- Research
- Open access
- Published:
Asymptotic properties of a stochastic Lotka–Volterra model with infinite delay and regime switching
Advances in Difference Equations volume 2018, Article number: 155 (2018)
Abstract
We investigate the long-term properties of a stochastic Lotka–Volterra model with infinite delay and Markovian chains on a finite state space. We investigate that the stochastic model admits a unique positive global solution which stays in the way of stochastically ultimate boundedness by constructing Lyapunov functions. Furthermore, the main results that the growth of the solution is slower than time under moderate condition and moment estimation in time average with the power p could be controlled are derived, which modified the known ones in recent literatures.
1 Model formulation
Gopalsamy proposed a general nonautonomous Lotka–Volterra model with infinite delay for n-interacting species in [1], which was described by an n-dimensional ordinary differential equation
where \(i=1,2,\ldots,n\), and the sufficient conditions for the global attractivity of a positive solution of model (1) were obtained therewith. Motivated by model (1), the researchers investigated the modified models [2–26] and obtained some good results regarding n-interacting species in the recent literatures. We have known that the intrinsic growth rates and the carrying capacity of the species often vary when one of the below factors changes, for instance here, the situation of nutrition supply, adequacy of food resources and changes of climate as well. Therefore, the ecosystems governed by the deterministic models would inevitably be affected by the surrounding environmental noises. It is very natural to consider the stochastic ecosystems with the continuous-time Markovian chains \(r(t)\) (\(t\geq 0\)), which take values in a finite state space \(\mathbb{S}=\{1, 2, \ldots, m\}\). Let the Markovian chain \(r(t)\) be generated by the generator \(\Gamma=(q_{ij})_{m\times m}\)
where \(\Delta t>0\), and \(q_{ij}\geq0\) is the transition rate from state i to state j if \(i\neq j\); while \(q_{ii}=-\sum_{j\neq i}q_{ij}\).
In this paper, we modify model (1) further and propose a more general nonautonomous Lotka–Volterra model with Markovian switching
where \(i=1,2,\ldots,n\) and \(r(t)\in\mathbb{S}\). Assuming that initially, \(r(t)=k\in\mathbb{S}\), then (3) obeys the following differential equation:
until \(r(t)\) jumps to another state, say \(l\in\mathbb{S}\), thus (3) follows the differential equation with state l before \(r(t)\) jumps to a new state, that is
Now, we consider the perturbations of intrinsic growth rates and interacting rates between species, that is to say, \(b_{i}(\varsigma)\) and \(a_{ij}(\varsigma)\), \(b_{ij}(\varsigma)\), \(c_{ij}(\varsigma)\) will be disturbed by the white noises in the form of
where \(\dot{B}_{i}(t)\) are the white noises and \(\sigma_{i}(\varsigma)\) represent the intensities of the white noises in regime \(\varsigma\in\mathbb{S}\) for \(i=1, 2, \ldots, n\). Next, we are about to investigate the dynamical properties of the following stochastic Lotka–Volterra model under Markovian switching:
The initial conditions of model (8) are supposed to be given as follows:
where \(\varphi_{i}\) (\(i=1, 2, \ldots, n\)) are the continuous functions which are defined on the interval \((-\infty, 0]\) with its Euclidian norm, and \(k_{ij}(s)\) denotes the weight function with the property \(\int_{0}^{\infty} k_{ij}(s)\,\mathrm{d}s\leq1\).
If \(\sigma_{i}(r)=\beta_{ij}(r)=\gamma_{ij}(r)=0\), then model (8) turns to be a stochastic Lotka–Volterra model with infinite delay, where the stochastically ultimate boundedness and pth (\(0< p\leq2\)) moment in time average of the solution were considered by Wan and Zhou [20]. If \(b_{ij}(r)=c_{ij}(r)=0\), \(\sigma_{i}(r)=\beta_{ij}(r)=\gamma_{ij}(r)=0\), model (8) becomes a stochastic Lotka–Volterra model with Markovian switching, where the sufficient conditions of the stochastic permanence and extinction were presented by Liu et al. [16]. If \(b_{ij}(r)=c_{ij}(r)=0\), \(\alpha_{i}(r)=\beta_{ij}(r)=\gamma_{ij}(r)=0\), Wu et al. [13] discussed the ergodic property of a positive recurrence. Besides, we prefer to mention the related work herewith. For example, Hu and Wang [17] investigated the asymptotic stability in distribution and stochastic boundedness of the solution. Liu and Shen [18] showed the persistence in the mean, extinction, partial permanence, and partial extinction. In addition, Zhu and Yin [19] derived the stochastic boundedness and positive recurrence of the solution.
The framework of this paper will go as follows. We will show that the existence and uniqueness of the positive global solution always holds with probability one for any positive initial value in the next section. Later, the stochastically ultimate boundedness will be derived when constructing a proper function therewith. Consequently, the moment estimation of the solution will be investigated for the stochastic Lotka–Volterra model (8) with Markovian chains in this paper.
2 Existence and uniqueness of global solution
To proceed with our main results in this section, we denote \(\mathbb{R}_{+}:=[0, \infty)\), and we will show that model (8) admits a unique and global solution and the solution will remain in \(\mathbb{R}_{+}^{n}\) almost surely.
Theorem 2.1
For any \(b_{i}(r(t)), a_{ij}(r(t)), b_{ij}(r(t)), c_{ij}(r(t))\in\mathbb{R}_{+}\) (\(i,j=1,2,\ldots, n\)), model (8) admits a unique solution \(x(t)\), and the solution remains in \(\mathbb{R}_{+}^{n}\) with probability one.
Proof
According to Theorem 3.1 in [27], the coefficients of model (8) clearly satisfy the local Lipschitz condition, but do not satisfy the linear growth condition. To show that the solution of model (8) is a global solution, we only need to prove that the explosion time \(\tau_{e}=\infty\) holds almost surely. Let \(m_{0}>1\) be sufficiently large such that
where \(x(t)=(x_{1}(t), x_{2}(t), \ldots, x_{n}(t))^{\mathrm{T}}\). We define the stopping time
As usual, ∅ denotes the empty set, we set \(\inf\emptyset=\infty\). Clearly, \(\tau_{m}\) increases when m tends to infinity. We set
thus \(\tau_{\infty}\leq\tau_{e}\) by the definition of stopping time. Now, we define two \(C^{2}\)-functions in order to check that \(\tau_{\infty}=\infty\) almost surely:
where \(0< l_{i}<1\) (\(i=1, 2, 3\)), and \(|\sigma(r(\tau_{k}))|\) means the norm of vector \((\sigma_{1}(r(\tau_{k})), \ldots, \sigma_{n}(r(\tau_{k})))\), \(|\beta(r(\tau_{k}))|\) denotes the norm of the matrix \((b_{ij}(r(\tau_{k})))_{n\times n}\), so the same to norms \(|\alpha(r(\tau_{k}))|\) and \(|\gamma(r(\tau_{k}))|\). For the sake of simplicity, model (8) could be rewritten in the following form:
We define the same differential operator \(\mathcal{L}\) associated with equation (8) by
then the differential operator \(\mathcal{L}\) acts on \(V_{1}(x(t))\), generalized Itô’s formula gives
The elementary inequality \(ab\leq\frac{n}{4}a^{2}+\frac{1}{n}b^{2}\) (\(a>0\), \(b>0\)) gives that
The inequalities \((u+v)^{2}\leq \frac{u^{2}}{l_{i}}+\frac{v^{2}}{1-l_{i}}\) for \(0< l_{i}<1\) and \((\sum_{i=1}^{n}a_{i}b_{i})^{2}\leq\sum_{i=1}^{n} a_{i}^{2}\sum_{i=1}^{n} b_{i}^{2}\) yield that
which implies that
By a similar argument, we derive that
where
together with expressions (18), (22), and (23), which gives that
where \(F(x(t))\) is a bounded constant due to the boundedness of all \(x(t)\) lying within the interval \((\frac{1}{m}, m)\), that is,
Inequality (24) thus becomes
Integrating both sides of (26) from 0 to \(\tau_{m}\wedge T\) and taking expectations imply that
where T is an arbitrary positive constant. For every \(w\in\Omega_{m}=\{\tau_{m}\leq T\}\), there exists some i such that \(x_{i}(\tau_{m}, w)\) equals either m or \(\frac{1}{m}\), then
which leads to
where \(\textrm{1}_{\Omega_{m}}(\omega)\) is the indicator function of \(\Omega_{m}\). We therefore get that
when m tends to infinity. From the arbitrariness of a positive number T, the following assertion holds:
The proof is complete. □
3 Stochastically ultimate boundedness
The moment estimation of the solution to model (8) will be investigated as the first part of this section. Then the stochastically ultimate boundedness of the solution follows later in Theorem 3.2.
Lemma 3.1
If condition (H2) holds, then there exists positive constants p, λ such that
where Q̄ is a positive constant and \(0< p<1\).
Proof
Let us define a \(C^{2}\)-function
For any given \(\lambda>0\), applying Itô’s formula to \(e^{\lambda t}V_{3}(x(t))\) and taking expectation, we derive that
where
Again we define
according to the same argument, we then derive that
where
Further, we combine (23), (35), and (37) to get that
where the term with \(p(1-p)\) is positive, and the boundedness \(\bar{Q} =\sup_{x(t)\in\mathbb{R}_{+}^{n}}Q(x(t))< \infty\) is derived due to the boundedness of \(x(t)\in\mathbb{R}_{+}^{n}\). Integrating both sides of (39) and taking expectation from 0 to t therefore give
which implies that
The inequality \(|x(t)|^{2}\leq n\max_{i}x_{i}^{2}(t)\) admits the following inequality:
which yields that
The proof is complete. □
Theorem 3.2
If condition (H2) holds, then the following property is valid for any arbitrary positive constant \(\varepsilon\in(0,1)\):
that is, the solution \(x(t)\) of model (8) is stochastically ultimately bounded.
Proof
We take \(p=\frac{1}{2}\) in (43), then there exists a positive constant \(\frac{\bar{Q}}{\lambda}n^{\frac{1}{4}}\) such that
For any positive constant ε, let
the Chebyshev’s inequality gives
which yields that
The proof is complete. □
4 Moment estimation of the solution
We are about to discuss other properties of the solution to model (8) in this section, for instance, the absolute value of the solution will grow slower than time t when t goes to infinity. Moreover, the pth moment in time average of the solution to model (8) is discussed in Theorem 4.2.
Theorem 4.1
If condition (H2) holds, then the solution of model (8) has the property that
Proof
In order to prove this theorem, we need to define two \(C^{2}\)-functions:
Generalized Itô’s formula yields
For any given \(\lambda>0\), expressions (52) and (53) imply that
We denote
then the strong law of large numbers (see Theorem 3.4 in [27]) for a local martingale \(M^{\ast}(t)\) yields that
and
The exponential martingale inequality (see Theorem 7.4 in [27]) shows that when choosing
and letting \(v>1\), \(0<\eta<1\), we get
By the Borel–Cantelli lemma, for almost all \(w\in\Omega\), there exists a random integer \(v_{0}=v_{0}(w)\) such that
Therefore, we have
where
For all \(0\leq t\leq\tau_{k}\leq k\) and \(k\geq k_{0}(w)\), it follows \(e^{t}\leq e^{k}\) and \(V_{5}^{2}(x(t))\leq n|x(t)|^{2}\), we then get
due to the boundedness of x in \(\mathbb{R}_{+}^{n}\). For \(0\leq k-1\leq t\leq k\) and \(k\geq k_{0}(w)\), expression (64) thus gives
taking superior limit on both sides of (64) as t tends to infinity, which then becomes
Letting \(v\rightarrow1\), \(\eta\rightarrow1\), and \(\lambda\rightarrow0\) yields
Noting that \(|x(t)|^{2}\leq n\max_{i}x_{i}^{2}(t)\), which leads to
then we have that
The proof is complete. □
Theorem 4.2
If condition (H1) is valid, for any positive constant p, then there exists a positive constant C such that the following property holds:
Proof
Let
where \(F(x(t))\) is the same as in (24). Then there exists a positive constant C such that
Integrating both sides of (18) from 0 to T and taking expectation give
the relationship \(|x(t)|^{p}=H(x(t))-F(x(t))\) implies that
Letting \(T\rightarrow\infty\) yields that
The proof is complete. □
5 Example and conclusion
We take the weight function \(k_{ij}(t)=e^{-(\lambda+1)t}\) in (8), then (H2) is always valid because \(\int_{0}^{\infty}k_{ij}(s)e^{\lambda s}\,\mathrm{d}s=1<\infty\). Therefore the existence and uniqueness of the positive solution is derived with probability one as time approaches infinity. Moreover, the pth moment of the solution is controlled by a bounded constant as presented in Lemma 3.1, and the solution is stochastically ultimately bounded as proved in Theorem 3.2. In addition, the absolute value of the solution will not explode in a long run, and the pth moment in the mean always keeps a constant no matter how large the time scale is.
References
Gopalsamy, K.: Global asymptotic stability in Volterra’s population systems. J. Math. Biol. 19, 157–168 (1984)
Luo, Q., Mao, X.R.: Stochastic population dynamics under regime switching II. J. Math. Anal. Appl. 355, 577–593 (2009)
Wu, F.K., Xu, Y.: Stochastic Lotka–Volterra population dynamics with infinite delay. SIAM J. Appl. Math. 70, 641–657 (2009)
Ahmad, S., Rao, M.R.M.: Asymptotically periodic solutions of n-competing species problem with time delays. J. Math. Anal. Appl. 186, 559–571 (1994)
Bereketoglu, H., Gyori, I.: Global asymptotic stability in a nonautonomous Lotka–Volterra type system with infinite delay. J. Math. Anal. Appl. 210, 279–291 (1997)
Bahar, A., Mao, X.R.: Stochastic delay Lotka–Volterra model. J. Math. Anal. Appl. 292, 364–380 (2004)
Shen, Y., Zhao, G.Y., Jiang, M.H., Mao, X.R.: Stochastic Lotka–Volterra competitive systems with variable delay. Adv. Intell. Comput. 3645, 238–247 (2005)
Wei, F.Y., Cai, Y.H.: Global asymptotic stability of stochastic nonautonomous Lotka–Volterra models with infinite delay. Abstr. Appl. Anal. 2013, 351676 (2013)
Ouyang, M.Q., Li, X.Y.: Permanence and asymptotical behavior of stochastic prey–predator system with Markovian switching. Appl. Math. Comput. 266, 539–559 (2015)
Liu, M.: Dynamics of a stochastic Lotka–Volterra model with regime switching. J. Appl. Math. Comput. 45, 327–349 (2014)
Li, X.Y., Jiang, D.Q., Mao, X.R.: Population dynamical behavior of Lotka–Volterra system under regime switching. J. Comput. Appl. Math. 232, 427–448 (2009)
Mao, X.R.: Stability of stochastic differential equations with Markovian switching. Stoch. Process. Appl. 79, 45–67 (1999)
Wu, R.H., Zou, X.L., Wang, K., Liu, M.: Stochastic Lotka–Volterra systems under regime switching with jumps. Filomat 28, 1907–1928 (2014)
Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)
Vlasic, A.: Stochastic replicator dynamics subject to Markovian switching. J. Math. Anal. Appl. 427, 235–247 (2015)
Liu, H., Li, X.X., Yang, Q.S.: The ergodic property and positive recurrence of a multi-group Lotka–Volterra mutualistic system with regime switching. Syst. Control Lett. 62, 805–810 (2013)
Hu, G.X., Wang, K.: Stability in distribution of competitive Lotka–Volterra system with Markovian switching. Appl. Math. Model. 35, 3189–3200 (2011)
Liu, L., Shen, Y.: New criteria on persistence in mean and extinction for stochastic competitive Lotka–Volterra systems with regime switching. J. Math. Anal. Appl. 430, 306–323 (2015)
Zhu, C., Yin, G.: On competitive Lotka–Volterra model in random environments. J. Math. Anal. Appl. 357, 154–170 (2009)
Wan, L., Zhou, Q.H.: Stochastic Lotka–Volterra model with infinite delay. Stat. Probab. Lett. 79, 698–706 (2009)
Xu, Y., Wu, F.K., Tan, Y.M.: Stochastic Lotka–Volterra system with infinite delay. J. Comput. Appl. Math. 232, 472–480 (2009)
Liu, M., Wang, K.: Global asymptotic stability of a stochastic Lotka–Volterra model with infinite delays. Commun. Nonlinear Sci. Numer. Simul. 17, 3115–3123 (2012)
Liu, M., He, X., Yu, J.Y.: Dynamics of a stochastic regime-switching predator–prey model with harvesting and distributed delays. Nonlinear Anal. Hybrid Syst. 28, 87–104 (2018)
Liu, M.: Analysis of a stochastic tri-trophic food-chain model with harvesting. J. Math. Biol. 73, 597–625 (2016)
Bao, J.H., Shao, J.H.: Permanence and extinction of regime-switching predator–prey models. SIAM J. Math. Anal. 48, 735–739 (2016)
Liu, M., Fan, M.: Stability in distribution of a three-species stochastic cascade predator–prey system with time delays. IMA J. Appl. Math. 82, 396–423 (2017)
Mao, X.R.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2007)
Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments and suggestions. This research work is supported by the National Natural Science Foundation of China (No. 11201075) and the Natural Science Foundation of Fujian Province of China (No. 2016J01015).
Author information
Authors and Affiliations
Contributions
All authors conceived of the study and carried out the proof. All authors of this paper read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests in the manuscript.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Lin, Q., Chen, L., Wen, C. et al. Asymptotic properties of a stochastic Lotka–Volterra model with infinite delay and regime switching. Adv Differ Equ 2018, 155 (2018). https://doi.org/10.1186/s13662-018-1609-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1609-8