- Research
- Open access
- Published:
A new Riemann–Liouville type fractional derivative operator and its application in generating functions
Advances in Difference Equations volume 2018, Article number: 167 (2018)
Abstract
Here, the concept of a new and interesting Riemann–Liouville type fractional derivative operator is exploited. Treatment of a fractional derivative operator has been made associated with the extended Appell hypergeometric functions of two variables and Lauricella hypergeometric function of three variables. With a view on analytic properties and application of new Riemann–Liouville type fractional derivative operator, we have obtained new fractional derivative formulas for some familiar functions and for Mellin transformation formulas. For the sake of justification of our new operator, we have established some presumably new generating functions for an extended hypergeometric function using the new definition of fractional derivative operator.
1 Introduction
Recently, many authors have participated in the development of the fractional calculus (differentiation and integration of arbitrary order). The applications of fractional calculus often appeared in the fields such as generalized voltage dividers, engineering, capacitor theory, feedback amplifiers, electrode-electrolyte interface models, fractional order Chua–Hartley systems, fractional order models of neurons, the electric conductance of biological systems, fitting experimental data, medical, and analysis of special functions (see, e.g., [1–17]).
The authors’ interests concerned a variety of applications of fractional calculus in seemingly diverse fields of sciences and engineering (see, e.g., [7, 18–22]). One may be referred to [20, 23–30] for the details of the development of fractional calculus.
In this paper, we launch a new Riemann–Liouville fractional derivative operator associated with hypergeometric type function. Further, we investigate some properties of the new fractional derivative operator. As concerns the properties of the fractional derivative operator, we are interested in recalling some extended functions like extended beta and hypergeometric functions (see [31]), extended Appell functions of two variables (see [32]), and extended Lauricella functions of three variables (see [32]).
2 Preliminaries
We begin by recalling the familiar beta function \(B(\alpha,\beta)\) (see, e.g., [33, Sect. 1.1]),
where Γ denotes the well-known gamma function. Here and in the following, let \(\mathbb{C}\), \(\mathbb{R}^{+}\), \(\mathbb{N}\), and \({\mathbb{Z}}_{0}^{-}\) be the sets of complex numbers, positive real numbers, positive integers, and non-positive integers, respectively, and let \(\mathbb{N}_{0}:=\mathbb{N} \cup \{0\}\).
The classical Gauss hypergeometric function \({}_{2}F_{1}\) is defined by (see, e.g., [34] and [33, Sect. 1.5])
where \((\lambda)_{n}\) is the Pochhammer symbol defined (for \(\lambda \in \mathbb{C}\)) by (see [33, p. 2 and pp. 4-6]):
Parmar et al. [31, Eq. (13)] introduced another interesting extension of the generalized beta function \(B(x, y; p)\) as follows:
where \(K_{\nu }(z)\) is expressed in terms of the modified Bessel function \(I_{\nu }(z)\) (see [35, Entry 10.25.2]) as follows (see [35, Entry 10.27.4]; see also [36, p. 39, Eq. (22)]):
By using the identity (see [35, Entry 10.39.2])
the case \(\nu =0\) of (4) is seen to reduce to the extended beta function [37]. In fact, (6) is an obvious particular case of
which is obtained by combining [35, Entries 10.47.9 and 10.47.12] (see also [31, Eq. (5)]).
Now, we recall the extended Gauss hypergeometric function defined by [31, Eq. (40)]).
Parmar et al. [31, Eq. (13)] introduced another interesting extension of the generalized Gauss hypergeometric function \(F_{p}(a, b;c;z)\) as follows.
Extension of the Gauss hypergeometric function We have
Here, by using the generalized beta function \(B_{\nu }(x,y;p)\) in (4), we gave extensions of the Appell functions of two variables \(F_{1}\) and \(F_{2}\) (see, e.g., [36, p. 53, Eqs. (4) and (5)]) and the Lauricella function of three variables \(F_{D}^{(3)}\) (see, e.g., [36, p. 60, Eq. (4)]) in [32], respectively, as follows.
Extension of the Appell hypergeometric function For \(F_{1}\) we have
Extension of the Appell hypergeometric function \(F_{2}\) We have
Extension of the Lauricella function of three variables For \(F_{D}^{(3)}\) we have
It is noted in passing that setting \(q=0\) in (9), (10), and (11) and then \(p=0\) in the respective resulting equations are seen to yield the Appell functions of two variables \(F_{1}\), \(F_{2}\), and the Lauricella function of three variables \(F_{D}^{(3)}\).
The following integral representation appears in [31, p. 99, Eq. (42)]:
The following integral representations appear in [32]:
We have
We have
3 New fractional derivative operator
In this section, we shall exploit the concept of our new Riemann–Liouville type fractional derivative operator. For this purpose, we first consider the Riemann–Liouville fractional derivative of \(f(z)\) of order v as follows:
where the integration path is a line from 0 to z in the complex t-plane.
For the \(\Re (v)\ge 0\), let \(m\in \mathbb{N}\) be the smallest integer greater than \(\Re (v)\) and so \(m-1\le \Re (v)< m\), the Riemann–Liouville fractional derivative of \(f(z)\) of order v is defined as
The new Riemann–Liouville fractional derivative of \(f(z)\) of order v is defined as
When \(\Re (v)\ge 0\), let \(m\in \mathbb{N}\) be the smallest integer greater than \(\Re (v)\) and so \(m-1\le \Re (v)< m\), then a new Riemann–Liouville fractional derivative of \(f(z)\) of order v can be defined as follows:
Remark
On setting \(p=0\), \(q=0\) in (18) and (19) we are left with the classical Riemann–Liouville fractional derivative. In the case \(q=0\) in Eqs. (18) and (19) reduces to the well-known fractional derivative operator given in [38].
4 Fractional derivative of some functions
Theorem 4.1
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Suppose that a function \(f(z)\) is analytic at the origin with its Maclaurin expansion given by \(f(z) = \sum_{n=0}^{ \infty }a_{n} z^{n}\), (\(|z| < \zeta\)) for some \(\zeta \in R^{+}\). Then we have
Proof
Now applying (18) in the definition (19) to the function \(z^{\lambda -\frac{3}{2}} f(z)\), and changing the order of integration and summation, we obtain
Putting \(t=\xi z\) in (21), we obtain
Applying the definition of extended beta function, and after some simplification, we get the desired result as follows:
which completes the proof. □
Theorem 4.2
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Suppose that a function \(f(z)\) is analytic at the origin with its Maclaurin expansion given by \(f(z) = \sum_{n=0}^{ \infty }a_{n} z^{n}\), (\(|z| < \zeta\)) for some \(\zeta \in R^{+}\). Then we have
Proof
Now applying (18) in the definition (19) to the function \(z^{\lambda -\frac{3}{2}} \log z f(z)\), and changing the order of integration and summation, we obtain
Putting \(t=\xi z\) in (25), we obtain
After applying the property of log-function, and some simplification, we get
Applying the definition of extended beta function, and after some simplification, we get the desired result as follows:
which completes the proof. □
Example 4.3
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Now applying the definition of the new fractional derivative operator, we obtain
Putting \(t=\xi z\) in (28), we obtain
Applying the definition of the extended beta function, we obtain the desired solution.
Example 4.4
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Now applying the definition of the new fractional derivative operator, we obtain
Putting \(t=\xi z\) in (31), we obtain
Applying the definition of the extended hypergeometric function, we get the desired solution.
Example 4.5
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Now applying the definition of new fractional derivative operator, we obtain
Putting \(t=\xi z\) in (34), we obtain
Applying the definition of the extended hypergeometric definition, we get the desired solution.
Example 4.6
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Now applying the definition of the new fractional derivative operator, we obtain
Putting \(t=\xi z\) in (37), we obtain
Applying the definition of the extended hypergeometric definition, we get the desired solution.
Example 4.7
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Applying the definition of the extended Gauss hypergeometric function, we obtain
Using the generalized binomial series
in (40), we obtain
Applying the definition of the extended fractional derivative, we get the solution as follows:
Now using the definition of the extended Appell function \({F_{2;p,q}}\), we get the desired solution.
5 Mellin transform of fractional derivative operator
The Mellin transform of a function \(f(t)\) is defined by (see, e.g. [39, p. 305 et seq.] and [40])
provided the improper integral in (44) exists.
Theorem 5.1
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Suppose that a function \(f(z)\) is analytic at the origin with its Maclaurin expansion given by \(f(z) = \sum_{n=0}^{ \infty }a_{n} z^{n}\), (\(|z| < \zeta\)) for some \(\zeta \in R^{+}\). Then we have
Proof
We first recall here the definition of extended fractional derivative operator. Then using the property of interchanging the order of summation and integration and substituting \(t=z\xi \), we get
Now applying the definition of the Mellin transform (44), and interchanging the order of integrals, we obtain
Substituting \(\frac{p}{\xi (1-\xi)} = w\) and \(dp = \xi (1-\xi)\,dw\)
On applying the definition of the beta function in (48), we obtained the desired result. □
Theorem 5.2
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Suppose that a function \(f(z)\) is analytic at the origin with its Maclaurin expansion given by \(f(z) = \sum_{n=0}^{ \infty }a_{n} z^{n}\), (\(|z| < \zeta\)) for some \(\zeta \in R^{+}\). Then we have
Proof
We first recall here the definition of the extended fractional derivative operator. Then using the property of interchanging the order of summation and integration and substituting \(t=z\xi \), we get
Now, applying the property of the log-function in (50), we get
where \(b_{n} = a_{n} \log 2 \).
Now applying the definition of the Mellin transform (44), and interchanging the order of integrals, we obtain
On setting \(\frac{p}{\xi (1-\xi)} = w\) and \(dp = \xi (1-\xi)\,dw\) in (53), we get
Applying the definition of the beta function and using the formula [35, Entry 10.43.19]), we obtained the desired result (49). □
Example 5.3
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
We first recall here the definition of the extended fractional derivative operator, and setting \(t = z \xi \), we get
Applying the definition of the Mellin transform (44), and interchanging the order of integrals, we obtain
On setting \(\frac{p}{\xi (1-\xi)} = w\) and \(dp = \xi (1-\xi)\,dw\) in (57), and applying the formula [35, Entry 10.43.19]), we get
Using the definition of the beta function in (58), we get the desired solution.
Example 5.4
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Solution
Applying the binomial theorem
in the left hand side of (45), we get
Now, following the parallel lines of the solution of example 1 (see, e.g., (55)), we get the desired solution. We omit the details.
6 Application
In this section, we establish some linear and bilinear generating relations for the extended hypergeometric function \(F_{p,q}\) (9).
Theorem 6.1
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Proof
Considering the elementary identity (see [36, p. 291] and [38, p. 1832])
Now we expand the left hand side of (63) for \(|t| < |1-z|\) using the generalized binomial theorem (41) as follows:
Now multiplying by \(z^{\alpha - \frac{3}{2}}\) and applying the new fractional derivative operator \(\mathbb{D}^{\alpha -\beta;[p]_{q}} _{z}\) on both sides of (64), we obtain
Under the guarantee of uniform convergence of the series, we exchange the summation and the fractional operator as follows:
Using the result (30), we get the desired result. □
Theorem 6.2
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Proof
Considering the elementary identity (see [36, p. 291] and [37, p. 595])
Now we expand the left hand side of (68) for \(|t| < |1-z|\) as follows:
Now multiplying by \(z^{\alpha - \frac{3}{2}}(1-z)^{-\rho }\) and applying the new fractional derivative operator \(\mathbb{D}^{\alpha -\beta;[p]_{q}} _{z}\) on both sides of (51), we obtain
Under the guarantee of uniform convergence of the series, we exchange the summation and the fractional operator as follows:
Using the results (30) and (33), we get the desired result. □
Theorem 6.3
Let \(m-1 \le \Re (v) < m < \Re (\lambda)\) for some \(m \in \mathbb{N}\). Then we have
Proof
Replacing t by \((1-z)t\) in (63), we get
We multiply both sides by \(z^{\alpha - \frac{3}{2}}\) and \(\mathbb{D} ^{\gamma -\delta;[p]_{q}}_{z}\) in (73) as follows:
Interchanging the order of summation and fractional derivative under the conditions \(|x|<1\), \(|\frac{1-z}{1-x}t|<1\), and \(|\frac{x}{1-t}| + | \frac{zt}{1-t}|<1\), we obtain
□
7 Concluding remark
In this paper, we have defined an interesting Riemann–Liouville type fractional derivative operator. Further, we have investigated some important properties of the new fractional derivative operator. As an application and justification of our new operator, we have established some interesting generating functions for the extended hypergeometric function \(F_{p,q}\) using the new operator.
References
Baleanu, D., Guvenc, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications, 1st edn. Springer, Netherlands (2010)
Caponetto, R.: Fractional Order Systems (Modelling and Control Applications). World Scientific, Singapore (2010)
Caputo, M.: Elasticit‘a e Dissipazione. Zanichelli, Bologna (1965)
Diethelm, K.: The Analysis of Fractional Differential Equations, an Application Oriented, Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics. Springer, Heidelbereg (2010)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2003)
Jiao, Z., Chen, Y., Podlubny, I.: Distributed Order Dynamic Systems, Modeling, Analysis and Simulation. Springer, Berlin (2012)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland, Amsterdam (2006)
Kiryakova, V.: Generalised Fractional Calculus and Applications. Pitman Research Notes in Mathematics, vol. 301. Longman, Harlow (1994)
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)
McBride, A.C.: Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Research Notes in Mathematics, vol. 31. Pitman, London (1979)
Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Petras, I.: Fractional Calculus Non Linear Systems, Modelling, Analysis and Simulation. Springer, Berlin (2011)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon & Breach, New York (1993)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (2009)
Sabatier, J., Agraval, O.P., Machado, J.A.T.: Advances in Fractional Calculus. Springer, Berlin (2009)
Torres, D.F.M., Malinowska, A.B.: Introduction to the Fractional Calculus of Variations. Imperial College Press, London (2012)
Ying, L., Chen, Y.: Fractional Order Motion Controls. Wiley, New York (2012)
Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 1490–1500 (2011)
Li, C., Chen, A., Ye, J.: Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 230, 3352–3368 (2011)
Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)
Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586–1593 (2011)
Zhao, J.: Positive solutions for a class of q-fractional boundary value problems with p-Laplacian. J. Nonlinear Sci. Appl. 8, 442–450 (2015)
Ruzhansky, M.V., Cho, Y.J., Agarwal, P.: Advances in Real and Complex Analysis with Applications. Springer, Singapore (2017)
Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017)
Agarwal, R.P., Luo, M.J., Agarwal, P.: On the extended Appell–Lauricella hypergeometric functions and their applications. Filomat 31(12), 3693–3713 (2017)
Goswami, A., Jain, S., Agarwal, P., Araci, S., Agarwal, P.: A note on the new extended beta and Gauss hypergeometric functions. Appl. Math. Inf. Sci. 12(1), 139–144 (2018)
Agarwal, P., Nieto, J.J., Luo, M.J.: Extended Riemann–Liouville type fractional derivative operator with applications. Appl. Math. Inf. Sci. 15(1), 12–29 (2017)
Agarwal, P., Choi, J., Jain, S.: Certain fractional integral operators and extended generalized Gauss hypergeometric functions. Appl. Math. Inf. Sci. 55(3), 695–703 (2015)
Baleanu, D., Agarwal, P., Parmar, R.K., Alqurashi, M.M., Salahshour, S.: Extended Riemann–Liouville fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 10(6), 2914–2924 (2015)
Baleanu, D., Agarwal, P., Parmar, R.K., Alqurashi, M.M., Salahshour, S.: On a new extension of Caputo fractional derivative operator. In: Advances in Real and Complex Analysis with Applications, pp. 261–275 (2017)
Parmar, R.K., Chopra, P., Paris, R.B.: On an extension of extended beta and hypergeometric functions. J. Class. Anal. 11(2), 91–106 (2017)
Shadab, M., Choi, J.: Extensions of Appell and Lauricella hypergeometric functions. Far East J. Math. Sci. 102(6), 1301–1317 (2017)
Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
Rainville, E.D.: Special Functions. Macmillan Co., New York (1960) Reprinted by Chelsea, New York, 1971
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions [with 1 CD-ROM (Windows, Macintosh and UNIX)]. Cambridge University Press, Cambridge (2010)
Srivastava, H.M., Manocha, H.L.: A Treatise on Generating Functions. Halsted, New York (1984)
Chaudhry, M.A., Qadir, A., Rafique, M., Zubair, S.M.: Extension of Euler’s beta function. J. Comput. Appl. Math. 78(1), 19–32 (1997)
Özarslan, M.A., Özergin, E.: Some generating relations for extended hypergeometric functions via generalized fractional derivative operator. Math. Comput. Model. 52(9–10), 1825–1833 (2010)
Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)
Flajolet, P., Gourdon, X., Dumas, P.: Mellin transforms and asymptotics: harmonic sums. Theor. Comput. Sci. 144(1–2), 3–58 (1995)
Acknowledgements
The authors would like to express their sincere thanks to the referees for their valuable suggestions which lead to an improved version. This work was not supported by any private or government agency.
Author information
Authors and Affiliations
Contributions
All the authors made equal contributions in the present manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Shadab, M., Khan, M.F. & Lopez-Bonilla, J.L. A new Riemann–Liouville type fractional derivative operator and its application in generating functions. Adv Differ Equ 2018, 167 (2018). https://doi.org/10.1186/s13662-018-1616-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1616-9