- Research
- Open Access
- Published:
A generalized Volterra–Fredholm integral inequality and its applications to fractional differential equations
Advances in Difference Equations volume 2018, Article number: 91 (2018)
Abstract
In this paper, we derive a new generalized Volterra–Fredholm integral inequality and use it to study the dependence of solutions on the initial data for a class of fractional differential equations with Fredholm integral operators.
1 Introduction
Integral inequalities provide a pivotal tool in studying boundedness, well-posedness of the solutions to differential equations and other properties, for example, see [1–5]. In view of extensive applications of integral inequalities, many researchers [6–8] have contributed to the development of this important area of research. In 1919, Gronwall [6] proved a remarkable inequality which has been widely used and attracted considerable attention. We state it as follows.
Theorem A
If
where k and h are continuous functions on \([0,T)\), \(T\leqslant +\infty\), and \(k(t)\) is a nonnegative function on \([0,T)\), then \(u(t)\) satisfies
If, in addition, \(h(t)\) is a nondecreasing function on \([0,T)\), then \(u(t)\leqslant h(t)\exp (\int_{0}^{t} k(\zeta)\,d\zeta )\), \(t\in[0,T)\).
In 2007, Ye et al. [7] considered a generalized Volterra integral inequality with weakly singular kernel, which is described as follows.
Theorem B
Let \(a(t)\) be a locally integrable nonnegative function on \([0,T)\) (\(T\leqslant+\infty\)), and \(g(t)\) be a nonnegative and nondecreasing continuous function on \([0,T)\) with \(g(t)\leqslant M\) (M is a constant), and let \(u(t)\) be a locally integrable nonnegative function on \([0,T)\) such that
Then \(u(t)\) satisfies
For details and recent development of fractional integro-differential equations with Fredholm integral operators, for instance, see [9–13]. However, the bounds provided by the available inequalities in analyzing the dependence of solutions on the initial data for fractional differential equations involving Fredholm integral operators are not adequate. So it is natural to seek new inequalities to obtain the accurate bounds. In this paper, we establish a generalized Volterra–Fredholm integral inequality with weakly singular kernel and show its usefulness by applying it to the study of dependence of solutions on the initial data for a class of fractional differential equations involving Fredholm integral operators.
2 Preliminaries
In this section, we recall some basic definitions and useful results [14].
Throughout this paper, let \([0,T]\) denote a finite interval and \(C^{m}([0,T],\mathbb{R})\) be the Banach space of m-times continuously differentiable functions from \([0,T]\) into \(\mathbb{R}\). In particular, \(C^{0}([0,T],\mathbb{R})\), written as \(C([0,T],\mathbb{R})\), is the Banach space of continuous functions from \([0,T]\) into \(\mathbb{R}\) equipped with the maximum norm \(\|x\|=\max_{0\leqslant t\leqslant T}|x(t)|\).
Definition 2.1
Let \([a,b]\) be a finite interval. The left Riemann–Liouville integral \(({\mathcal{I}_{a^{+}}^{\alpha}}x)(t)\) of order \(\alpha>0\) is defined by
where \(\Gamma(\cdot)\) is the gamma function.
Definition 2.2
Let \([a,b]\) be a finite interval, \(m<\alpha\leqslant m+1\), \(m\in \mathbb{N}\), and \(x\in C^{m+1}([a,b])\). The Caputo fractional derivative of order α is defined by
Definition 2.3
The two-parameter Mittag–Leffler function is defined by
In particular, when \(\gamma=1\), it becomes the one-parameter Mittag–Leffler function, i.e., \(E_{\beta, 1}(z)=E_{\beta}(z)\).
Now we state a known result, which plays a key role in proving the main result. We do not provide its proof as it is a special case of Lemma 2.3 in [15].
Lemma 2.1
Let \(v, w\in C([0, T], \mathbb{R}^{n})\), \(f\in C([0,T]\times\mathbb {R}^{n},\mathbb{R}^{n})\) be such that \(f(t, x)\) is nondecreasing with respect to the second argument for each t on \([0,T]\) and that
If \(v(0)\leqslant w(0)\), then \(v(t)\leqslant w(t)\) on \(t\in[0,T]\).
3 A generalized Volterra–Fredholm integral inequality
In this section, we present a generalized Volterra–Fredholm integral inequality with weakly singular kernel.
Theorem 3.1
Let \(\alpha, \lambda, \mu>0\), and \(g(t)\) be a continuously differentiable nonnegative function on \([a,b]\) with \(a\leqslant b\leqslant+\infty\). In addition, assume that \(u(t)\) is integrable and nonnegative on \([a,b)\) such that
for each \(t \in[a, b)\). If \(0\leqslant\mu(b-a)E_{\alpha,2}(\lambda(b-a)^{\alpha})<1\), then
where
Proof
Let
Taking the Caputo derivative of order α on the two sides of equation (3.3), we can obtain
Combining (3.1) and (3.3), we get
According to Lemma 2.1, we have
Note that the second term on the right-hand of inequality (3.6) can be simplified as follows:
Then inequality (3.6) takes the form
Then, from (3.1), we have
From (3.3), notice that
Thus, from (3.7), we have the following estimate:
Obviously, for \(0\leqslant\mu(b-a)E_{\alpha,2}(\lambda(b-a)^{\alpha})<1\), we obtain
The proof is completed. □
Remark 3.1
Now we consider a special case of Theorem 3.1 with \(\mu=0\), that is, \(u(t)\) satisfies the following relation:
Then, according to Theorem 3.1, \(u_{0}\leqslant g(a)\) and
Here, we emphasize that the inequality obtained in Theorem 3.1 coincides with the inequality in [7].
4 Applications
In this section, we show the utility of our main result in investigating the dependence of solutions on the initial condition of fractional differential equations with Fredholm integral operators. Precisely we consider the following initial value problem of Caputo fractional differential equations:
where \(0<\alpha<1\), \(t\in J=[0,T]\), \(f\in C([0,T]\times\mathbb {R}^{n}\times\mathbb{R}^{n},\mathbb{R}^{n})\), \(g\in C([0,T]\times [0,T]\times C([0,T],\mathbb{R}^{n}),\mathbb{R}^{n})\), and \({}^{c}D^{\alpha}_{0^{+}}\) denotes the Caputo fractional derivative.
It is easy to show that problem (4.1) is equivalent to the following integral equation:
In order to show that problem (4.1) is well posed, we assume the following condition.
Condition 4.1
There exist nonnegative constants \(L_{1}\), \(L_{2}\), \(L_{3}\) such that
for \(t, s\in J\), \(u_{i}, v_{i}\in\mathbb{R}^{n}\), \(w_{i}\in C([0,T],\mathbb {R}^{n})\) (\(i=1,2\)). In the sequel, \(\|x\|_{t}\) stands for \(\max_{0\leqslant s\leqslant t}\|x(s)\|\), where \(\|\cdot\|\) is 2-norm in \(\mathbb{R}^{n}\).
Now, we prove the existence and uniqueness of solutions for the initial value problem (4.1).
Theorem 4.1
Assume that Condition 4.1 holds and that there exists \(\lambda >0\) such that
Then the iteration sequence \(\{x^{(k)}\}\) defined by
converges to a unique solution of problem (4.1).
Proof
To investigate the convergence of the iteration sequence, let us introduce the weighted norm \(\|x\|_{\lambda,T}=\max_{t\in[0,T]}e^{-\lambda t}\|x(t)\|\), where \(\lambda>0\).
Denote the right-hand side of equation (4.2) by \((\Phi x)(t)\). Then, using Condition 4.1 for \(x, \overline{x}\in C^{1}(0,T)\), we obtain
By the definition of gamma function, we have the estimate
This completes the proof. □
Remark 4.1
In case g is a constant function on \([0,T]\), the iteration sequence \(\{x^{(k)}\}\) produced by (4.4) converges to a unique solution of (4.1) provided that the parameter λ is large enough. Alternatively, we can say that the weighted norm technique does not work well for Fredholm type equation as in the Volterra case.
Theorem 4.2
Assume that Condition 4.1 is satisfied. In addition, suppose that x and y are two solutions of the initial value problems (4.1) with \(x(0)=x_{0}\), \(y(0)=y_{0}\), \(x_{0}, y_{0} \in\mathbb{R}^{n}\).
If
then the following inequality holds for \(t\in[0,T]\):
where
Proof
Since x and y are solutions to the initial value problem (4.1) with initial data \(x(0)=x_{0}\), \(y(0)=y_{0}\), therefore
Subtracting (4.10) from (4.11) and using Condition 4.1, we obtain
where \(u(t)=\|x(t)-y(t)\|\). A direct application of Theorem 3.1 to (4.12) yields the desired conclusion. This completes the proof. □
References
Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
Wang, G., Agarwal, R.P., Cabada, A.: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations. Appl. Math. Lett. 25, 1019–1024 (2012)
Ahmad, B., Ntouyas, S.K., Tariboon, J.: Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis, vol. 4. World Scientific, Hackensack (2016)
Wu, Q.: A new type of the Gronwall–Bellman inequality and its application to fractional stochastic differential equations. Cogent Math. 4, Article ID 1279781 (2017)
Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions, and Inequalities. Springer, Cham (2017)
Gronwall, T.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 293–296 (1919)
Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)
Ding, X.L., Jiang, Y.L.: Semilinear fractional differential equations based on a new integral operator approach. Commun. Nonlinear Sci. Numer. Simul. 17, 5143–5150 (2012)
Zhang, L., Ahmad, B., Wang, G., Agarwal, R.P.: Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 249, 51–56 (2013)
Chen, Z., Cheng, X.: An efficient algorithm for solving Fredholm integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 257, 57–64 (2014)
Ebrahimi, N., Rashidinia, J.: Collocation method for linear and nonlinear Fredholm and Volterra integral equations. Appl. Math. Comput. 270, 156–164 (2015)
Sayevand, K.: Analytical treatment of Volterra integro-differential equations of fractional order. Appl. Math. Model. 39, 4330–4336 (2015)
Deif, S.A., Grace, S.R.: Iterative refinement for a system of linear integro-differential equations of fractional type. J. Comput. Appl. Math. 294, 138–150 (2016)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Jiang, Y.L., Ding, X.L.: Nonnegative solutions of fractional functional differential equations. Comput. Math. Appl. 63, 896–904 (2012)
Acknowledgements
The work is supported by the National Natural Science Foundation of China (11501436) and Young Talent Fund of University Association for Science and Technology in Shaanxi, China (20170701).
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Both the authors, BA and XLD, contributed equally to each part of this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
List of abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ding, XL., Ahmad, B. A generalized Volterra–Fredholm integral inequality and its applications to fractional differential equations. Adv Differ Equ 2018, 91 (2018). https://doi.org/10.1186/s13662-018-1548-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1548-4
Keywords
- Volterra and Fredholm integral operators
- Integral inequality
- Fractional differential equations