- Research
- Open Access
- Published:
Oscillation of a nonlinear impulsive differential equation system with piecewise constant argument
Advances in Difference Equations volume 2018, Article number: 99 (2018)
Abstract
We deal with a nonlinear impulsive differential equation system with piecewise constant argument. We prove the existence and uniqueness of a solution. Moreover, we obtain sufficient conditions for the oscillation of the solution.
1 Introduction
In this paper, we consider a nonlinear impulsive differential equations system with piecewise constant argument of the form
with the initial conditions
where \(a, b: ( 0,\infty ) \rightarrow\mathbb{R}\) are continuous functions, \(f,g,h_{1}, h_{2}\in C(\mathbb{R},\mathbb{R})\), \(c_{n}\) and \(d_{n}\) are sequences of real numbers such that \(c_{n}\neq1\) and \(d_{n}\neq1\) for all \(n\ge1\), \(\Delta u(n)=u(n^{+})-u(n^{-})\), \(u({ n }^{ + })=\lim_{ t\rightarrow{ n }^{ + } } u(t)\), \(u({ n }^{ - })=\lim_{ t\rightarrow{ n }^{ - } } u(t)\), \([\cdot]\) denotes the greatest integer function, and \(x_{-1},x_{0},y_{-1},y_{0}\) are given real numbers.
Differential equations with piecewise constant arguments (DEPCA) exist in a widely expanded areas such as biomedicine, chemistry, mechanical engineering, physics, and so on. To the best of our knowledge, the first mathematical model that includes a piecewise constant argument was proposed by Busenberg and Cooke [1]. They investigated the following system describing the disease dynamics for \(n=1,2,\dots\):
whereas
where c is the death rate, and k is the horizontal transmission factor. Then, oscillation and stability of DEPCA have been studied by many authors (see [2–6] and the references therein). In 1994, Dai and Singh [7] studied the oscillatory motion of spring-mass systems subject to piecewise constant forces of the form \(f(x([t]))\) or \(f([t])\). Later, they improved analytical and numerical methods for solving linear and nonlinear vibration problems and showed that a function \(f([N(t)]/N)\) is a good approximation to the given continuous function \(f(t)\) if N is sufficiently large [8]. This method was also used to find numerical solutions of a nonlinear Froude pendulum and the oscillatory behavior of the pendulum [9]. On the other hand, in 1994, the case of studying discontinuous solutions of differential equations with piecewise continuous arguments has been proposed as an open problem by Wiener [10]. Due to this open problem, linear impulsive differential equations with piecewise constant arguments have been dealt with in [11–13]. Moreover, cellular neural networks with piecewise constant argument have been investigated in [14–16]. In [14], the existence and attractivity of the following cellular neural network with piecewise constant argument was studied:
where \([\cdot]\) is the greatest integer function. Recently, Chiu [17] considered the following neural network:
Although nonlinear differential equations with piecewise constant arguments have many applications in real-world problems, there are only a few papers on the oscillation of nonlinear differential equations with piecewise constant arguments [18–20]. So, we study oscillation of system (1)–(2).
In Sect. 2, we prove the existence and uniqueness of the solutions, Sect. 3 consists of our main results. Moreover, we give some examples to illustrate our results.
2 Existence of solutions
In this section, we obtain the solution of (1)–(3) in terms of the corresponding difference equations system.
Definition 1
A pair of functions \((x(t),y(t))\) is said to be a solution of (1)–(2) if it satisfies the following conditions:
-
(i)
\(x:\mathbb{R}^{ + }\cup \{ -1 \}\rightarrow\mathbb{R}\) and \(y:\mathbb{R}^{ + }\cup \{ -1 \}\rightarrow\mathbb{R}\) are continuous with a possible exception at the points \([t]\in[0,\infty)\),
-
(ii)
\(x(t)\) and \(y(t)\) are right continuous and have left-hand limits at the points \([t]\in[0,\infty)\),
-
(iii)
\(x(t)\) and \(y(t)\) are differentiable and satisfy (1) for any \(t\in\mathbb{R}^{ + }\) with a possible exception at the points \([t]\in[0,\infty)\) where one-sided derivatives exist,
-
(iv)
\((x(n), y(n))\) satisfies (2) for \(n\in\mathbb{Z^{+}}\).
Theorem 1
If \(c_{n}\neq1\) and \(d_{n}\neq1\) for all \(n\ge1\) then the initial value problem (1)–(3) has a unique solution \((x(t),y(t))\) on \([0,\infty)\cup \{ -1 \}\), which can be formulated on the interval \(n\le t< n+1, n\in\mathbb{N}= \{ 0,1,2,\ldots, \}\), as
where \((x(n),y(n))\) is the unique solution of the difference equations system
for \(n\ge0\) with initial conditions (3).
Proof
Let \((x_{n}(t),y_{n}(t))\equiv(x(t),y(t))\) be a solution of (1)–(2) on \(n\le t< n+1\). So, system (1) can be rewritten in the form
From (6), for \(n\le t< n+1\), we get
On the other hand, for \(n-1\le t< n\), we have
Using impulse conditions (2), from (7) and (8) we obtain difference equations system (5).
Considering initial conditions (3), the solution of system (5) is obtained uniquely. Thus, the solution of (1)–(3) is obtained as (4). □
3 Oscillatory solutions
Definition 2
A function \(x(t)\) defined on \([0,\infty)\) is called oscillatory if there exist two real-valued sequences \(\{t_{n} \}_{n\ge0}\), \(\{t_{n}^{\prime} \}_{n\ge0}\subset[0,\infty)\) such that \(t_{n}\rightarrow+\infty\), \(t_{n}^{\prime}\rightarrow+\infty\) as \(n\rightarrow+\infty\) and \(x(t_{n})\leq0\leq x(t_{n}^{\prime})\) for \(n\ge N\), where N is sufficiently large. Otherwise, \(x(t)\) is called nonoscillatory.
Remark 1
According to Definition 2, a piecewise continuous function \(x:[0,\infty )\rightarrow \mathbb{R}\) can be oscillatory even if \(x(t)\neq0 \) for all \(t\in[0,\infty) \).
Definition 3
A sequence \({ \{ { y }_{ n } \} }_{ n\ge-1 }\) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.
Definition 4
The solution of problem (1)–(3) is called oscillatory if each components is oscillatory.
The following result is clear.
Corollary 1
If the solution \((x(n),y(n)), n\ge-1\), of the difference equation system (5) with initial conditions (3) is oscillatory, then the solution \((x(t),y(t))\) of (1)–(3) is also oscillatory.
Remark 2
If \(c_{n}>1\) and \(d_{n}>1\) for all \(n\in\mathbb{Z^{+}}\), then from the impulse conditions (2) it is clear that the solution \((x(t),y(t))\) of problem (1)–(3) is already oscillatory.
Theorem 2
Assume that there exist \(M_{1}>0\) and \(M_{2}>0\) such that \(f(u)\ge M_{1}\) and \(g(u)\ge M_{2}\) for all \(u \in\mathbb{R}, uh_{1}(u)<0\) and \(uh_{2}(u)<0\) for \(u \neq0\), and \(c_{n}<1\) and \(d_{n}<1\) for \(n\in \mathbb{Z^{+}}\). If the following conditions are satisfied, then all solutions of system (5) are oscillatory:
Proof
Let \((x(n),y(n))\) be a solution of (5). Suppose that \(x(n)>0, x(n-1)>0\), and \(x(n-2)>0\) for \(n>N\), where N is sufficiently large. From the first equation of (5) we have
Multiplying both sides of this inequality by \(-f(y(n))\int_{n}^{n+1}{\exp{(\int _{n}^{s}{ a(u)\,du } )}\,ds}<0\) and adding \(x(n)+h_{1}(x(n))\int _{n}^{n+1}{\exp{(\int_{n}^{s}{ a(u)\,du } )}\,ds}\), we obtain from (5) that
Since \(x(n)>0, n>N\), and \(h_{1}(x(n))<0\), from (11) we get
So, we have
which contradicts (9).
If \(x(n)<0, x(n-1)<0\), and \(x(n-2)<0\) for \(n>N\), then we obtain the same contradiction. So the component \(x(n)\) of the solution \((x(n),y(n))\) is oscillatory. Similarly, we can show that the component \(y(n)\) is oscillatory under condition (10). Hence, the proof is complete. □
Corollary 2
Under the hypotheses of Theorem 2, all solutions of system (1)–(2) are oscillatory.
Theorem 3
Assume that there exist constants \(K_{1}, K_{2}, M_{1}, M_{2}>0\) such that \(f(u)\ge M_{1}, g(u)\ge M_{2}\) for all \(u\in\mathbb{R}\), \(c_{n}\le1-K_{1}, d_{n}\le1-K_{2}\) for \(n\in\mathbb{N}\), and \(u{ h }_{ 1 }(u)<0, u{ h }_{ 2 }(u)<0\) for \(u\neq0\). Suppose that the following conditions are satisfied:
Then all solutions of (5) are oscillatory.
Proof
Let \((x(n),y(n))\) be a solution of (5). We need to show that under condition (13), \(x(n)\) is oscillatory. Assume that \(x(n)>0, x(n-1)>0\) for \(n>N\), where N is sufficiently large. From the first equation of (5) we obtain that
Let \(v_{n}= \frac{x(n)}{x(n-1)}\). Since \(v(n)>0, \liminf_{n\to\infty }v_{n}\ge0\) and
So, we need to consider two cases.
Case 1. Let \(\liminf_{n\to\infty}v_{n}=v=+ \infty\). Then, from (15) we get
which is a contradiction. So, we consider the second case.
Case 2. Let \(\liminf_{n\to\infty}v_{n}<\infty\). If the first equation of (5) is divided by \(x(n-1)\), then we have
and then we obtain that
Taking the inferior limit on both sides of inequality (16), we get
Let \(\liminf_{n\to\infty}\exp{(\int_{n}^{n+1}{ a(u)\,du })}=A\) and \(\liminf_{n\to\infty}\int_{n}^{n+1}{\exp{(\int_{n}^{s}{ a(u)\,du })\,ds}}=B\). Then the last inequality can be rewritten as
Now we consider two subcases:
-
(i)
If \(\liminf_{n\to\infty}(1-c_{n+1})=\infty\), then we have a contradiction from (17).
-
(ii)
Assume that \(0< K_{1}\le\liminf_{n\to\infty}(1-c_{n+1})<\infty\). Then from (17) we have
$$AK_{1}v^{2}-v+M_{1}B\le0 $$or
$$AK_{1} \biggl[ \biggl(v-\frac{1}{2K_{1}A} \biggr)^{2}+ \frac{4M_{1}BK_{1}A-1}{4K_{1}^{2}A^{2}} \biggr]\le0. $$Since \(A>0\) and \(K_{1}>0\), we have
$$\frac{4M_{1}BK_{1}A-1}{4K_{1}^{2}A^{2}}\le0, $$which contradicts condition (13).
In the case of \(x(n)<0, x(n-1)<0\) for sufficiently large \(n>N\), the proof is similar, and we obtain the same contradiction.
On the other hand, if we assume rgar \(y(n)\) is a nonoscillatory sequence, then we have a contradiction to condition (14). Hence, \((x(n),y(n))\) is an oscillatory solution of system (5). □
Corollary 3
Under the hypothesis of Theorem 3, all solutions of system (1)–(2) are oscillatory.
Remark 3
In the case of \(a(t)\equiv a\) and \(b(t)\equiv b\), conditions (9) and (10) are reduced to the following forms, respectively:
Remark 4
In the case of \(a(t)\equiv a\) and \(b(t)\equiv b\), conditions (13) and (14) are reduced to the following conditions, respectively:
If \(c_{n}\equiv d_{n}\equiv0\), \(n\in\mathbb{Z^{+}}\), then we have the nonimpulsive equation system
In this case, the following results are clear.
Corollary 4
Assume that there exist \(M_{1}>0\) and \(M_{2}>0\) such that \(f(u)\ge M_{1}\) and \(g(u)\ge M_{2}\) for all \(u \in\mathbb{R}\), and \(uh_{1}(u)<0\) and \(uh_{2}(u)<0\) for \(u \neq0\). Suppose that the following conditions are satisfied:
Then all solutions of system (18) are oscillatory.
Corollary 5
Assume that there exist the constants \(M_{1}, M_{2}>0\) such that \(f(u)\ge M_{1}, g(u)\ge M_{2}\) for all \(u\in\mathbb{R}\), \(0< K_{1}\leq1\), \(0< K_{2}\leq1\), and \(u{ h }_{ 1 }(u)<0\) and \(u{ h }_{ 2 }(u)<0\) for \(u\neq0\). Suppose that the following conditions are satisfied:
Then all solutions of (18) are oscillatory.
Now, let us consider following nonlinear differential equation:
which is investigated in [18] with \(h(u) \equiv0\).
Corollary 6
Assume that there exists \(M>0\) such that \(f(u)\geq M\) for \(u \in\mathbb {R}\), \(uh(u)<0\) for \(u\neq0\), and \(c_{n} <1\) for \(n \in\mathbb{Z}^{+}\). If
then all solutions of equation (19) are oscillatory.
Corollary 7
Assume that there exist \(M, K>0\) such that \(f(u)\geq M\) for \(u \in \mathbb{R}\), \(c_{n} \le1-K\) for \(n \in\mathbb{Z}^{+}\), and \(uh(u)<0\) for \(u \neq0\). If
then all solutions of equation (19) are oscillatory.
Remark 5
It is clear that the problem considered in this paper is more general than the problem investigated in [18]. When \(h(t) \equiv0\), Corollaries 6 and 7 coincide with Corollaries 1 and 3 in [18], respectively.
Here we give two numerical examples to illustrate our results. Mathematica® software is used to get the figures.
Example 1
Let us consider the following nonlinear impulsive differential equations system with piecewise constant argument and variable coefficient:
It is clear that \(a(t)= \frac{2}{t}\), \(f(u)=\exp(-u)+2\), \(h_{1}(u)=-u^{1/3}\), and \(b(t)= \frac{2t}{t^{2}+1}\), \(g(u)=u^{2}+2\), \(h_{2}(u)=-u^{1/5}\) satisfy all hypotheses of Theorems 2 and 3. Then all solutions of system (20)–(21) are oscillatory. The solution \((x_{n}(t),y_{n}(t))\) of system (20)–(21) with initial conditions \(x(-1)=0, x(0)=0.01, y(-1)=0, y(0)=-0.01\) is shown in Fig. 1.
Example 2
Consider the following system:
Since all hypotheses of Theorem 2 are satisfied for \(a(t)=\ln2\), \(f(u)=u^{2}+1\), \(h_{1}(u)=-u^{3}\) and \(b(t)= \ln3 \), \(g(u)=u^{4}+1\), \(h_{2}(u)=-u\), all solutions of system (22)–(23) are oscillatory. The solution \((x_{n}(t),y_{n}(t))\) of system (22)–(23) with the initial conditions \(x(-1)=0, x(0)=1, y(-1)=0, y(0)=-0.5\) is shown in Fig. 2.
References
Busenberg, S., Cooke, K.L.: Models of vertically transmitted diseases with sequential-continuous dynamics. In: Nonlinear Phenomena in Mathematical Sciences, pp. 179–187 (1982)
Cooke, K.L., Wiener, J.: Retarded differential equations with piecewise constant delays. J. Math. Anal. Appl. 99(1), 265–297 (1984). https://doi.org/10.1016/0022-247X(84)90248-8
Aftabizadeh, A.R., Wiener, J.: Oscillatory properties of first order linear functional differential equations. Appl. Anal. 20(3–4), 165–187 (1985). https://doi.org/10.1080/00036818508839568
Aftabizadeh, A.R., Wiener, J., Xu, J.-M.: Oscillatory and periodic solutions of delay differential equations with piecewise constant argument. Proc. Am. Math. Soc. 99(4), 673–679 (1987). https://doi.org/10.2307/2046474
Wiener, J., Aftabizadeh, A.R.: Differential equations alternately of retarded and advanced type. J. Math. Anal. Appl. 129(1), 243–255 (1988). https://doi.org/10.1016/0022-247X(88)90246-6
Shen, J.H., Stavroulakis, I.P.: Oscillatory and nonoscillatory delay equations with piecewise constant argument. J. Math. Anal. Appl. 248(2), 385–401 (2000). https://doi.org/10.1006/jmaa.2000.6908
Dai, L., Singh, M.C.: On oscillatory motion of spring-mass systems subjected to piecewise constant forces. J. Sound Vib. 173(2), 217–231 (1994). https://doi.org/10.1006/jsvi.1994.1227
Dai, L., Singh, M.C.: An analytical and numerical method for solving linear and nonlinear vibration problems. Int. J. Solids Struct. 34(21), 2709–2731 (1997). https://doi.org/10.1016/S0020-7683(96)00169-2
Dai, L., Singh, M.C.: Periodic, quasiperiodic and chaotic behavior of a driven Froude pendulum. Int. J. Non-Linear Mech. 33(6), 947–965 (1998). https://doi.org/10.1016/S0020-7462(97)00054-1
Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1994)
Bereketoglu, H., Seyhan, G., Ogun, A.: Advanced impulsive differential equations with piecewise constant arguments. Math. Model. Anal. 15(2), 175–187 (2010). https://doi.org/10.3846/1392-6292.2010.15.175-187
Karakoc, F., Bereketoglu, H., Seyhan, G.: Oscillatory and periodic solutions of impulsive differential equations with piecewise constant argument. Acta Appl. Math. 110(1), 499–510 (2010). https://doi.org/10.1007/s10440-009-9458-9
Chiu, K.-S.: On generalized impulsive piecewise constant delay differential equations. Sci. China Math. 58(9), 1981–2002 (2015). https://doi.org/10.1007/s11425-015-5010-8
Huang, Z., Wang, X., Gao, F.: The existence and global attractivity of almost periodic sequence solution of discrete-time neural networks. Phys. Lett. A 350(3–4), 182–191 (2006). https://doi.org/10.1016/j.physleta.2005.10.022
Pinto, M., Robledo, G.: Existence and stability of almost periodic solutions in impulsive neural network models. Appl. Math. Comput. 217(8), 4167–4177 (2010). https://doi.org/10.1016/j.amc.2010.10.033
Chiu, K.-S., Pinto, M., Jeng, J.-C.: Existence and global convergence of periodic solutions in recurrent neural network models with a general piecewise alternately advanced and retarded argument. Acta Appl. Math. 133(1), 133–152 (2014). https://doi.org/10.1007/s10440-013-9863-y
Chiu, K.-S.: Exponential stability and periodic solutions of impulsive neural network models with piecewise constant argument. Acta Appl. Math. 151(1), 199–226 (2017). https://doi.org/10.1007/s10440-017-0108-3
Karakoc, F., Ogun Unal, A., Bereketoglu, H.: Oscillation of nonlinear impulsive differential equations with piecewise constant arguments. Electron. J. Qual. Theory Differ. Equ. 2013, 49 (2013). https://doi.org/10.14232/ejqtde.2013.1.49
Gopalsamy, K., Kulenovic, M.R.S., Ladas, G., Aftabizadeh, A.R.: On a logistic equation with piecewise constant arguments. Differ. Integral Equ. 4(1), 215–223 (1991)
Karakoc, F.: Asymptotic behaviour of a population model with piecewise constant argument. Appl. Math. Lett. 70, 7–13 (2017). https://doi.org/10.1016/j.aml.2017.02.014
Acknowledgements
The authors would like to thank reviewers for their insightful and valuable comments.
Author information
Authors and Affiliations
Contributions
The main idea of this paper was proposed by FK. The manuscript prepared initially and all steps of the proof are performed by FK, AU, and HB. All authors have read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Karakoc, F., Unal, A. & Bereketoglu, H. Oscillation of a nonlinear impulsive differential equation system with piecewise constant argument. Adv Differ Equ 2018, 99 (2018). https://doi.org/10.1186/s13662-018-1556-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1556-4
MSC
- 34K11
- 34K45
Keywords
- Impulsive differential equation
- Piecewise constant argument
- Oscillation