theorem 2.2. □
Theorem 2.6
Let \(\alpha\geq1\) and conditions (C1)-(C4), (1.3) and (2.1)-(2.3) hold. If there exists a positive function \(\beta\in C_{\mathrm{rd}}^{1} ( [t_{0},\infty )_{\mathbb{T}},\mathbb{R} )\) such that
for all sufficiently large \(t_{1}\in{}[ t_{0},\infty )_{\mathbb{T}}\) and for \(T>t_{2}>t_{1}\), then a solution of (1.1) is either oscillatory or converges to zero as \(t\rightarrow\infty\).
Proof
The proof follows easily from (2.39) and Theorem 2.3. □
Remark 2.1
In condition (C3), if condition \(g(t)< t\) is replaced by \(g(t)>t\), then again results analogous to Theorems 2.1-2.6 can easily be modeled.
Example 2.1
Let \(\mathbb{T}:=\overline{q^{\mathbb{Z}}}=\{q^{k}:k\in\mathbb{ Z}, q>1\}\cup\{0\}\) and consider the third-order neutral dynamic equation
Here we have \(\alpha=3\), \(g(t)=h(t)=t/2\), \(q(t)=t(t-1)^{3}\), \(r(t)=1\), \(f(t,u)=q(t)u^{\alpha}\), and \(p(t)=8\). It is clear that conditions (C1)-(C4) and (1.2) hold, and
Since
we see that
By (2.44), condition (2.3) becomes
due to \(\int _{u}^{\infty}s ( s-1 ) ^{3}\Delta s=\infty\) for \(u\geq2\), and so condition (2.3) holds.
With \(\beta(t)=t\) and the fact that (2.45), we see that
due to \(\int _{8}^{t}\frac{1}{ ( s-2 ) ^{3}}\Delta s<\infty\) and \(\int _{8}^{t}s^{2} ( s^{2}-6s+8 ) ^{3}\Delta s=\infty\), so condition (2.18) holds. Thus, all conditions of Theorem 2.1 are satisfied. Therefore, by Theorem 2.1, any solution of (2.43) is either oscillatory or converges to zero.
Example 2.2
Consider the neutral differential equation
Here we have \(\mathbb{T}=\mathbb{R}\), \(\alpha=1/3\), \(g(t)=t/2\), \(h(t)=t-1\), \(q(t)=t^{2}+5\), \(r(t)=1/t^{1/3}\), \(f(t,u)=q(t)u^{\alpha }\), and \(p(t)=(16t+17)/(t+1)\). It is clear that conditions (C1)-(C4) and (1.3) hold. In view of the fact that
we see that
Since
we obtain
By (2.47), condition (2.3) becomes
due to \(\int _{u}^{\infty} ( s^{2}+5 ) \Delta s=\infty\) for \(u\geq2\), and so condition (2.3) holds.
With \(\beta(t)=c>0\) is a constant and the fact that (2.48), condition (2.41) becomes
so condition (2.41) holds. Hence, by Theorem 2.5, any solution of (2.46) is either oscillatory or converges to zero.
References
Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)
Agarwal, RP, Grace, SR, O’Regan, D: The oscillation of certain higher-order functional differential equations. Math. Comput. Model. 37, 705-728 (2003)
Agarwal, RP, Bohner, M, Tang, S, Li, T, Zhang, C: Oscillation and asymptotic behavior of third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 219, 3600-3609 (2012)
Agarwal, RP, Bohner, M, Li, T, Zhang, C: A Philos-type theorem for third-order nonlinear retarded dynamic equations. Appl. Math. Comput. 249, 527-531 (2014)
Agarwal, RP, Bohner, M, Li, T, Zhang, C: Hille and Nehari type criteria for third-order delay dynamic equations. J. Differ. Equ. Appl. 19, 1563-1579 (2013)
Baculíková, B, Dzurina, J: Oscillation of third-order neutral differential equations. Math. Comput. Model. 52, 215-226 (2010)
Chen, D-X, Liu, J-C: Asymptotic behavior and oscillation of solutions of third-order nonlinear neutral delay dynamic equations on time scales. Can. Appl. Math. Q. 16, 19-43 (2008)
Erbe, L, Hassan, TS, Peterson, A: Oscillation of third order nonlinear functional dynamic equations on time scales. Differ. Equ. Dyn. Syst. 18, 199-227 (2010)
Grace, SR, Graef, JR, El-Beltagy, MA: On the oscillation of third order neutral delay dynamic equations on time scales. Comput. Math. Appl. 63, 775-782 (2012)
Grace, SR, Graef, JR, Tunc, E: Oscillatory behavior of a third-order neutral dynamic equation with distributed delays. Electron. J. Qual. Theory Differ. Equ. 2016, Article ID 14 (2016). Proc. 10th Coll. Qualitative Theory of Diff. Equ. (July 1-4, 2015, Szeged, Hungary)
Graef, JR, Saker, SH: Oscillation theory of third-order nonlinear functional differential equations. Hiroshima Math. J. 43, 49-72 (2013)
Graef, JR, Savithri, R, Thandapani, E: Oscillatory properties of third order neutral delay differential equations. In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, pp. 342-350 (2002)
Graef, JR, Tunc, E, Grace, SR: Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc. Math. 37(6) (2017, to appear)
Han, Z, Li, T, Sun, S, Zhang, C: Oscillation behavior of third-order neutral Emden-Fowler delay dynamic equations on time scales. Adv. Differ. Equ. 2010, Article ID 586312 (2010)
Hassan, TS: Oscillation of third order nonlinear delay dynamic equations on time scales. Math. Comput. Model. 49, 1573-1586 (2009)
Hassan, TS, Grace, SR: Oscillation criteria for third order neutral nonlinear dynamic equations with distributed deviating arguments on time scales. Tatra Mt. Math. Publ. 61, 141-161 (2014)
Huang, X-Y: Oscillatory behavior of n-th-order neutral dynamic equations with mixed nonlinearities on time scales. Electron. J. Differ. Equ. 2016, Article ID 16 (2016)
Jiang, Y, Jiang, C, Li, T: Oscillatory behavior of third-order nonlinear neutral delay differential equations. Adv. Differ. Equ. 2016, Article ID 171 (2016)
Li, T, Thandapani, E: Oscillation theorems for odd-order neutral differential equations. Funct. Differ. Equ. 19, 147-155 (2012)
Li, T, Agarwal, RP, Bohner, M: Some oscillation results for second-order neutral dynamic equations. Hacet. J. Math. Stat. 41, 715-721 (2012)
Li, T, Han, Z, Sun, S, Zhao, Y: Oscillation results for third order nonlinear delay dynamic equations on time scales. Bull. Malays. Math. Soc. 34, 639-648 (2011)
Li, T, Zhang, C: Properties of third-order half-linear dynamic equations with an unbounded neutral coefficient. Adv. Differ. Equ. 2013, Article ID 333 (2013)
Li, T, Zhang, C, Xing, G: Oscillation of third-order neutral delay differential equations. Abstr. Appl. Anal. 2012, Article ID 569201 (2012)
Liu, H, Ma, C: Oscillation criteria for second-order neutral delay dynamic equations with nonlinearities given by Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2013, Article ID 530457 (2013)
Panigrahi, S, Basu, R: Oscillation of nonlinear neutral differential equations of fourth order with several delays. Ann. Acad. Rom. Sci. Ser. Math. Appl. 4, 59-89 (2012)
Pinelas, S: Asymptotic behavior of solutions to mixed type differential equation. Electron. J. Differ. Equ. 2014, Article ID 210 (2014)
Saker, SH: Oscillation of third-order functional dynamic equations on time scales. Sci. China Math. 54, 2597-2614 (2011)
Senel, MT, Utku, N: Oscillation behavior of third-order nonlinear neutral dynamic equations on time scales with distributed deviating arguments. Filomat 28, 1211-1223 (2014)
Tunc, E, Graef, JR: Oscillation results for second order neutral dynamic equations with distributed deviating arguments. Dyn. Syst. Appl. 23, 289-303 (2014)
Tunc, E: Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017, Article ID 16 (2017)
Hardy, GH, Littlewood, JE, Polya, G: Inequalities. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tunç, E., Özdemir, O. On the asymptotic and oscillatory behavior of solutions of third-order neutral dynamic equations on time scales. Adv Differ Equ 2017, 127 (2017). https://doi.org/10.1186/s13662-017-1187-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-017-1187-1
MSC
- 34K11
- 34N05
- 39A10
Keywords
- third-order
- neutral dynamic equations
- oscillation
- asymptotic behavior
- time scales