- Research
- Open Access
- Published:
Fractional-order boundary value problems with Katugampola fractional integral conditions
Advances in Difference Equations volume 2018, Article number: 81 (2018)
Abstract
In this paper, we study existence (uniqueness) of solutions for nonlinear fractional differential equations with Katugampola fractional integral conditions. Several fixed point theorems are used for sufficient conditions of existence (uniqueness) solutions of nonlinear differential equations such as Banach’s contraction principle, the Leray–Schauder nonlinear alternative, and Krasnoselskii’s fixed point theorem. Applications of the main results are also presented.
1 Introduction
In recent years, boundary value problems for nonlinear fractional differential equations have been studied by several researchers. In fact, fractional differential equations have played an important role in physics, chemical technology, biology, economics, control theory, signal and image processing, see [1–25] and the references cited therein.
Boundary value problems of fractional differential equations and inclusions involve different kinds of boundary conditions such as nonlocal, integral, and multipoint boundary conditions. The fractional integral boundary conditions were introduced lately in [26] and nonlocal conditions were presented by Bitsadze, see [3].
In [4] authors gave sufficient criteria for existence of solutions for the following Caputo fractional differential equation:
subject to nonlocal generalized Riemann–Liouville fractional integral boundary conditions of the form
where \(D^{q}\) denotes the Caputo fractional derivative of order q, \({}^{\rho}I^{z}\), \(z\in \{ \alpha,\beta \} \), is the generalized Riemann–Liouville fractional integral of order \(z>0\), \(\rho>0\), ξ, ε arbitrary, with \(\xi, \varepsilon\in(0,T)\), \(\gamma ,\delta\in R\) and \(f:[0,T]\times R\rightarrow R\) is a continuous function.
In [5] authors established the existence of solutions for the following nonlinear Riemann–Liouville fractional differential equation subject to nonlocal Erdelyi–Kober fractional integral conditions:
where \(1< q\leq2\), \(D^{q}\) is the standard Riemann–Liouville fractional derivative of order q, \(I_{\eta_{i}}^{\gamma_{i},\delta_{i}}\) is the Erdelyi–Kober fractional integral of order \(\delta_{i}>0\) with \(\eta_{i}>0\) and \(\gamma_{i}\in \mathbb{R}\), \(i=1,2,\ldots,m\), \(f: [ 0,T ] \times \mathbb{R} \rightarrow \mathbb{R} \) is a continuous function and \(\alpha, \beta_{i}\in \mathbb{R} \), \(\xi_{i}\in ( 0,T ) \), \(i=1,2,\ldots,m\), are given constants.
Motivated by the above papers, in this paper, we study the sufficient conditions of existence (uniqueness) solutions of nonlocal boundary conditions for the following nonlinear fractional differential equation of order \(\alpha\in ( 2,3 ] \):
where \(D^{\alpha}\) is the Caputo fractional derivative. \({}^{\rho }I^{q}\) is the Katugampola integral of \(q>0\), \(\rho>0\), \(f: [ 0,T ] \times \mathbb{R} \rightarrow \mathbb{R} \) is a continuous function.
The rest of the paper is organized as follows. In Sect. 2, we recall some definitions and lemmas that we need in the sequel. In Sect. 3, several fixed point theorems are used to give sufficient conditions for existence (uniqueness) of solutions of (1) such as Banach’s contraction principle, Krasnoselskii’s fixed point theorem, and the Leray–Schauder nonlinear alternative. In Sect. 4, some illustrating examples are given.
2 Preliminaries
In this section, we recall some basic definitions of fractional calculus [1, 2, 27] and some auxiliary lemmas which we need later.
Definition 1
([1])
The Riemann–Liouville fractional integral of order \(p>0\) of a continuous function \(f: ( 0,\infty ) \rightarrow \mathbb{R}\) is defined by
provided the right-hand side is point-wise defined on \(( 0,\infty ) \), where Γ is the gamma function defined by \(\Gamma (p)=\int_{0}^{\infty}e^{-s}s^{p-1}\,ds\).
Definition 2
([1])
The Riemann–Liouville fractional derivative of order \(p>0\) of a continuous function \(f: ( 0,\infty ) \rightarrow \mathbb{R}\) is defined by
where \(n= [ p ] +1\), \([ p ] \) denotes the integer part of a real number p.
Definition 3
The Caputo derivative of order p for a function \(f: [ 0,\infty ) \rightarrow \mathbb{R}\) can be written as
Remark 4
If \(f(t)\in C^{n} [ 0,\infty ) \), then
Definition 5
[28] Katugampola integral of order \(q>0\) and \(\rho>0\), of a function \(f(t)\), for all \(0< t<\infty\), is defined as
provided the right-hand side is point-wise defined on \(( 0,\infty ) \).
Remark 6
([28])
The above definition corresponds to the one for Riemann–Liouville fractional integral of order \(q>0\) when \(\rho=1\), while the famous Hadamard fractional integral follows for \(\rho\rightarrow0\), that is,
Lemma 7
([4])
Let \(\rho, q>0\) and \(p>0\) be the given constants. Then the following formula holds:
Lemma 8
([1])
For \(q>0\) and \(x\in C ( 0,T ) \cap L ( 0,T ) \). Then the fractional differential equation \({}^{c}D^{q}x(t)=0\) has a unique solution
and the following formula holds:
where \(c_{i}\in \mathbb{R} \), \(i=0,1,\ldots,n-1\), and \(n-1\leq q< n\).
Lemma 9
Let \(2<\alpha\leq3\) and \(\beta,\gamma, \delta\in \mathbb{R} \). Then, for any \(y\in C ( [ 0,T ] , \mathbb{R} ) \), x is a solution of the following nonlinear fractional differential equation with Katugampola fractional integral conditions:
if and only if
where
Proof
Using Lemma 8, the general solution of the nonlinear fractional differential equation in (2) can be represented as
By using the first integral condition of problem (2) and applying the Katugampola integral on (7), we obtain
After collecting the similar terms in one part, we have the following equation:
Rewriting equation (8) by using (4), (5), and (6), we obtain
Then, taking the derivative of (7) and using the second integral condition of (2), we get
Now, applying the Katugampola integral on (10), we have
The above equation (11) implies that
Also, by using (4) and (5), equation (12) can be written as
By using the last integral condition of (2) and applying Katugampola integral operator on the second derivative of (10), we have
Hence, we obtain the following equation:
By using (4), equation (14) can be written as
Moreover, equation (15) implies that
Substituting the values of (16) in (13), we get
Now, substituting the values of (16) and (17) in (9), we obtain
Finally, substituting the values of (18), (17), and (16) in equation (7), we obtain the general solution of problem (2) which is (3). Converse is also true by using the direct computation. □
3 Main results
Let us denote by \(C=C ( [ 0,T ] , \mathbb{R} ) \) the Banach space of all continuous functions from \([ 0,T ] \rightarrow \mathbb{R} \) endowed with a topology of uniform convergence with the norm defined by \(\Vert x \Vert =\sup \{ \vert x(t) \vert :t\in [ 0,T ] \} \).
We define an operator \(H:C\rightarrow C\) on problem (1) as
Also, we define the notations
and
In the following subsections, we prove existence (uniqueness) results for the boundary value problem (1) by using Banach’s fixed point theorem, the Leray–Schauder nonlinear alternative, and Krasnoselskii’s fixed point theorem.
3.1 Existence and uniqueness result
Theorem 10
Let \(f: [ 0,T ] \times \mathbb{R} \rightarrow \mathbb{R}\) be a continuous function. Assume that:
- (\(S_{1}\)):
-
\(\vert f(t,x)-f(t,y) \vert \leq L \Vert x-y \Vert \) for all \(t\in [ 0,T ] \), \(L>0\), \(x,y\in \mathbb{R}\);
- (\(S_{2}\)):
-
\(L\Phi<1\), where Φ is defined by (20).
Then the boundary value problem (1) has a unique solution on \([0,T]\).
Proof
By using the operator H, which is defined by (19), we obtain
for any \(x,y\in C\) and for each t∈ \([0,T]\). This implies that \(\Vert Hx-Hy \Vert \leq L\Phi \Vert x-y \Vert \). As \(L\Phi<1\), the operator \(H:C\rightarrow C\) is a contraction mapping. As a result, the boundary value problem (1) has a unique solution on \([ 0,T ] \). □
3.2 Existence results
Lemma 11
Let E be a Banach space, C be a closed, convex subset of E, U be an open subset of C and \(0\in U\). Suppose that \(A:\overline{U}\rightarrow C\) is a continuous, compact map. Then either
-
(i)
A has a fixed point in U̅, or
-
(ii)
there are \(x\in\partial U\) (the boundary of U in C) and \(\mu\in ( 0,1 ) \) with \(x=\mu A(x)\).
Theorem 12
Let \(f: [ 0,T ] \times \mathbb{R} \rightarrow \mathbb{R} \) be a continuous function. Assume that:
- (\(S_{3}\)):
-
There exist a nonnegative function \(\Omega\in C( [ 0,T ], \mathbb{R})\) and a nondecreasing function \(\Psi:[0,\infty)\rightarrow ( 0,\infty ) \) such that
$$\bigl\vert f(t,u) \bigr\vert \leq\Omega(t)\Psi\bigl( \vert u \vert \bigr)\quad \textit{for any } ( t,u ) \in [ 0,T ] \times \mathbb{R}; $$ - (\(S_{4}\)):
-
There exists a constant \(M>0\) such that
$$\frac{M}{\Psi(M) \Vert \Omega \Vert \Phi}>1, $$where Φ in (20).
Then problem (1) has at least one solution on \([ 0,T ] \).
Proof
Let \(B_{d}= \{ x\in C: \Vert x \Vert \leq d \} \) be a closed bounded subset in \(C( [ 0,T ] , \mathbb{R})\). Notice that problem (1) is equivalent to the problem of finding a fixed point of H.
As a first step, we show that the operator H, which is defined by (19), maps bounded sets into bounded sets in \(C( [ 0,T ], \mathbb{R})\). Then, for \(t\in [ 0,T ] \), we have
which leads to \(\Vert H(x) \Vert \leq \Vert \Omega \Vert \Psi(d)\Phi\). By (\(S_{4}\)) there exists \(d>0\) such that \(\Psi(d) \Vert \Omega \Vert \Phi< d\).
Next, we show that the map \(H:C ( [ 0,T ] , \mathbb{R} ) \rightarrow C ( [ 0,T ] , \mathbb{R} ) \) is completely continuous. Therefore, to prove that the map H is completely continuous, we show that H is a map from bounded sets into equicontinuous sets of \(C ( [ 0,T ] , \mathbb{R} ) \). Let us choose \(t_{1}\), \(t_{2}\) from the interval \([ 0,T ] \) and also \(t_{1}< t_{2}\). Then we have
It is clear that the right-hand side of (22) is independent of x. Therefore, as \(t_{2}-t_{1}\rightarrow0\), inequality (22) tends to zero. That means H is equicontinuous, and by the Arzelà–Ascoli theorem, the operator \(H:C( [ 0,T ] , \mathbb{R} )\rightarrow C( [ 0,T ] , \mathbb{R})\) is completely continuous.
In the last step we show that the operator H has a fixed point. Let \(H(x)= x\) be a solution. Then, for \(t\in [ 0,T ] \),
which implies that
In view of (\(S_{4}\)), there exists positive M such that \(\Vert x \Vert \neq M\). Let us set
Then the operator \(H:\overline{U}\rightarrow C ( [ 0,T ] , \mathbb{R} ) \) is continuous and completely continuous. From the choice of U, there is no \(x\in\partial U\) such that \(x=\mu Hx\) for some \(\mu\in ( 0,1 ) \). It can be proved by using contraction. Assume that there exists \(x\in\partial U\) such that \(x=\mu Hx\) for some \(\mu\in ( 0,1 ) \). Then
This contradicts
Consequently, by the nonlinear alternative of Leray–Schauder type, we conclude that H has a fixed point \(x\in\overline{U}\), which is a solution of problem (1). This completes the proof. □
Theorem 13
([29])
Let M be a closed, bounded, convex, and nonempty subset of a Banach space X. Let A, B be the operators such that (a) \(Ax+By\in M\) whenever \(x,y\in M\); (b) A is compact and continuous; (c) B is a contraction mapping. Then there exists \(z\in M\) such that \(z=Az+Bz\).
Theorem 14
Let \(f: [ 0,T ] \times \mathbb{R} \rightarrow \mathbb{R}\) be a continuous function, and let condition (\(S_{1}\)) hold. In addition, the function f satisfies the assumptions:
- (\(S_{5}\)):
-
There exists a nonnegative function \(\Omega\in C ( [ 0,T ] , \mathbb{R} ) \) such that
$$\bigl\vert f(t,u) \bigr\vert \leq\Omega(t) $$for any \(( t,u ) \in{}[0,T]\times \mathbb{R}\).
- (\(S_{6}\)):
-
\(L\Phi_{1}<1\), where \(\Phi_{1}\) is defined by (21).
Then the boundary value problem (1) has at least one solution on \([0,T]\).
Proof
We first define the new operators \(H_{1}\) and \(H_{2}\) as
and
Then we consider a closed, bounded, convex, and nonempty subset of the Banach space X as
where Φ is defined by (20). Now, we show that \(H_{1}x+H_{2}y\in B_{d}\) for any \(x,y\in B_{d}\), where \(H_{1}\) and \(H_{2}\) are denoted by (23) and (24), respectively.
Therefore, it is clear that \(\Vert H_{1}x+H_{2}y \Vert \leq d\). Hence, \(H_{1}x+H_{2}y\in B_{d}\).
The next step is related to the compactness and continuity of the operator \(H_{1}\). The proof is similar to that of Theorem 12.
Finally, we show that the operator \(H_{2}\) is a contraction. By using assumption (\(S_{1}\)),
which means \(\Vert H_{2}x-H_{2}y \Vert \leq L\Phi_{1} \Vert x-y \Vert \). As \(L\Phi_{1}<1\), the operator \(H_{2}\) is a contraction. For this reason, problem (1) has at least one solution on \([0,T]\). □
4 Examples
In this section, some examples are illustrated to show our results.
Example 1
Consider the following nonlinear fractional differential equation with Katugampola fractional integral conditions:
Here, \(\alpha=5/2\), \(T=\frac{1}{2}\), \(\beta=1/2\), \(\gamma=1/2\), \(\delta=1/2\), \(\epsilon=3/8\), \(\eta=1/3\), \(\zeta=2/5\), \(\rho=5\), \(q=\frac{1}{3}\), and
Hence, we have \(\vert f(t,x)-f(t,y) \vert \leq\frac {1}{10} \Vert x-y \Vert \). Then, assumption (\(S_{1}\)) is satisfied with \(L=\frac {1}{10}\). By using the Matlab program, \(\omega_{1} ( \frac{1}{2},\frac{3}{8} ) =0.9361\), \(\omega_{1} ( \frac{1}{2},\frac{1}{3} ) =0.9475\), \(\omega_{1} ( \frac{1}{2},\frac{2}{5} ) =0.9289\), \(\omega_{2} ( \frac{1}{2},\frac{3}{8} ) = 0.4779\), \(\omega_{2} ( \frac{1}{2},\frac{1}{3} ) = 0.4838\), \(\omega _{3} ( \frac{1}{2},\frac{3}{8} ) =0.4922\), and \(\Phi =1.2261\) are found. Therefore, \(L\Phi=0.1226<1\), which implies that assumption (\(S_{2}\)) holds true. By using Theorem 10, the boundary value problem (25) has a unique solution on \([ 0,\frac{1}{2} ] \).
Example 2
Consider the following nonlinear fractional differential equation with Katugampola fractional integral conditions:
where \(\alpha=5/2\), \(T=\frac{1}{2}\), \(\beta=1/2\), \(\gamma=1/2\), \(\delta=1/2\), \(\epsilon=3/8\), \(\eta=1/3\), \(\zeta=2/5\), \(\rho=5\), \(q=\frac{1}{3}\). Moreover,
By using assumption (\(S_{3}\)), it is easy to see that \(\Omega (t)=\frac{t^{2}+1}{10}\) and \(\Psi( \vert u \vert )= \vert u \vert +1\). Moreover, \(\Vert \Omega \Vert =\frac{1}{8}\) and \(\Phi=1.2261\) which was found in the previous example. Now, we need to show that there exists \(M>0\) such that
and such \(M>0\) exists if
By using direct computation \(\Vert \Omega \Vert \Phi=0.1533 <1\), assumption (\(S_{4}\)) is satisfied. Hence, by using Theorem 12, the boundary value problem (26) has at least one solution on \([ 0,\frac{1}{2} ] \).
Example 3
Consider the following nonlinear fractional differential equation with Katugampola fractional integral conditions:
Here, \(\alpha=5/2\), \(T=\frac{1}{2}\), \(\beta=1/2\), \(\gamma=1/2\), \(\delta=1/2\), \(\epsilon =3/8\), \(\eta=1/3\), \(\zeta=2/5\), \(\rho=5\), \(q=\frac{1}{3}\), and
Since \(\vert f(t,x)-f(t,y) \vert \leq\frac{9}{10} \vert x-y \vert \), then it implies that \(L=\frac{9}{10}\) means (\(S_{1}\)) is satisfied but (\(S_{2}\)), which is \(L\Phi<1\), is not satisfied. [\(L\Phi=1.10358>1\).] Therefore, we consider (\(S_{5}\)) which is
By using (21), \(\Phi_{1}=0.0561\) is found. It is obvious that \(L\Phi_{1}=0.05049<1\). So, (\(S_{6}\)) is satisfied. Hence, by using Theorem 14, the boundary value problem (27) has at least one solution on \([ 0,\frac{1}{2} ] \).
References
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
Bitsadze, A.V.: On the theory of nonlocal boundary value problems. Dokl. Akad. Nauk SSSR 277, 17–19 (1984)
Ahmad, B., Ntouyas, S.K., Tariboon, J.: Nonlocal fractional-order boundary value problems with generalized Riemann–Liouville integral boundary conditions. J. Comput. Anal. Appl. 23(7), 1281–1296 (2017)
Thongsalee, N., Ntouyas, S.K., Tariboon, J.: Nonlinear Riemann–Liouville fractional differential equations with nonlocal Erdelyi–Kober fractional integral conditions. Fract. Calc. Appl. Anal. 19(2), 480–497 (2016)
Ahmad, B.: Existence of solutions for fractional differential equations of order \(q\in(2,3]\) with anti-periodic boundary conditions. J. Appl. Math. Comput. 34, 385–391 (2010)
Ahmad, B.: On nonlocal boundary value problems for nonlinear integro-differential equations of arbitrary fractional order. Results Math. 63, 183–194 (2013). https://doi.org/10.1007/s00025-011-0187-9
Ahmad, B., Alsaedi, A.: Existence and uniqueness of solutions for coupled systems of higher order nonlinear fractional differential equations. Fixed Point Theory Appl. 2010, Article ID 364560 (2010)
Ahmad, B., Nieto, J.J.: Existence results for nonlinear boundary value problems of fractional integro differential equations with integral boundary conditions. Bound. Value Probl. 2009, Article ID 708576 (2009)
Ntouyas, S.K.: Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opusc. Math. 33, 117–138 (2013)
Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)
Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, Article ID 107384 (2011)
Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217, 480–487 (2010)
Bai, Z.B.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)
Balachandran, K., Trujillo, J.J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces. Nonlinear Anal. 72, 4587–4593 (2010)
Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 3, 1–12 (2008)
Benchohra, M., Hamani, S., Ntouyas, S.K.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71, 2391–2396 (2009)
Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values. Stud. Math. 90, 69–86 (1988)
Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, 11–19 (1991)
Byszewski, L.: Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)
Byszewski, L.: Existence and uniqueness of mild and classical solutions of semilinear functional-differential evolution nonlocal Cauchy problem. In: Selected Problems of Mathematics. 50th Anniv. Cracow Univ. Technol. Anniv. Issue, vol. 6, pp. 25–33. Cracow Univ. Technol., Krakow (1995)
Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin (1992)
Mahmudov, N., Unul, S.: Existence of solutions of fractional boundary value problems with p-Laplacian operator. Bound. Value Probl. 2015, 99 (2015)
Mahmudov, N., Awadalla, M., Abuassba, K.: Nonlinear sequential fractional differential equations with nonlocal boundary conditions. Adv. Differ. Equ. 2017, 319 (2017)
Zhang, L., Ahmad, B., Wang, G.: Existence and approximation of positive solutions for nonlinear fractional integro-differential boundary value problems on an unbounded domain. Appl. Comput. Math. 15, 149–158 (2016)
Guezane-Lakoud, A., Khaldi, R.: Solvability of a fractional boundary value problem with fractional integral condition. Nonlinear Anal. 75, 2692–2700 (2012)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218, 860–865 (2015)
Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
Acknowledgements
The authors would like to thank the anonymous referees and the editor for their constructive suggestions on improving the presentation of the paper.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Mahmudov, N.I., Emin, S. Fractional-order boundary value problems with Katugampola fractional integral conditions. Adv Differ Equ 2018, 81 (2018). https://doi.org/10.1186/s13662-018-1538-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1538-6
Keywords
- Fractional differential equations
- Katugampola derivative
- Integral boundary conditions