- Research
- Open access
- Published:
Dynamical behavior of a system of three-dimensional nonlinear difference equations
Advances in Difference Equations volume 2018, Article number: 223 (2018)
Abstract
In this paper, we study the boundedness, persistence, and periodicity of the positive solutions and the global asymptotic stability of the positive equilibrium points of the system of difference equations
where \(A\in ( 0,\infty ) \) and the initial conditions \(x_{i}\), \(y_{i}\), \(z_{i}\in ( 0,\infty ) \), \(i=-1,0\).
1 Introduction
Difference equation or discrete dynamical system is a diverse field which impacts almost every branch of pure and applied mathematics. Lately, there has been great interest in investigating the behavior of solutions of a system of nonlinear difference equations and discussing the asymptotic stability of their equilibrium points. One of the reasons for this is a necessity for some techniques which can be used in investigating equations arising in mathematical models that describe real life situations in population biology, economics, probability theory, genetics, psychology, and so forth, see [3, 5, 8, 9]. Also, similar works in two and three dimensions (limit behaviors) for more general cases, i.e., continuous and discrete cases, have been done by some authors, see [1, 11–13, 16]. There are many papers in which systems of difference equations have been studied, as in the examples given below.
In [14], Papaschinopoulos and Schinas considered the system of difference equations
where \(A\in ( 0,\infty ) \), p, q are positive integers and \(x_{-p},\ldots,x_{0}\), \(y_{-q},\ldots,y_{0}\) are positive numbers.
In [15], Papaschinopoulos and Schinas studied the system of difference equations
where A is a positive constant and the initial conditions are positive numbers.
In [2], Bao investigated the local stability, oscillation, and boundedness character of positive solutions of the system of difference equations
where \(A\in ( 0,\infty ) \), \(p\in [ 1,\infty ) \) and the initial conditions \(x_{i}\), \(y_{i}\in ( 0,\infty ) \), \(i=-1,0\).
In [7], Gümüş and Soykan considered the dynamical behavior of positive solutions for a system of rational difference equations of the following form:
where the parameters α, β, γ, \(\alpha_{1}\), \(\beta_{1}\), \(\gamma_{1}\), p and the initial values \(u_{-i}\), \(v_{-i}\) for \(i=0,1,2\) are positive real numbers.
In [6], Göcen and Cebeci studied the general form of periodic solutions of some higher order systems of difference equations
where the initial values are arbitrary real numbers.
Also, for similar results in the area of difference equations and systems, see [4, 10, 16–21].
In this paper, we investigate the stability, boundedness character, and periodicity of positive solutions of the system of difference equations
where A and the initial values \(x_{-1}\), \(x_{0}\), \(y_{-1}\), \(y_{0}\), \(z_{-1}\), \(z_{0}\) are positive real numbers.
2 Preliminaries
We recall some basic definitions that we afterwards need in the paper.
Let us introduce the discrete dynamical system:
\(n\in \mathbb{N} \), where \(f_{1}:I_{1}^{k+1}\times I_{2}^{k+1}\times I_{3}^{k+1}\rightarrow I_{1}\), \(f_{2}:I_{1}^{k+1}\times I_{2}^{k+1} \times I_{3}^{k+1}\rightarrow I_{2}\), and \(f_{3}:I_{1}^{k+1}\times I _{2}^{k+1}\times I_{3}^{k+1}\rightarrow I_{3}\) are continuously differentiable functions and \(I_{1}\), \(I_{2}\), \(I_{3}\) are some intervals of real numbers. Also, a solution \(\{ ( x_{n},y_{n},z _{n} ) \}_{n=-k}^{\infty }\) of system (7) is uniquely determined by the initial values \(( x_{-i},y_{-i},z_{-i} ) \in I_{1}\times I_{2}\times I_{3}\) for \(i\in \{ 0,1,\ldots,k \} \).
Definition 1
An equilibrium point of system (7) is a point \(( \overline{x},\overline{y},\overline{z} ) \) that satisfies
Together with system (7), if we consider the associated vector map
then the point \(( \overline{x},\overline{y},\overline{z} ) \) is also called a fixed point of the vector map F.
Definition 2
Let \((\overline{x}, \overline{y},\overline{z} ) \) be an equilibrium point of system (7).
-
(a)
An equilibrium point \(( \overline{x},\overline{y}, \overline{z} ) \) is called stable if, for every \(\varepsilon >0\), there exists \(\delta >0\) such that, for every initial value \(( x_{-i},y_{-i},z_{-i} ) \in I_{1}\times I_{2}\times I_{3}\), with
$$\sum_{i=-k}^{0} \vert x_{i}- \overline{x} \vert < \delta,\qquad \sum_{i=-k}^{0} \vert y_{i}-\overline{y} \vert < \delta,\qquad \sum _{i=-k}^{0} \vert z_{i}-\overline{z} \vert < \delta $$implying \(\vert x_{n}-\overline{x} \vert <\varepsilon \), \(\vert y_{n}-\overline{y} \vert <\varepsilon \), \(\vert z _{n}-\overline{z} \vert <\varepsilon \) for \(n\in \mathbb{N} \).
-
(b)
An equilibrium point \(( \overline{x},\overline{y}, \overline{z} ) \) of system (7) is called unstable if it is not stable.
-
(c)
An equilibrium point \(( \overline{x},\overline{y}, \overline{z} ) \) of system (7) is called locally asymptotically stable if it is stable and if, in addition, there exists \(\gamma >0\) such that
$$\sum_{i=-k}^{0} \vert x_{i}- \overline{x} \vert < \gamma,\qquad \sum_{i=-k}^{0} \vert y_{i}-\overline{y} \vert < \gamma,\qquad \sum _{i=-k}^{0} \vert z_{i}-\overline{z} \vert < \gamma $$and \(( x_{n},y_{n},z_{n} ) \rightarrow ( \overline{x}, \overline{y},\overline{z} ) \) as \(n\rightarrow \infty \).
-
(d)
An equilibrium point \(( \overline{x},\overline{y}, \overline{z} ) \) of system (7) is called a global attractor if \(( x_{n},y_{n},z_{n} ) \rightarrow ( \overline{x},\overline{y},\overline{z} ) \) as \(n\rightarrow \infty \).
-
(e)
An equilibrium point \(( \overline{x},\overline{y}, \overline{z} ) \) of system (7) is called globally asymptotically stable if it is stable and a global attractor.
Definition 3
Let \(( \overline{x},\overline{y},\overline{z} ) \) be an equilibrium point of the map F where \(f_{1}\), \(f_{2}\), and \(f_{3}\) are continuously differentiable functions at \(( \overline{x},\overline{y},\overline{z} ) \). The linearized system of system (7) about the equilibrium point \(( \overline{x},\overline{y},\overline{z} ) \) is
where
and B is a Jacobian matrix of system (7) about the equilibrium point \(( \overline{x},\overline{y},\overline{z} ) \).
Definition 4
Assume that \(X_{n+1}=F ( X_{n} ) \), \(n=0,1,\ldots \) , is a system of difference equations such that X̅ is a fixed point of F. If no eigenvalues of the Jacobian matrix B about X̅ have absolute value equal to one, then X̅ is called hyperbolic. Otherwise, X̅ is said to be nonhyperbolic.
Theorem 5
(The linearized stability theorem [8], p. 11)
Assume that
is a system of difference equations such that X̅ is a fixed point of F.
-
(a)
If all eigenvalues of the Jacobian matrix B about X̅ lie inside the open unit disk \(\vert \lambda \vert <1\), that is, if all of them have absolute value less than one, then X̅ is locally asymptotically stable.
-
(b)
If at least one of them has a modulus greater than one, then X̅ is unstable.
A positive solution \(\{ ( x_{n},y_{n},z_{n} ) \}_{n=-k}^{ \infty }\) of system (7) is bounded and persists if there exist positive constants M, N such that
A positive solution \(\{ ( x_{n},y_{n},z_{n} ) \}_{n=-k}^{ \infty }\) of system (7) is periodic with period p if
3 Main results
In this section, we prove our main results.
Theorem 6
The following statements are true:
-
(i)
If \(( \overline{x},\overline{y},\overline{z} ) \) is a positive equilibrium point of system (6), then
$$( \overline{x},\overline{y},\overline{z} ) = \textstyle\begin{cases} ( A+1,A+1,A+1 ), & \textit{if }A\neq 1, \\ ( \mu,\mu,\frac{\mu }{\mu -1} ),\quad \mu \in ( 1, \infty ) & \textit{if }A=1. \end{cases} $$ -
(ii)
If \(A>1\), then the equilibrium point of system (6) is locally asymptotically stable.
-
(iii)
If \(0< A<1\), then the equilibrium point of system (6) is locally unstable.
-
(iv)
If \(A=1\), then for every \(\mu \in ( 1,\infty ) \) there exist positive solutions \(\{ ( x_{n},y_{n},z_{n} ) \}\) of system (6) which tend to the positive equilibrium point \(( \mu,\mu,\frac{\mu }{\mu -1} ) \).
Proof
(i) It is easily seen from the definition of equilibrium point that the equilibrium points of system (6) are the nonnegative solutions of the equations
From this, we get
From which it follows that if \(A\neq 1\),
Also, we have
From which it follows that if \(A=1\),
In that case, we have a continuum of positive equilibria which lie on the hyperboloid
(ii) We consider the following transformation to build the corresponding linearized form of system (6):
where
The Jacobian matrix about the equilibrium point \(( \overline{x}, \overline{y},\overline{z} ) \) under the above transformation is given by
Hence, the linearized system of system (6) about the equilibrium point \(( \overline{x},\overline{y},\overline{z} ) =( A+1, A+1,A+1) \) is
where
and
Then the characteristic equation of \(B ( \overline{x}, \overline{y},\overline{z} ) \) about \(( \overline{x}, \overline{y},\overline{z} ) = ( A+1,A+1,A+1 ) \) is
From this, the roots of characteristic equation (10) are
From the linearized stability theorem, since \(A>1\), all roots of the characteristic equation lie inside the open unit disk \(\vert \lambda \vert <1\). Therefore, the positive equilibrium point of system (6) is locally asymptotically stable.
(iii) From the proof of (ii), it is true.
(iv) From (9), the linearized system of system (6) about the equilibrium point \(( \overline{x}, \overline{y},\overline{z} ) = ( \mu,\mu, \frac{\mu }{\mu -1} ) \) is
where
and
Hence, the characteristic equation of the matrix B is
Therefore, the roots of equation (11) are:
Then the modulus of four of the roots of (11) is less than 1. So, there exist positive solutions of system (6) which tend to the positive equilibrium point \(( \mu,\mu,\frac{ \mu }{\mu -1} ) \) of system (6) (this follows from the following proposition). This completes the proof.
In the following proposition we find positive solutions of system (6) which tend to \(( \overline{x},\overline{y}, \overline{z} ) \) as \(n\rightarrow \infty \). □
Proposition 7
Let \(\{ ( x_{n},y_{n},z_{n} ) \}\) be a positive solution of system (6). Then, if there exists \(s\in \{ -1,0,\ldots \} \) such that, for \(n\geq s\), \(x_{n}\geq \overline{x}\), \(y_{n}\geq \overline{y}\), \(z_{n}\geq \overline{z}\) (resp., \(x_{n}< \overline{x}\), \(y_{n}<\overline{y}\), \(z_{n}<\overline{z}\)), the solution \(\{ ( x_{n},y_{n},z_{n} ) \}\) tends to the positive equilibrium \(( \overline{x},\overline{y},\overline{z} ) \) of system (6) as \(n\rightarrow \infty \).
Proof
Let \(\{ ( x_{n},y_{n},z_{n} ) \}\) be a positive solution of system (6) such that
where \(s\in \{ -1,0,\ldots \} \). Then from (6) and (12) we have
Set
such that
Then the solution \(u_{n}\) of the difference equation (14) is as follows:
where \(c_{1}\), \(c_{2}\) depend on \(x_{s}\), \(x_{s+1}\). In addition, relations (13) and (14) imply that
Then, by using (15) and (17) and induction, we have
Therefore, from (12), (16), and (18), it is clear that
Similarly, we can prove that
Thus, from (19) and (20), the solution \(\{ ( x_{n},y_{n},z_{n} ) \}\) tends to \(( \overline{x}, \overline{y},\overline{z} ) \) as \(n\rightarrow \infty \).
Arguing as above, we can show that if \(x_{n}<\overline{x}\), \(y_{n}< \overline{y}\), \(z_{n}<\overline{z}\) for \(n\geq s\), then \(\{ ( x _{n},y_{n},z_{n} ) \}\) tends to \(( \overline{x}, \overline{y},\overline{z} ) \) as \(n\rightarrow \infty \). The proof of the proposition is completed. □
Theorem 8
Assume that \(0< A<1\) and \(\{ ( x_{n},y_{n},z_{n} ) \}\) is an arbitrary positive solution of system (6). Then the following statements are true.
-
(i)
If
$$ \begin{aligned} &x_{-1}< 1,\qquad y_{-1}< 1,\qquad z_{-1}< 1,\qquad x_{0}> \frac{1}{1-A}, \\ & y_{0}>\frac{1}{1-A},\qquad z_{0}>\frac{1}{1-A} , \end{aligned} $$(21)then
$$\begin{aligned}& \lim_{n\rightarrow \infty }x_{2n+1} =A,\qquad \lim_{n\rightarrow \infty }y_{2n+1}=A, \qquad \lim_{n\rightarrow \infty }z_{2n+1}=A, \\& \lim_{n\rightarrow \infty }x_{2n} =\infty,\qquad \lim _{n\rightarrow \infty }y_{2n}=\infty,\qquad \lim_{n\rightarrow \infty }z_{2n}= \infty. \end{aligned}$$ -
(ii)
If
$$ \begin{aligned}&x_{0}< 1,\qquad y_{0}< 1,\qquad z_{0}< 1,\qquad x_{-1}>\frac{1}{1-A}, \\ &y_{-1}>\frac{1}{1-A},\qquad z_{-1}> \frac{1}{1-A}, \end{aligned} $$(22)then
$$\begin{aligned}& \lim_{n\rightarrow \infty }x_{2n+1} =\infty,\qquad \lim _{n\rightarrow \infty }y_{2n+1}=\infty,\qquad \lim_{n\rightarrow \infty }z_{2n+1}= \infty, \\& \lim_{n\rightarrow \infty }x_{2n} =A,\qquad \lim_{n\rightarrow \infty }y_{2n}=A, \qquad \lim_{n\rightarrow \infty }z_{2n}=A. \end{aligned}$$
Proof
By induction, for \(n=0,1,2,\ldots\) , we obtain
Thus, relations (6) and (23) imply that
From which we get
Noting that (23) and taking limits on both sides of three equations
we have
(ii) The proof is similar to the proof of (i), so we leave it to readers. □
Theorem 9
Assume that \(A=1\). Then every positive solution of system (6) is bounded and persists.
Proof
Let \(\{ ( x_{n},y_{n},z_{n} ) \} \) be a positive solution of system (6).
Obviously, \(x_{n}>1\), \(y_{n}>1\), \(z_{n}>1\), for \(n\geq 1\). So, we have
where
Then we obtain
By induction, we get
The proof of the following theorem is seen easily and will be omitted. □
Theorem 10
Assume \(A=1\). Then every positive solution of system (6) is periodic of period 2.
Theorem 11
Assume \(A>1\). Then every positive solution of system (6) is bounded.
Proof
Let \(\{ ( x_{n},y_{n},z_{n} ) \}\) be a positive solution of system (6). Clearly,
From (24), we have
Set
such that
Then the solution \(u_{n}\) of the difference equation (26) is as follows:
Indeed, from (26) we get
The homogeneous solution of difference equation (26) is given by
Also, from (26), the equilibrium solution of difference equation (26) is as follows:
In addition, relations (25) and (28) imply that
Then, by using (27) and (29) and induction, we have
Therefore, from (24), (28), and (30), we obtain
where
Similarly, we can prove that
where
□
Theorem 12
Suppose that \(A>1\). Then the positive equilibrium point of system (6) is globally asymptotically stable.
Proof
By means of Theorem 11, we set
Then, from (6) and (31), we have
Relations (32) imply that
from which we have
Since \(A>1\), we get
from this it is obvious that
Moreover, from (32) it follows that
from which
Using (33), we have
then
Since \(x_{n}\) is bounded, it implies that
Hence, every positive solution \(\{ ( x_{n},y_{n},z_{n} ) \} \) of system (6) tends to the positive equilibrium system (6). So, the proof is completed. □
4 Future works
We will concentrate on the dynamical behavior of the following system of difference equations:
where \(A\in ( 0,\infty ) \) and \(x_{i},y_{i},z_{i}\in ( 0,\infty ) \), \(i=0,1,\ldots,m\), and the following cyclic system of difference equations:
References
Akın, E., Öztürk, Ö.: Limiting behaviors of nonoscillatory solutions for two-dimensional nonlinear time scale systems. Mediterr. J. Math. 14, 34 (2017)
Bao, H.: Dynamical behavior of a system of second-order nonlinear difference equations. Int. J. Differ. Equ. 2015, Article ID 679017 (2015)
Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjecture. Chapman & Hall, London (2008)
Camouzis, E., Papaschinopoulos, G.: Global asymptotic behavior of positive solutions on the system of rational difference equations \(x_{n+1}=1+\frac{x _{n}}{y_{n-m}}\), \(y_{n+1}=1+\frac{y_{n}}{x_{n-m}}\). Appl. Math. Lett. 17(6), 733–737 (2004)
Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2015)
Göcen, M., Cebeci, A.: On the periodic solutions of some systems of higher order difference equations. Rocky Mt. J. Math. (2018) To appear
Gümüş, M., Soykan, Y.: Global character of a six-dimensional nonlinear system of difference equations. Discrete Dyn. Nat. Soc. 2016, Article ID 6842521 (2016)
Kocic, V.L., Ladas, G.: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Chapman & Hall, London (1993)
Kulenovic, M.R.S., Ladas, G.: Dynamics of Second-Order Rational Difference Equations with Open Problems and Conjecture. Chapman & Hall, London (2002)
Kulenovic, M.R.S., Nurkanovic, M.: Asymptotic behavior of a competitive system of linear fractional difference equations. Adv. Differ. Equ. 2006, Article ID 19756 (2006)
Öztürk, Ö.: On the existence of nonoscillatory solutions of three-dimensional time scale systems. J. Fixed Point Theory Appl. 19, 2617–2628 (2017)
Öztürk, Ö.: Classification schemes of nonoscillatory solutions for two-dimensional time scale systems. Math. Inequal. Appl. 20(2), 377–387 (2017)
Öztürk, Ö.: On oscillatory behavior of two-dimensional time scale systems. Adv. Differ. Equ. 2018, 18 (2018).
Papaschinopoulos, G., Schinas, C.J.: On a system of two difference equations. J. Math. Anal. Appl. 219(2), 415–426 (1998)
Papaschinopoulos, G., Schinas, C.J.: On the system of two nonlinear difference equations \(x_{n+1}=A+\frac{x_{n-1}}{y_{n}}\), \(y_{n+1}=A+\frac{y _{n-1}}{x_{n}}\). Int. J. Math. Math. Sci. 23(12), 839–848 (2000)
Taşdemir, E., Soykan, Y.: On the periodicies of the difference equation \(x_{n+1}=x_{n}x_{n-1}+\alpha \). Karaelmas Sci. Eng. J. 6(2), 329–333 (2016)
Tollu, D.T., Yazlık, Y., Taşkara, N.: On fourteen solvable systems of difference equations. Appl. Math. Comput. 233, 310–319 (2014)
Yazlık, Y., Elsayed, E.M., Taşkara, N.: On the behaviour of the solutions of difference equation systems. J. Comput. Anal. Appl. 16, 932–941 (2014)
Zhang, D., Ji, W., Wang, L., Li, X.: On the symmetrical system of rational difference equation \(x_{n+1}=A+\frac{y_{n-k}}{y_{n}}\), \(y_{n+1}=A+\frac{x_{n-k}}{x_{n}}\). Appl. Math. 4(5), 834–837 (2013)
Zhang, Q., Liu, J., Luo, Z.: Dynamical behavior of a system of third-order rational difference equation. Discrete Dyn. Nat. Soc. 2015, Article ID 530453 (2015)
Zhang, Y., Yang, X., Evans, D.J., Zhu, C.: On the nonlinear difference equation system \(x_{n+1}=A+\frac{y_{n-m}}{x_{n}}\), \(y_{n+1}=A+\frac{x_{n-m}}{y_{n}}\). Comput. Math. Appl. 53(10), 1561–1566 (2007)
Acknowledgements
We are thankful to the referees for their careful reading of the manuscript and for valuable comments and suggestions that greatly improved the presentation of this work.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Okumuş, İ., Soykan, Y. Dynamical behavior of a system of three-dimensional nonlinear difference equations. Adv Differ Equ 2018, 223 (2018). https://doi.org/10.1186/s13662-018-1667-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1667-y