- Research
- Open access
- Published:
Existence of positive solutions for two-point boundary value problems of nonlinear fractional q-difference equation
Advances in Difference Equations volume 2018, Article number: 180 (2018)
Abstract
This paper is concerned with the two-point boundary value problems of a nonlinear fractional q-difference equation with dependence on the first order q-derivative. We discuss some new properties of the Green function by using q-difference calculus. Furthermore, by means of Schauder’s fixed point theorem and an extension of Krasnoselskii’s fixed point theorem in a cone, the existence of one positive solution and of at least one positive solution for the boundary value problem is established.
1 Introduction
The term “q-difference” actually refers to quantum difference. Quantum calculus, sometimes called calculus without limits, is equivalent to traditional infinitesimal calculus without the notion of limits. It defines “q-calculus” and “h-calculus”, where h ostensibly stands for Planck’s constant while q stands for quantum. The two parameters are related by the formula \(q=e^{ia}=e^{2\pi ih}\), where \(h=\frac{a}{2\pi}\) is the reduced Planck constant. The q-calculus, dating in a sense back to Euler and Jacobi [1–3], is only recently beginning to see more usefulness and a lot of applications in quantum mechanics, having an intimate connection with commutativity relations. Based on this, there have been published a lot of papers about fractional q-calculus and fractional q-differential equation theory. At the same time, the topic of the fractional quantum difference equation has also attracted the attention of many researchers in recent years (see [4–6] and the references therein). In recent years, some boundary value problems with fractional q-differences have aroused heated discussion among many authors [7–22]. They obtained many results as regards the existence and multiplicity of nontrivial solutions, positive solutions, negative solutions and extremal solutions by applying some well-known tools of fixed point theory such as the Banach contraction principle, the Guo–Krasnosel’skii fixed point theorem on cones, monotone iterative methods and Leray–Schauder degree theory.
But we find that the discussed nonlinear terms is only \(f(t,u(t))\) in the literature above (see, e.g., [7]), and there is little literature treating nonlinear terms with a first order q-derivative, which is our focus in the study. Based on this, in this paper, we will be interested in the q-analog of the fractional differential problem given by
where \(2<\alpha\leqslant3, f:[0,1]\times[0,+\infty)\times{\mathbb{R}}\to[0,+\infty)\) is continuous. In Sect. 2, we will give some necessary definitions of fractional q-calculus and deduce the new properties of the Green function. In Sect. 3, by means of Schauder’s fixed point theorem and Krasnoselskii fixed point theorem in a cone, some results on the existence of positive solutions of problem (1.1) are established. Finally, an example is given to illustrate the main results of this paper.
2 Preliminaries
For convenience, we collect here the necessary definitions from the theory of fractional q-calculus.
Let \(q\in(0,1)\) and define
The q-analog of the power function \((a-b)^{n}\) with \(n\in{\mathbb{N}}_{0}\) is
More generally, if \(\alpha\in\mathbb{R}\), then
If \(b=0\), then \((a-b)^{(\alpha)}=a^{(\alpha)}=a^{\alpha}\). It is easy to see that \([a(t-s)]^{(\alpha)}=a^{\alpha}(t-s)^{(\alpha)}\) and \((a-b)^{(\alpha)}=(a-bq^{\alpha-1})(a-b)^{(\alpha-1)}\). There are two important results:
-
(1)
If \(\alpha>0, a\leqslant b\leqslant t\), then \((t-a)^{(\alpha)}\geqslant(t-b)^{(\alpha)}\).
-
(2)
If \(\alpha<0, a\leqslant b\leqslant t\), then \((t-a)^{(\alpha)}\leqslant(t-b)^{(\alpha)}\).
Result (1) comes from the Remark 2.1 of [8]. For result (2), since \((t-a)^{(\alpha)}=t^{\alpha}\prod_{n=0}^{\infty}\frac {t-aq^{n}}{t-aq^{\alpha+n}}\) and \((t-b)^{(\alpha)}=t^{\alpha}\prod_{n=0}^{\infty}\frac {t-bq^{n}}{t-bq^{\alpha+n}}\), it is sufficient to show that
The final expression is obtained by \(\alpha<0\), \(0< q<1\). This completes the proof of the result (2).
The q-gamma function is defined by
and satisfies \(\Gamma_{q}(x+1)=[x]_{q}\Gamma_{q}(x)\).
The expression
is called the q-derivative of the function \(f(x)\). \(D_{q}\) has the following properties:
The q-integral of a function f defined on the interval \([0,b]\) is given by
If \(a\in[0,b]\) and f is defined on the interval \([0,b]\), its integral from a to b is defined by
Basic properties of the two operators can be found in [23]:
and if f is continuous at \(x=0\), then
Definition 2.1
([24])
Let \(\alpha\geqslant0\) and f be a function defined on \([0,1]\). The fractional q-integral of the Riemann–Liouville type is \((I^{0}_{q} f)(x)=f(x)\) and
Definition 2.2
([25])
The fractional q-derivative of the Riemann–Liouville type of order \(\alpha\geqslant0\) is defined by
where m is the smallest integer greater than or equal to α.
Lemma 2.1
([24])
Let \(\alpha,\gamma\geqslant0\) and f be a function defined on \([0,1]\). Then the next formulas hold:
Definition 2.3
([26])
Let \(\alpha>0\) and p be a positive integer. Then the following equality holds:
Lemma 2.2
([7])
The unique solution of the q-analog of the fractional differential problem (1.1) is given by
where \(2<\alpha\leqslant3\), \(G(t,qs)\) is the Green function for the problem (1.1), which is given by
Lemma 2.3
The Green function \(G(t,qs)\) defined as in the statement of Lemma 2.2 satisfies the following conditions:
-
(1)
\(G(t,qs)>0\) and \(G(t,qs)\leqslant G(1,qs)\) for each \((t,s)\in[0,1]\times[0,1]\);
-
(2)
\(G(t,qs)\geqslant g(t)G(1,qs)\) for each \((t,s)\in[0,1]\times[0,1]\) with \(g(t)=t^{\alpha-1}\);
-
(3)
For \(s\in[0,1]\), \(\min_{t\in[\frac{1}{4},\frac{3}{4}]}G(t,qs)\geqslant(\frac {1}{4})^{\alpha-1}G(1,qs)\).
Proof
Proofs of (1) and (2) are given in [7].
(3) Let \(g_{1}(t,qs)=t^{\alpha-1}(1-qs)^{(\alpha-2)}-(t-qs)^{(\alpha-1)}\), \(0\leqslant qs\leqslant t\leqslant1\), \(g_{2}(t,qs)=t^{\alpha-1}(1-qs)^{(\alpha-2)}\), \(0\leqslant t\leqslant qs\leqslant1\). For \(0\leqslant qs\leqslant t\leqslant1\),
so \(g_{1}(t,qs)\) is increasing with respect to t. We have
It is easy to see that \(g_{2}(t,qs)\) is increasing with respect to t. We have
Obviously, \(\min_{\frac{1}{4}\leqslant t\leqslant\frac{3}{4}} G(t,qs)\geqslant(\frac{1}{4})^{\alpha-1}G(1,qs)\). □
Definition 2.4
Let E be a real Banach space. A nonempty convex closed set P is called a cone provided that: (1) \(au\in P\), for all \(u\in P; a\geqslant0\); (2) \(u,-u\in P\) implies \(u=0\).
Let X be a Banach space and \(P\subset X\) a cone. Suppose \(\alpha, \beta: X\to\mathbb{R}^{+}\) are two continuous convex functions satisfying
for \(u\in X, \lambda\in\mathbb{R}\), and
for \(u\in X\), and \(\alpha(u_{1})\geqslant\alpha(u_{2})\) for \(u_{1}, u_{2}\in P, u_{1}\leqslant u_{2}\), where \(\kappa>0\) is a constant.
Lemma 2.4
([27])
Let \(r_{2}>r_{1}>0, L>0\) be constants and \(\Omega_{i}=\{u\in X: \alpha(u)< r_{i}, \beta(u)< L\}, i=1,2\) be two bounded open sets in X. Set \(D_{i}=\{u\in X: \alpha(u)=r_{i}\}\). Assume \(T: P\to P\) is a completely continuous operator satisfying
- (C1):
-
\(\alpha(Tu)< r_{1}, u\in D_{1}\cap P; \alpha(Tu)>r_{2}, u\in D_{2}\cap P\);
- (C2):
-
\(\beta(Tu)< L, u\in P\);
- (C3):
-
there is a \(p\in(\Omega_{2}\cap P)\setminus\{0\}\) such that \(\alpha(p)\neq0\) and \(\alpha(u+\lambda p)\geqslant\alpha(u)\) for all \(u\in P\) and \(\lambda\geqslant0\).
Then T has at least one fixed point in \((\Omega_{2}\setminus\bar{\Omega}_{1})\cap P\).
3 Main results and proofs
Consider the Banach space
with the norm
where \(\Vert y \Vert _{0}=\max_{0\leqslant t\leqslant1} \vert y(t) \vert , \Vert D_{q}y \Vert _{0}=\max_{0\leqslant t\leqslant1} \vert D_{q}y(t) \vert \). Define the cone on X: \(P=\{y\in X:y(t)\geqslant0\}\) and functionals \(\alpha(y)=\max_{0\leqslant t\leqslant1} \vert y(t) \vert , \beta(y)=\max_{0\leqslant t\leqslant1} \vert D_{q}y(t) \vert \), then we obtain \(\alpha(\lambda y)= \vert \lambda \vert \alpha(y), \beta(\lambda y)= \vert \lambda \vert \beta(y)\), for \(y\in X, \lambda\in\mathbb{R}\), \(\alpha(y_{1})\geqslant\alpha(y_{2})\) for \(y_{1}, y_{2}\in P, y_{1}\leqslant y_{2}\). For all \(y(t)\in C[0,1]\cap C^{1}[0,1]\), define
For convenience, we introduce the following notations:
In this section, we will give the existence results of a positive solution to the boundary value problem (1.1) on the basis of Lemma 3.1 and make the following assumptions:
- (H0):
-
There exists a nonnegative function \(a(t)\in L(0,1)\cap C[0,1]\) such that
$$\bigl\vert f(t,u,v) \bigr\vert \leqslant a(t)+\kappa_{1} \vert u \vert ^{\sigma_{1}}+\kappa_{2} \vert v \vert ^{\sigma_{2}} , \quad \kappa_{i}>0,0< \sigma_{i}< 1, i=1,2. $$
We also suppose that there exist \(L>b>\frac{1}{16}b>c>0\) such that \(f(t,u,v)\) satisfies the following conditions:
- (H1):
-
\(f(t,u,v)< c/N\) for \((t,u,v)\in[0,1]\times[0,c]\times[-L,L]\);
- (H2):
-
\(f(t,u,v)\geqslant b/R\) for \((t,u,v)\in[0,1]\times[\frac{1}{16}b,b]\times[-L,L]\);
- (H3):
-
\(f(t,u,v)< L/W\) for \((t,u,v)\in[0,1]\times[0,b]\times[-L,L]\).
Lemma 3.1
Suppose that \(f(t,y,D_{q}y)\) is continuous on \([0,1]\times[0,+\infty)\times\mathbb{R}\). Then the mapping \(T: P\to P\) is completely continuous.
Proof
In view of the expression of \(G(t,qs)\), it is clear that \(Ty\in C[0,1]\cap C^{1}[0,1], Ty(t)\geqslant0\), and \(Ty(t)\) is continuous. Hence \(T : P\to P\).
Next, we show that T is uniformly bounded. Let \(D\subset P\) be bounded, i.e. there exists a real number \(L>0\) such that \(\Vert y \Vert \leqslant L\), for all \(y\in D\). Let \(M=\max_{0\leqslant t\leqslant1,0\leqslant y\leqslant L,0\leqslant D_{q}y\leqslant L} \vert f(t,y, D_{q}y) \vert +1\), then, for \(y\in D\), from Lemma 2.3, on the one hand, one has
On the other hand,
Then we see that \(T(D)\) is bounded.
Finally, we show that T is equi-continuous. For all \(\varepsilon>0, \exists\delta=\min\{\frac{1}{2}, \frac{\varepsilon\Gamma(\alpha-1)}{2M}\}>0\), let \(t_{1}, t_{2}\in[0,1], t_{1}< t_{2}, y\in D\), for \(0< t_{2}-t_{1}<\delta\), we have
Let \(\varphi(t)=\int_{0}^{t}(t-qs)^{(\alpha-1)}\,d_{q}s\), since \({}_{t}D_{q}\varphi(t)=\int_{0}^{t}[\alpha-1]_{q}(t-qs)^{(\alpha-2)}\,d_{q}s\geqslant0\), we have \(\varphi(t_{1})\leqslant\varphi(t_{2})\). So we have
Since
we have
Case 1: for \(0\leqslant t_{1}<\delta, \delta\leqslant t_{2}<2\delta\), \(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\leqslant t_{2}^{\alpha-1}< (2\delta)^{\alpha-1}<2\delta\).
Case 2: for \(0\leqslant t_{1}< t_{2}\leqslant\delta\), \(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\leqslant t_{2}^{\alpha-1}< \delta^{\alpha-1}=\delta\cdot\delta^{\alpha-2}<2\delta\).
Case 3: for \(\delta\leqslant t_{1}< t_{2}\leqslant1\), by means of differential mean value theorem, we get \(t_{2}^{\alpha-1}-t_{1}^{\alpha-1}\leqslant(\alpha-1)(t_{2}-t_{1}) \leqslant2\delta\).
Hence, we obtain
In view of the Arzela–Ascoli theorem, it is easy to see that \(T: P\to P\) is completely continuous. □
Theorem 3.1
Suppose \(f: [0,1]\times[0,+\infty)\times{\mathbb{R}}\to[0,+\infty)\) is continuous, and f satisfies (\(\mathrm{H}_{0}\)). Then problem (1.1) has one positive solution.
Proof
Let \(\overline{P_{a}}=\{u: u\in P, \Vert u \Vert \leqslant a\}\), where \(a\geqslant\max\{(8\kappa_{1}\tau)^{\frac{1}{1-\sigma_{1}}}, (8\kappa_{1}N)^{\frac{1}{1-\sigma_{1}}}, (8\kappa_{2}\tau)^{\frac{1}{1-\sigma _{2}}}, (8\kappa_{2}N)^{\frac{1}{1-\sigma_{2}}}, 4\tau,4Q\}\). In the following, we show that \(T: \overline{P_{a}}\to\overline{P_{a}}\). If \(y\in\overline{P_{a}}\), it follows that
Thus
Further, we have
and
Furthermore,
Therefore, \(T: \overline{P_{a}}\to\overline{P_{a}}\). By Lemma 3.1, \(T: \overline{P_{a}}\to\overline{P_{a}}\) is completely continuous. According to Schauder’s fixed point theorem, problem (1.1) has one solution.
In the following theorem, we need to note that
Then \(f^{*}\in C([0,1]\times[0,+\infty|\times\mathbb{R},\mathbb{R}^{+}))\). Define
□
Theorem 3.2
Suppose f is continuous on \([0,1]\times[0,+\infty)\times\mathbb{R}\) and satisfies (\(\mathrm{H}_{1}\))–(\(\mathrm{H}_{3}\)). Then problem (1.1) has at least one positive solution \(y(t)\) satisfying
Proof
Let \(\Omega_{1}=\{y\in X: |y(t)|< c, |D_{q}y(t)|< L\}, \Omega_{2}=\{y\in X: |y(t)|< b, |D_{q}y(t)|< L\}\) and \(D_{1}=\{y\in X: \alpha(y)=c\}, D_{2}=\{y\in X: \alpha(y)=b\}\). By Lemma 3.1, we have proved \(T: P\to P\) is completely continuous. Furthermore, we will show (\(\mathrm{C}_{1}\))–(\(\mathrm{C}_{3}\)) of Lemma 2.4.
At first, by means of (\(\mathrm{H}_{1}\)) and \(y\in D_{1}\cap P\), we obtain
by means of (\(\mathrm{H}_{2}\)) and \(y\in D_{1}\cap P\), we obtain
Secondly, by means of (\(\mathrm{H}_{3}\)) and \(y\in\Omega_{2}\cap P\), we obtain
Finally, it is easy to see that there exists a nonnegative function \(p\in(\Omega_{2}\cap P)\setminus\{0\}\) such that \(\alpha(y+\lambda p)\geqslant\alpha(y) \) for any \(y\in P\) and \(\lambda\geqslant0\).
As a result, by Lemma 2.4, we find that T has a fixed point y in \((\Omega_{2}\setminus\bar{\Omega}_{1})\cap P\), that is, problem (1.1) has at least one positive solution \(y(t)\) satisfying
□
4 Example
Example 4.1
Consider the following boundary value problem:
By Theorem 3.1, it is easy to see that problem (4.1) has one positive solution.
Example 4.2
Consider the following boundary value problem:
Let \(f(t,y(t),D_{\frac{1}{4}}y(t))=\sin t+y(t)+(D_{\frac{1}{4}}y(t))^{\frac{1}{2}}\). If \(f(t,y(t),D_{\frac{1}{4}}y(t))\) satisfies the following conditions:
- (\(\mathrm{H}_{1}\)):
-
\(f(t,y(t),D_{\frac{1}{4}}y(t))<1/4N\) for \((t,y(t),D_{\frac{1}{4}}y(t))\in[0,1]\times[0,\frac{1}{4}]\times[-10^{3},10^{3}]\);
- (\(\mathrm{H}_{2}\)):
-
\(f(t,y(t),D_{\frac{1}{4}}y(t))\geqslant160/R\) for \((t,y(t),D_{\frac{1}{4}}y(t))\in[0,1]\times[10,160]\times[-10^{3},10^{3}]\);
- (\(\mathrm{H}_{3}\)):
-
\(f(t,y(t),D_{\frac{1}{4}}y(t))<10^{3}/W\) for \((t,y(t),D_{\frac{1}{4}}y(t))\in[0,1]\times[0,160]\times[-10^{3},10^{3}]\),
where
then problem (4.2) has one positive solutions \(y(t)\) satisfying
by Theorem 3.2.
References
Jackson, F.H.: On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 46, 253–281 (1908)
Guo, D.J., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, Boston (1988)
Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15(2), 135–140 (1966/1967)
Bohner, M., Chieochan, R.: Floquet theory for q-difference equations. Sarajevo J. Math. 21(8), 355–366 (2012)
Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)
Ahmad, B., Ntouyas, S.K., Tariboon, J., Alsaedi, A., Alsulami, H.H.: Impulsive fractional q-integro-difference equations with separated boundary conditions. Appl. Math. Comput. 281, 199–213 (2016)
Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional q-differences. Appl. Math. Comput. 61, 367–373 (2011)
Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)
Liang, S., Zhang, J.H.: Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences. J. Appl. Math. Comput. 40, 277–288 (2012)
Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 140 (2012)
Ahmad, B., Ntouyas, S.K.: Existence of solutions for nonlinear fractional q-difference inclusions with nonlocal Robin (separated) conditions. Mediterr. J. Math. 10, 1333–1351 (2013)
Thiramanus, P., Tariboon, J.: Nonlinear second-order q-difference equations with three-point boundary conditions. Comput. Appl. Math. 33, 385–397 (2014)
Zhou, W.X., Liu, H.Z.: Existence solutions for boundary value problem of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2013, 113 (2013)
Yu, C.L., Wang, J.F.: Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives. Adv. Differ. Equ. 2013, 124 (2013)
Zhao, Y.L., Chen, H.B., Zhang, Q.M.: Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivatives. Bound. Value Probl. 2013, 103 (2013)
Yu, C.L., Wang, J.F.: Eigenvalue of boundary value problem for nonlinear singular third-order q-difference equations. Adv. Differ. Equ. 2014, 21 (2014)
Li, X.H., Han, Z.L., Sun, S.R., Zhao, P.: Existence of solutions for fractional q-difference equation with mixed nonlinear boundary conditions. Adv. Differ. Equ. 2014, 326 (2014)
Zhao, Q.B., Yang, W.G.: Positive solutions for singular coupled integral boundary value problems of nonlinear higher-order fractional q-difference equations. Adv. Differ. Equ. 2015, 290 (2015)
Jiang, M., Zhong, S.M.: Existence of extremal solutions for a nonlinear fractional q-difference system. Mediterr. J. Math. 13, 279–299 (2016)
Zhai, C.B., Ren, J.: Positive and negative solutions of a boundary value problem for a fractional q-difference equation. Adv. Differ. Equ. 2017, 82 (2017)
Sitthiwirattham, T.: On a fractional q-integral boundary value problems for fractional q-difference equations and fractional q-integrodifference equations involving different numbers of order q. Bound. Value Probl. 2016, 12 (2016)
Patanarapeelert, N., Sriphanomwan, U., Sitthiwirattham, T.: On a class of sequential fractional q-integrodifference boundary value problems involving different numbers of q in derivatives and integrals. Adv. Differ. Equ. 2016, 148 (2016)
Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969)
Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)
Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 70, 10 (2010)
Guo, Y., Ge, W.: Positive solutions for three-point boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 290, 291–301 (2004)
Acknowledgements
The authors are very grateful to the reviewers for their valuable suggestions and useful comments, which led to an improvement of this paper. The research was supported by a grant from of the National Natural Science Foundation of China (No. 11271235), the Foundation of Shanxi Datong University (2014Q10) and “131” talent project at Shanxi province (221).
Author information
Authors and Affiliations
Contributions
All four authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Guo, C., Guo, J., Gao, Y. et al. Existence of positive solutions for two-point boundary value problems of nonlinear fractional q-difference equation. Adv Differ Equ 2018, 180 (2018). https://doi.org/10.1186/s13662-018-1578-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1578-y