- Research
- Open Access
- Published:
Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method
Advances in Difference Equations volume 2018, Article number: 362 (2018)
Abstract
In this paper, the two variables \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method is applied to obtain new exact solutions with parameters of higher-dimensional nonlinear time-fractional differential equations (NTFDEs) in the sense of the conformable fractional derivative. To clarify the veracity of this method, it is implemented in nonlinear \((2+1)\)-dimensional time-fractional biological population (BP) model and nonlinear \((3+1)\)-dimensional KdV–Zakharov–Kuznetsov (KdV–ZK) equation with time-fractional derivative. When the parameters take some special values, the solitary and periodic solutions are obtained from the hyperbolic and trigonometric function solutions.
1 Introduction
Fractional differential equations (FDEs) can be viewed as the generalized type of the ordinary differential equations (ODEs). The FDEs have attracted the researchers’ attention over the past two decades because the effects in ODEs are neglected. Oldham and Spanier [1] are the first researchers who have taken the FDEs into consideration. The search for the exact solutions of FDEs plays an important role in understanding the qualitative and quantitative features of many physical phenomena, which are described by these equations. For instance, the nonlinear oscillation of an earthquake can be modeled by derivatives of fractional order. Actually, the physical phenomena may not depend only on the time moment but also on the former time history, which can be successfully modeled utilizing the theory of fractional integrals and derivatives [2–4]. Fractional evolution equations play a significant role in various fields like engineering, biology, physics, signal processing, rheology, fluid flow, finance, electrochemistry, and so on [5–9]. Several efficient methods have recently been developed to get analytical solutions for FDEs. For example, the generalized tanh-coth method [10], the auxiliary equation method [11], the \(( \frac{G'}{G} ) \)-expansion method [12–23], the improved F-expansion method [24], the exponential rational function method [25–27], the simplest equation method [28], the modified simple equation method [29–32], the first integral method [33–37], the Kudryashov method [38–43], the modified extended tanh expansion method [44], the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method [45–51], etc. [52–56]. The basic idea of the \(( \frac{G'}{G} ) \)-expansion method is that the traveling wave solutions of nonlinear FDEs can be presented via a polynomial in one variable \(( \frac{G'}{G} ) \), where G satisfies the equation \(G'' + \lambda G' + \mu G = 0\). In this study, the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method is employed. It can be an extension of the \(( \frac{G'}{G} ) \)-expansion method. The main idea of the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method is that the traveling wave solutions for NTFDEs can be presented via a polynomial in the \(( \frac{1}{G} ) \) and \(( \frac{G'}{G} ) \), where G satisfies the equation \(G'' + \lambda G = \mu \). Li et al. [45] are the first researchers, who proposed the \(( \frac{G'}{G}, \frac{1}{G} ) \)-expansion method to solve the Zakharov equations. Sar et al. [46], Guner et al. [47] and Topsakal et al. [48] have used this method to extract the exact solutions for some space-time NFDEs.
This research paper aims to implement the \(( \frac{G'}{G}, \frac{1}{G} ) \)-expansion method to obtain new exact solutions for some NTFDEs in biology and mathematical physics. The first considered model is a nonlinear \((2+1)\)-dimensional BP model with time-fractional derivative [13, 41]:
in which u denotes the density of population, \(h ( u^{2} - r ) \) shows the population supply because of deaths and births and h, r are constants. When \(\beta \to 1\), the BP model assists us to understand the dynamical proceeding of population changes and provides valuable predictions. Recently, Zhang and Zhang [57], Lu [58], Bekir et al. [59], Bekir and \(\mathrm{G}\ddot{\mathrm{u}}\mathrm{ner}\) [13] and Manafian and Lakestani [10] have found the exact solutions of Eq. (1.1) using the fractional sub-equation method, the Bäcklund transformation of fractional Riccati equation, the exp-function method, the \(( \frac{G'}{G} ) \)-expansion method, and the generalized tanh-coth method, respectively. The comparison of the obtained results with the results obtained in [13, 57–59] will be discussed in the following sections of the paper.
The second studied model is nonlinear \((3+1)\)-dimensional KdV–ZK equation with time-fractional derivative [60]:
When \(\beta \to 1\), the KdV–ZK equation is derived for plasma comprised of hot and cool electrons and fluid ions species. Recently, Sahoo et al. [60] have found the exact solutions of Eq. (1.2) utilizing the improved fractional sub-equation method, whereas Kaplan et al. [61] have obtained the exact solutions of Eq. (1.2) using the exp\(( - \phi ( \xi ) ) \) method. The study is organized as follows: In Sect. 2, the description of the conformable fractional derivative and its important properties are presented. In Sect. 3, the main ideas of the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method are discussed. In Sect. 4, the new exact solutions for the conformable BP model and KdV–ZK equation with time-fractional derivative by the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method are constructed. Finally, conclusions are presented in Sect. 5 of this paper.
2 Conformable fractional derivative and its important properties
The conformable fractional derivative of g of order β is defined as follows [62–64]:
which \(g:[ 0,\infty ) \to R\), \(t > 0\) and \(\beta \in ( 0, 1 ) \). Some important properties of the above definition are given by
3 Key ideas of the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method to the NTFDEs
Li et al. [45] suggested the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method as follows:
For the auxiliary equation
we set
From Eqs. (3.1) and (3.2), we get
The general solution of the ODE (3.1), in the following three distinct subcases:
Case 1 If \(\lambda < 0\), the general solution of the ODE (3.1) is
and thus
where \(A_{1}\), \(A_{2}\) are two arbitrary constants and \(\sigma = A_{1} ^{2} - A_{2}^{2}\).
Case 2 If \(\lambda > 0\), the general solution of the ODE (3.1) is given by
therefore, we have
where \(\sigma = A_{1}^{2} + A_{2}^{2}\).
Case 3 If \(\lambda = 0\), the general solution of the ODE (3.1) is
and hence
The main steps of the two variables \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method are described in the following steps.
Step 1 Assume that we have the following general NFDE
By introducing the transformation
where l, a, b and c are nonzero arbitrary constants. Equation (3.10) can be reduced into ODE in the following form:
Step 2 Assume that the solution of ODE (3.12) can be expressed by a polynomial in ϕ, ψ as follows:
where \(\alpha_{i}\) (\(i = 0,\ldots, m\)) and \(\beta_{i}\) (\(i =1,\ldots, m\)) are constants, and m in (3.13) can be determined by utilizing the homogeneous balance between the nonlinear terms and the highest-order derivative in (3.12).
Step 3 Substituting (3.13) into Eq. (3.12) utilizing (3.3) and (3.5), we obtain a polynomial in ψ and ϕ, where the degree of ψ is not bigger than one. Setting the coefficients of \(\phi^{i}\) (\(i = 0, 1,\ldots\)) and \(\psi^{j}\) (\(j = 0, 1\)) to be zero, yields a set of algebraic equations, which can be solved with the help of Mathematica or Maple software package to obtain the values of \(\alpha_{i}\), \(\beta_{i}\), l, a, b and c in which \(( \lambda < 0 ) \).
Step 4 Substituting (3.13) into (3.12) with (3.3) and (3.7) or ((3.3) and (3.9)), we get the exact solutions of Eq. (3.12).
4 Applications of \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method to NTFDEs in mathematical physics
In this part, new exact solutions of the \((2+1)\)-dimensional BP model and \((3+1)\)-dimensional KdV–ZK equation with time-fractional derivative are extricated by utilizing the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method.
4.1 \((2+1)\)-dimensional BP model with time-fractional derivative
Using the fractional traveling wave variable,
the nonlinear BP model can be reduced into ODE:
To get the exact solution, we utilize the transformation
in Eq. (4.2) to find a new equation,
By utilizing the homogeneous balance principle, we get \(m =1\). Therefore, Eq. (1.1) has the formal solution
where \(\alpha_{0}\), \(\alpha_{1}\) and \(\beta_{1}\) are constants.
Case 1 When \(\lambda < 0\) (hyperbolic function solutions)
By substituting (4.5) into (4.4) and utilizing (3.3) and (3.5), we obtain a polynomial in ψ and ϕ. Equating the coefficients of the equation to zero, we get a system of algebraic equations for \(\alpha_{0}\), \(\alpha_{1}\), \(\beta_{1}\) and l as follows:
By solving the algebraic equations mentioned above utilizing the Maple software package, the following results are obtained.
Result 1
By substituting (4.6) into (4.5) with (4.3) and (4.1), utilizing (3.2) and (3.4), we get the exact solutions of Eq. (1.1) as follows:
In particular, if we put \(A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.7), we get the solitary solution
while if we set \(A_{2} = 0\) and \(A_{1} > 0\), then we get the solitary solution
where \(\xi = x + y \pm 24\sqrt{ - \lambda r} \frac{t^{\beta }}{ \beta }\).
Result 2
Based on Result 2, an exact solution of Eq. (1.1) is obtained. We have
In particular, if we put \(\mu = 0, A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.11), we get the solitary solution
but if we set \(\mu = 0, A_{2} = 0\) and \(A_{1} > 0\), then we get the solitary solution
where \(\xi = x + y \pm 12\sqrt{ - \lambda r} \frac{t^{\beta }}{ \beta }\).
Case 2 When \(\lambda > 0\) (trigonometric function solutions)
By substituting (4.5) into (4.4) and utilizing (3.3) and (3.7), we obtain a polynomial in ψand ϕ. Equating the coefficients of the equation to zero to obtain a set of algebraic equations for \(\alpha_{0}\), \(\alpha_{1}\), \(\beta_{1}\) and l as follows:
By solving the algebraic equations mentioned above utilizing the Maple software package, the following results are obtained.
Result 1
By substituting (4.14) into (4.5) with (4.3) and (4.1), utilizing (3.2) and (3.6), we get the exact solutions of Eq. (1.1) as follows:
In particular, if we put \(A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.15), we get the periodic solution
whereas if we set \(A_{2} = 0\) and \(A_{1} > 0\), then we get the periodic solution
where \(\xi = x + y \pm 24\sqrt{ - \lambda r} \frac{t^{\beta }}{ \beta }\).
Result 2
Based on Result 2, exact solutions of Eq. (1.1) are obtained. We have
In particular, if we put \(\mu = 0, A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.19), we get the periodic solution
but if we set \(\mu = 0, A_{2} = 0\) and \(A_{1} > 0\), then we get the periodic solution
where \(\xi = x + y \pm 12\sqrt{ - \lambda r} \frac{t^{\beta }}{ \beta }\).
Remark 1
By comparing our results with the results obtained by Lu [58], Zhang and Zhang [57], Bekir et al. [59], Bekir and \(\mathrm{G} \ddot{\mathrm{u}}\mathrm{ner}\)[13] and Manafian and Lakestani [10], we conclude that all our solutions of Eq. (1.1) are new and satisfy the equation.
4.2 \((3+1)\)-dimensional KdV–ZK equation with time-fractional derivative
The fractional traveling wave variable
reduces Eq. (1.2) to the following ODE:
By balancing \(f''\) with \(f^{2}\) in Eq. (4.23), we get \(m = 2\). Thus, we get
in which \(\alpha_{0}\), \(\alpha_{1}\), \(\alpha_{2}\), \(\beta_{1}\) and \(\beta_{2}\) are constants.
Case 1 Hyperbolic function solution when \(\lambda < 0\).
If \(\lambda < 0\) substituting (4.24) into (4.23) and using (3.3) and (3.5), we obtain a polynomial in ψ and ϕ. Equating the coefficients of this equation to zero yields a set of algebraic equations in \(\alpha_{0}\), \(\alpha_{1}\), \(\alpha_{2}\), \(\beta_{1}\), \(\beta _{2}\), σ, λ and μ which can be solved by applying Maple to get the following values:
From (3.4), (4.24) and (4.25), we get the exact solution of Eq. (1.2) as follows:
In particular, if we put \(\mu = 0, A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.26), we get the solitary solution
while if we set \(\mu = 0\), \(A_{2} = 0\) and \(A_{1} > 0\), then we get the solitary solution
in which \(\xi = x + y + z - l \frac{t^{\beta }}{\beta }\).
Case 2 Trigonometric function solution when \(\lambda > 0\).
If \(\lambda > 0\) substituting (4.24) into (4.23) and using (3.3) and (3.7), we obtain a polynomial in ψ and ϕ. Equating the coefficients of this equation to zero yields a set of algebraic equations, which can be solved by applying Maple to get the following values:
From (3.6), (4.24) and (4.29), we get the exact solution of Eq. (1.2) as follows:
Particularly, if we put \(\mu = 0, A_{1} = 0\) and \(A_{2} > 0\) in Eq. (4.30), we get the periodic solution
but if we set \(\mu = 0, A_{2} = 0\) and \(A_{1} > 0\), then we get the periodic solution
where \(\xi = x + y + z - l \frac{t^{\beta }}{\beta }\).
Case 3 Rational function solution when \(\lambda = 0\).
If \(\lambda = 0\) substituting (4.24) into (4.23) and using (3.3) and (3.9), we obtain a polynomial in ψ and ϕ. Equating the coefficients of this equation to zero yields a set of algebraic equations, which can be solved by applying Maple to get the following values:
From (3.8), (4.24) and (4.33), we get the exact solution of Eq. (1.2) as follows:
where \(\xi = x + y + z - a\alpha_{0} \frac{t^{\beta }}{\beta }\).
Remark 2
If we compare our results with the results obtained by [60, 61], we can see that our solutions of Eq. (1.2) are new and satisfy the equation.
4.2.1 Graphical presentation of some exact solutions
We presented some graphs to illustrate the behavior of exact solutions of Eqs. (1.1) and (1.2). Figures 1–5 show the solitary and periodic wave forms.
Solitary wave solution of Eq. (4.8) with \(\beta = 0.5\) and \(\beta = 0.9\), respectively, when \(\lambda = - 1\)
Solitary wave solution of Eq. (4.9) with \(\beta = 0.25\) and \(\beta = 0.5\), respectively, when \(\lambda = - 1\)
Solitary wave solution of real part for Eq. (4.27) with \(\beta = 0.25\) and \(\beta = 0.9\), respectively, when \(\lambda = - 1\)
Periodic wave solution of Eq. (4.31) with \(\beta = 0.25\) and \(\beta = 0.9\), respectively, when \(\lambda = 1\)
Periodic wave solution of Eq. (4.32) with \(\beta = 0.25\) and \(\beta = 0.9\), respectively, when \(\lambda = 1\)
5 Conclusion
The \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method is used to discuss the exact solutions to NFDEs. The \(( \frac{G'}{G}, \frac{1}{G} ) \) is successfully implemented to solve two NTFDEs. As applications, new exact solutions for \((2+1)\)-dimensional BP model and \((3+1)\)-dimensional KdV–ZK equation with time-fractional derivative are obtained. When the parameters μ, \(A_{1}\), and \(A_{2}\) are given special values, the solitary wave solutions (4.8), (4.9), (4.12), (4.13), (4.27) and (4.28) and the periodic solutions (4.16), (4.17), (4.20), (4.21), (4.31) and (4.32) are obtained. When \(\mu = 0\) and \(\beta_{i} = 0\) in Eq. (3.1) and Eq. (3.13), respectively, the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method is reduced to the \(( \frac{G'}{G} ) \)-expansion method. Therefore, it can be concluded that the \(( \frac{G'}{G}, \frac{1}{G} ) \)-expansion method is more general and efficient than the \(( \frac{G'}{G} ) \)-expansion method. In comparison with other methods, the key feature of this method is that it possesses all three types of solutions. Some diagrams have been given in three dimensions for fractional order to illustrate the behavior of the solutions when the parameters take some special values.
References
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordonand Breach, New York (1993)
Sahadevan, R., Bakkyaraj, T.: Invariant analysis of time fractional generalized Burgers and Korteweg–de Vries equations. J. Math. Anal. Appl. 393(2), 341–347 (2012)
Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Higher Education Press, Beijing (2011)
Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). https://doi.org/10.1142/3779
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1998)
West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2012)
Manafian, J., Lakestani, M.: A new analytical approach to solve some of the fractional-order partial differential equations. Indian J. Phys. 91(3), 243–258 (2017)
Akbulut, A., Kaplan, M.: Auxiliary equation method for time-fractional differential equations with conformable derivative. Comput. Math. Appl. 75(1), 876–882 (2018). https://doi.org/10.1016/j.camwa.2017.10.016
Bin, Z.: \((G'/G)\)-expansion method for solving fractional partial differential equations in the theory of mathematical physics. Commun. Theor. Phys. 58(5), Article ID 623 (2012). https://doi.org/10.1088/0253-6102/58/5/02
Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (\(G'/G\))-expansion method. Chin. Phys. B 22(11), 110202 (2013)
Shang, N., Zheng, B.: Exact solutions for three fractional partial differential equations by the \((G'/G)\) method. Int. J. Appl. Math. 43(3), 114–119 (2013)
Akram, G., Batool, F.: A class of traveling wave solutions for space-time fractional biological population model in mathematical physics. Indian J. Phys. 91(10), 1145–1148 (2017)
Zayed, E., Al-Nowehy, A.-G.: Exact solutions for nonlinear foam drainage equation. Indian J. Phys. 91(2), 209–218 (2017)
Al-Shawba, A., Gepreel, K., Abdullah, F., Azmia, A.: Abundant closed form solutions of conformable time fractional Sawada–Kotera–Ito equation using \((G'/G)\)-expansion method. Results Phys. 9, 337–343 (2018). https://doi.org/10.1016/j.rinp.2018.02.012
Das, A., Ghosh, N., Ansari, K.: Bifurcation and exact traveling wave solutions for dual power Zakharov–Kuznetsov–Burgers equation with fractional temporal evolution. Comput. Math. Appl. 75(1), 59–69 (2018). https://doi.org/10.1016/j.camwa.2017.08.043
Al-Shawba, A.A., Abdullah, F.A., Azmi, A.: Travelling wave solutions for fractional Boussinesq equation using modified \((G'/G)\) expansion method. AIP Conf. Proc. 1974, Article ID 020036 (2018). https://doi.org/10.1063/1.5041567
Islam, T., Akbar, M.A., Azad, A.K.: Traveling wave solutions to some nonlinear fractional partial differential equations through the rational \((G'/G)\)-expansion method. J. Ocean Eng. Sci. 3(1), 76–81 (2018)
Roshid, H., Rahman, N., Akbar, M.: Traveling waves solutions of nonlinear Klein Gordon equation by extended \((G'/G)\)-expasion method. Ann. Math. Pures Appl. 3, 10–16 (2013)
Hafez, M., Alam, M.N., Akbar, M.A.: Exact traveling wave solutions to the Klein–Gordon equation using the novel \((G'/G)\)-expansion method. Results Phys. 4, 177–184 (2014)
Akbar, M.A., Ali, N.H.M., Roy, R.: Closed form solutions of two time fractional nonlinear wave equations. Results Phys. 9, 1031–1039 (2018)
Ali Akbar, M., Ali, N.H.M.: The improved F-expansion method with Riccati equation and its applications in mathematical physics. Cogent Math. 4(1), Article ID 1282577 (2017)
Mohyud-Din, S.T. Bibi, S.: Exact solutions for nonlinear fractional differential equations using exponential rational function method. Opt. Quantum Electron. 49(2), Article ID 64 (2017). https://doi.org/10.1007/s11082-017-0895-9
Aksoy, E., Kaplan, M., Bekir, A.: Exponential rational function method for space-time fractional differential equations. Waves Random Complex Media 26(2), 142–151 (2016)
Guner, O., Bekir, A.: Exact solutions to the time-fractional differential equations via local fractional derivatives. Waves Random Complex Media 28(1), 139–149 (2018). https://doi.org/10.1080/17455030.2017.1332442
Chen, C., Jiang, Y.-L.: Simplest equation method for some time-fractional partial differential equations with conformable derivative. Comput. Math. Appl. 75(8), 2978–2988 (2018). https://doi.org/10.1016/j.camwa.2018.01.025
Kaplan, M., Bekir, A., Akbulut, A., et al.: The modified simple equation method for nonlinear fractional differential equations. Rom. J. Phys. 60(9–10), 1374–1383 (2015)
Khan, K., Akbar, M.A.: Traveling wave solutions of the \((2+1)\)-dimensional Zoomeron equation and the Burgers equations via the MSE method and the exp-function method. Ain Shams Eng. J. 5(1), 247–256 (2014)
Khan, K., Akbar, M.A.: Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4(4), 903–909 (2013)
Irshad, A., Mohyud-Din, S.T., Ahmed, N., Khan, U.: A new modification in simple equation method and its applications on nonlinear equations of physical nature. Results Phys. 7, 4232–4240 (2017). https://doi.org/10.1016/j.rinp.2017.10.048
Aminikhah, H., Sheikhani, A.R., Rezazadeh, H.: Exact solutions for the fractional differential equations by using the first integral method. Nonlinear Eng. 4(1), 15–22 (2015)
Mirzazadeh, M.: Analytical study of solitons to nonlinear time fractional parabolic equations. Nonlinear Dyn. 85(4), 2569–2576 (2016)
Mirzazadeh, M., Eslami, M., Biswas, A.: Solitons and periodic solutions to a couple of fractional nonlinear evolution equations. Pramāna 82(3), 465–476 (2014)
Eslami, M., Khodadad, F.S., Nazari, F., Rezazadeh, H.: The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative. Opt. Quantum Electron. 49(12), Article ID 391 (2017). https://doi.org/10.1007/s11082-017-1224-z
Rezazadeh, H., Manafian, J., Khodadad, F.S., et al.: Traveling wave solutions for density-dependent conformable fractional diffusion–reaction equation by the first integral method and the improved \(\operatorname{\textbf{tan}}(\frac{1}{2}\varphi (\xi ))\)-expansion method. Opt. Quantum Electron. 50(3), Article ID 121 (2018). https://doi.org/10.1007/s11082-018-1388-1
Ali, K.K., Nuruddeen, R., Hadhoud, A.R.: New exact solitary wave solutions for the extended \((3+1)\)-dimensional Jimbo–Miwa equations. Results Phys. 9, 12–16 (2018)
Nuruddeen, R., Nass, A.M.: Exact solitary wave solution for the fractional and classical GEW-Burgers equations: an application of Kudryashov method. J. Taibah Univ. Sci. 12(3), 309–314 (2018)
Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method. Waves Random Complex Media 27(4), 628–636 (2017). https://doi.org/10.1080/17455030.2017.1296983
Ege, S.M., Misirli, E.: The modified Kudryashov method for solving some fractional-order nonlinear equations. Adv. Differ. Equ. 2014(1), Article ID 135 (2014). https://doi.org/10.1186/1687-1847-2014-135
Korkmaz, A., Hosseini, K.: Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quantum Electron. 49(8), Article ID 278 (2017). https://doi.org/10.1007/s11082-017-1116-2
Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. 56(1), 75–85 (2018)
Ali, K.K., Nuruddeen, R., Raslan, K.: New hyperbolic structures for the conformable time-fractional variant Bussinesq equations. Opt. Quantum Electron. 50(2), Article ID 61 (2018). https://doi.org/10.1007/s11082-018-1330-6
Li, L., Li, E., Wang, M.: The \((G'/G, 1/G)\)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math. J. Chin. Univ. 25(4), 454–462 (2010). https://doi.org/10.1007/s11766-010-2128-x
Ya̧sar, E.Y., Giresunlu, I.B.: The \((G'/G, 1/G)\)-expansion method for solving nonlinear space–time fractional differential equations. Pramana J. Phys. 87(2), Article ID 17 (2016)
Guner, O., Bekir, A., Ünsal, Ö.: Two reliable methods for solving the time fractional Clannish Random Walker’s Parabolic equation. Optik, Int. J. Light Electron Opt. 127(20), 9571–9577 (2016)
Topsakal, M., Guner, O., Bekir, A., Unsal, O.: Exact solutions of some fractional differential equations by various expansion methods. J. Phys. Conf. Ser. 766(1), Article ID 012035 (2016). https://doi.org/10.1088/1742-6596/766/1/012035
Miah, M.M., Ali, H.S., Ali Akbar, M., et al.: Some applications of the (\(G'/G\), \(1/G\))-expansion method to find new exact solutions of NLEEs. Eur. Phys. J. Plus 132(6), Article ID 252 (2017). https://doi.org/10.1140/epjp/i2017-11571-0
Miah, M.M., Shahadat Ali, H.M., Ali Akbar, M.: An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: the perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg–Landau equation. Cogent Math. 3(1), Article ID 1277506 (2016)
Huda, M.A., Akbar, M.A., Shanta, S.S.: The new types of wave solutions of the Burger’s equation and the Benjamin–Bona–Mahony equation. J. Ocean Eng. Sci. 3(1), 1–10 (2018)
Babolian, E., Vahidi, A., Shoja, A.: An efficient method for nonlinear fractional differential equations: combination of the Adomian decomposition method and spectral method. Indian J. Pure Appl. Math. 45(6), 1017–1028 (2014)
Aksoy, E., Çevikel, A.C., Bekir, A.: Soliton solutions of \((2+1)\)-dimensional time-fractional Zoomeron equation. Optik, Int. J. Light Electron Opt. 127(17), 6933–6942 (2016)
Ekici, M.: Soliton and other solutions of nonlinear time fractional parabolic equations using extended \(G'/G\)-expansion method. Optik, Int. J. Light Electron Opt. 130, 1312–1319 (2017)
Gepreel, K.A.: Explicit Jacobi elliptic exact solutions for nonlinear partial fractional differential equations. Adv. Differ. Equ. 2014(1), Article ID 286 (2014). https://doi.org/10.1186/1687-1847-2014-286
Zheng, B.: A new fractional Jacobi elliptic equation method for solving fractional partial differential equations. Adv. Differ. Equ. 2014(1), Article ID 228 (2014)
Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)
Lu, B.: Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations. Phys. Lett. A 376(28), 2045–2048 (2012)
Bekir, A., Güner, Ö., Cevikel, A.C.: Fractional complex transform and exp-function methods for fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 426462 (2013). https://doi.org/10.1155/2013/426462
Sahoo, S., Ray, S.S.: Improved fractional sub-equation method for \((3+1)\)-dimensional generalized fractional KdV–Zakharov–Kuznetsov equations. Comput. Math. Appl. 70(2), 158–166 (2015)
Kaplan, M., Bekir, A.: A novel analytical method for time-fractional differential equations. Optik, Int. J. Light Electron Opt. 127(20), 8209–8214 (2016)
Khalil, R., Al Horani, M., Yousef, A., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)
Jarad, F., Uğurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017). https://doi.org/10.1186/s13662-017-1306-z
Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Acknowledgements
F.A. Abdullah would like to acknowledge the financial support of the Fundamental Research Grant Scheme (FRGS 203/PMATHS/6711570) by the Ministry of Higher Education, Malaysia, and Research Creativity and Management Office (RCMO), Universiti Sains Malaysia. The first, second, and fourth authors would like to thank the School of Mathematical Sciences, Universiti Sains Malaysia, Penang Malaysia, for providing computing facilities.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare to have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Al-Shawba, A.A., Abdullah, F.A., Gepreel, K.A. et al. Solitary and periodic wave solutions of higher-dimensional conformable time-fractional differential equations using the \(( \frac{G'}{G},\frac{1}{G} ) \)-expansion method. Adv Differ Equ 2018, 362 (2018). https://doi.org/10.1186/s13662-018-1814-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-018-1814-5
Keywords
- \(( \frac{G'}{G}, \frac{1}{G})\)-expansion method
- Conformable fractional derivative
- Exact solutions
- \((2+1)\)-dimensional time-fractional biological population model
- \((3+1)\)-dimensional time-fractional KdV–Zakharov–Kuznetsov equation