In this section, we will show that under some suitable conditions solutions to problem (1.1) do exist.
Theorem 3.1
Suppose that (H1), (H2) hold and
f
satisfies
$$\lim_{|u|+|v|\to\infty} \frac{f(r,u,v)}{(|u|+|v|)^{q(r)-1}}=0,\quad 1< q^{-}\leq q^{+}< p^{-}. $$
Then problem (1.1) has at least one solution.
Proof
To obtain the existence of solutions of problem (1.1), consider the BVP
$$\textstyle\begin{cases} (|u'(r)|^{p(r)-2}u'(r))'+\lambda a(r)f(r,u(r),u'(r))=0, \quad r\in(0,1),\lambda\in[0,1], \\ u(0)-\alpha u'(\xi)=0,\qquad u(1)+\sum_{i=1}^{m=3}\beta_{i}u'(\eta_{i})=0, \end{cases} $$
and define the integral operator \(T:U\times[0,1] \to U\) by
$$ T(u,\lambda) (r) = \textstyle\begin{cases} \alpha\varphi^{-1} ( \int_{\xi}^{\sigma}\lambda a(s)f(s,u(s),u'(s))\mathrm {\,d}s ) \\ \quad {}+\int_{0}^{r}\varphi^{-1} ( \int _{s}^{\sigma}\lambda a(t)f(t,u(t),u'(t))\mathrm {\,d}t )\mathrm {\,d}s, & 0\leq r\leq \sigma, \\ \sum_{i=1}^{m-3} \beta_{i}\varphi^{-1} ( \int_{\sigma}^{\eta_{i}} \lambda a(s)f(s,u(s),u'(s))\mathrm {\,d}s ) \\ \quad {}+\int _{r}^{1}\varphi^{-1} ( \int_{\sigma}^{s} \lambda a(t)f(t,u(t),u'(t))\mathrm {\,d}t )\mathrm {\,d}s, & \sigma\leq r\leq1. \end{cases} $$
(3.1)
From the continuity of \(f, \varphi^{-1}\) and also the definition of a, it is easy to see that u is a solution of problem (1.1) if and only if u is a fixed point of the integral operator T when \(\lambda=1\). In order to apply Lemma 2.2, the proof includes three steps:
(1) T is a compact map.
Let \(D \subset U\times[0,1]\) be an arbitrary bounded subset, then there exists \(M>0\) such that
And let \(\{(u_{n},\lambda_{n})\}\) be a sequence in D. Firstly, we prove that \(\{T(u_{n},\lambda_{n})\}\) has a convergent subsequence in \(C[0,1]\). According to (H1), we find that there exists \(N>1\) such that
$$\bigl\vert f\bigl(r,u_{n}(r),u'_{n}(r) \bigr) \bigr\vert \leq N,\quad r\in[0,1], \|u_{n}\|_{1}\leq M. $$
Thus, for any \((u_{n},\lambda_{n})\in D\), if \(0\leq r\leq\sigma\), then
$$\begin{aligned} & \bigl\vert T(u_{n},\lambda_{n}) (r) \bigr\vert \\ &\quad \leq \alpha\varphi^{-1} \biggl( \int_{\xi}^{\sigma}\lambda _{n} \bigl\vert a(s)f\bigl(s,u_{n}(s),u'_{n}(s)\bigr) \bigr\vert \mathrm {\,d}s \biggr) \\ &\qquad {} + \int_{0}^{r}\varphi ^{-1} \biggl( \int_{s}^{\sigma}\lambda_{n} \bigl\vert a(t)f\bigl(t,u_{n}(t),u'_{n}(t)\bigr) \bigr\vert \mathrm {\,d}t \biggr)\mathrm {\,d}s \\ &\quad \leq\alpha\varphi^{-1} \biggl( \int_{\xi}^{\sigma}\bigl\vert a(s)f \bigl(s,u_{n}(s),u'_{n}(s)\bigr) \bigr\vert \mathrm {\,d}s \biggr) \\ &\qquad {} + \int_{0}^{r}\varphi ^{-1} \biggl( \int_{s}^{\sigma}\bigl\vert a(t)f\bigl(t,u_{n}(t),u'_{n}(t) \bigr) \bigr\vert \mathrm {\,d}t \biggr)\mathrm {\,d}s \\ &\quad \leq(\alpha+1)N^{\frac{1}{p^{-}-1}}\max \biggl\{ \biggl( \int _{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} . \end{aligned}$$
Similarly, if \(\sigma\leq r\leq1\), then
$$\begin{aligned} & \bigl\vert T(u_{n},\lambda_{n}) (r) \bigr\vert \\ &\quad \leq\sum_{i=1}^{m-3} \beta_{i}\varphi^{-1} \biggl( \int_{\sigma}^{\eta_{i}} \bigl\vert a(s)f \bigl(s,u_{n}(s),u'_{n}(s)\bigr) \bigr\vert \mathrm {\,d}s \biggr) \\ &\qquad {}+ \int_{0}^{r}\varphi^{-1} \biggl( \int_{\sigma}^{s} \bigl\vert a(t)f \bigl(t,u_{n}(t),u'_{n}(t)\bigr) \bigr\vert \mathrm {\,d}t \biggr)\mathrm {\,d}s \\ &\quad \leq \Biggl( \sum_{i=1}^{m-3} \beta_{i}+1 \Biggr)N^{\frac {1}{p^{-}-1}}\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac {1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} . \end{aligned}$$
On the other hand,
$$\begin{aligned} & \bigl\vert T'(u_{n},\lambda_{n}) (t) \bigr\vert \\ &\quad = \bigl\vert \varphi^{-1}|a(t)f\bigl(t,u_{n}(t),u'_{n}(t) \bigr)|\mathrm {\,d}r \bigr\vert \\ &\quad \leq N^{\frac{1}{p^{-}-1}}\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} . \end{aligned}$$
Therefore,
$$\begin{aligned} \bigl\vert T(u_{n},\lambda_{n}) (t) \bigr\vert &\leq \max \Biggl\{ \alpha+1, \sum_{i=1}^{m-3} \beta_{i}+1 \Biggr\} N^{\frac{1}{p^{-}-1}} \\ &\quad {} \cdot\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac {1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} , \end{aligned}$$
and
$$\bigl\vert T'(u_{n},\lambda_{n}) (t) \bigr\vert \leq N^{\frac{1}{p^{-}-1}}\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int _{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} . $$
Besides, we find that, for any \(0\leq t_{1}\leq t_{2}\leq1\),
$$\begin{aligned} & \bigl\vert T(u_{n},\lambda_{n}) (t_{1})-T(u_{n}, \lambda_{n}) (t_{2}) \bigr\vert \\ &\quad = \biggl\vert \int_{t_{1}}^{t_{2}}T'(u_{n}, \lambda_{n}) (t)\mathrm {\,d}t \biggr\vert \\ &\quad \leq N^{\frac{1}{p^{-}-1}}\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} \vert t_{1}-t_{2} \vert . \end{aligned}$$
Hence, \(\{T(u_{n},\lambda_{n})\}\) is equi-continuous and uniformly bounded.
Applying the Ascoli–Arzelà theorem, there exists a convergent subsequence of \(\{T(u_{n},\lambda_{n})\}\) in \(C[0,1]\). Without loss of generality, we denote the convergent subsequence again by \(\{ T(u_{n},\lambda_{n})\}\).
Next, we should show that \(\{T'(u_{n},\lambda_{n})\}\) also has a convergent subsequence in \(C[0,1]\). Denote
$$F_{n}(t)= \int_{\sigma}^{t}\lambda_{n}a(s)f \bigl(s,u_{n}(s),u'_{n}(s)\bigr)\mathrm {\,d}s. $$
Similar to the proof above, we can find that \(\{F_{n}(t)\}\) has a convergent subsequence in \(C[0,1]\), which we still denote by \(\{F_{n}(t)\} \). From the continuity of \(\varphi^{-1}\), we can easily get that \(\{ T'(u_{n},\lambda_{n})\}\) is convergent in \(C[0,1]\).
From the above, we know that T is a compact operator, which implies that condition (S1) in Lemma 2.2 holds.
(2) Evidently, \(T(u,0)=0\) for \(u\in U\), so condition (S2) is satisfied.
(3) Now, we verify condition (S3) in Lemma 2.2.
If condition (S3) does not hold, then we would find that there exists a subsequence \(\{(u_{n},\lambda_{n})\}\) such that \(\|u_{n}\|_{1}\to \infty\) as \(n\to\infty\) and \(\|u_{n}\|_{1}>1\). According to Lemma 2.5, we have
$$\begin{aligned} \bigl\vert u'_{n}(r) \bigr\vert ^{p(r)-2}u'_{n}(r) &= \int_{\sigma}^{r} \bigl(\bigl( \bigl\vert u'_{n}(s) \bigr\vert ^{p(s)-2} \bigr)u'_{n}(s)\bigr)'\mathrm {\,d}s \\ &= - \int_{\sigma}^{r}\lambda_{n} a(s)f \bigl(s,u_{n}(s),u'_{n}(s)\bigr)\mathrm {\,d}s. \end{aligned}$$
Note that
$$\lim_{ \vert u \vert + \vert u' \vert \to\infty}\frac{f(r,u,u')}{( \vert u \vert + \vert u' \vert )^{q(r)-1}}=0, $$
then we get that there exist \(M_{1}>0, c_{1}>0\) such that
$$\bigl\vert f\bigl(r,u,u'\bigr) \bigr\vert \leq c_{1} \bigl( \vert u \vert + \bigl\vert u' \bigr\vert \bigr)^{q(r)-1}, \quad r\in[0,1], \vert u \vert + \bigl\vert u' \bigr\vert \in [M,+\infty). $$
Thus, for \(|u_{n}|+|u'_{n}|\in[M_{1},+\infty)\) and \(r\in[0,1]\), we have
$$\begin{aligned} \bigl\vert \bigl\vert u'_{n}(r) \bigr\vert ^{p(r)-2}u'_{n}(r) \bigr\vert &\leq \lambda_{n} \int_{\sigma}^{r} \bigl\vert a(s)f \bigl(s,u_{n}(s),u'_{n}(s)\bigr) \bigr\vert \mathrm {\,d}s \\ &\leq c_{1} \int_{0}^{1} \bigl\vert a(s) \bigr\vert \bigl( \bigl\vert u(s) \bigr\vert + \bigl\vert u'_{n}(s) \bigr\vert \bigr)^{q(s)-1}\mathrm {\,d}s \\ &\leq c_{1}\ \vert u_{n}\ \vert ^{q^{+}-1} \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s, \end{aligned}$$
it follows that
$$\bigl\vert u'_{n}(r) \bigr\vert ^{p(r)-1} \leq c_{1}\|u_{n}\|^{q^{+}-1} \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s. $$
Hence,
$$\bigl\vert u'_{n}(r) \bigr\vert \leq C \|u_{n}\|^{\frac{q^{+}-1}{p^{-}-1}}\max \biggl\{ \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int _{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} , $$
and
$$\begin{aligned} \bigl\vert u_{n}(r) \bigr\vert &= \biggl\vert \int_{\sigma}^{r} u'_{n}(s)\mathrm {\,d}s \biggr\vert \\ &\leq C\|u_{n}\|^{\frac{q^{+}-1}{p^{-}-1}}\max \biggl\{ \biggl( \int _{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{-}-1}}, \biggl( \int_{0}^{1} \bigl\vert a(s) \bigr\vert \mathrm {\,d}s \biggr)^{\frac{1}{p^{+}-1}} \biggr\} , \end{aligned}$$
where C is a constant.
We can conclude that \(\{(u_{n},\lambda_{n})\}\) is bounded, which leads to a contradiction. Therefore, condition (S3) in Lemma 2.2 holds.
Applying Lemma 2.2, we can obtain that \(T(u,1)\) has a fixed point in U, that is to say, problem (1.1) has at least one solution. This completes the proof. □
Furthermore, we prove the existence of solutions to problem (1.1) under other innovative conditions.
Theorem 3.2
Suppose that
\(\Omega_{t}=\{u\in C^{1}[0,1]:\|u\|_{1}< t\}\)
is a bounded open set in
U
and (H1), (H2) hold. If there exists
\(t>0\)
such that
$$ \bigl\vert f\bigl(r,u,u'\bigr) \bigr\vert \leq \min \biggl\{ \biggl(\frac{t}{3} \biggr)^{p^{-}-1}, \biggl( \frac{t}{3} \biggr)^{p^{+}-1} \biggr\} \frac{1}{\int _{0}^{1}|a(r)|\mathrm {\,d}r}, $$
(3.2)
where
\(u\in\overline{\Omega_{t}}\), \(r\in[0,1]\), then problem (1.1) has at least one solution.
Proof
Let us consider the following BVP:
$$ \textstyle\begin{cases} ( |u'(r)|^{p(r)-2}u'(r) )+\lambda a(r)f(r,u(r),u'(r))=0,\quad r\in(0,1), \lambda\in[0,1], \\ u(0)-\alpha u'(\xi)=0, \qquad u(1)+\sum_{I=1}^{m-3}\beta_{i}u'(\eta_{i})=0, \end{cases} $$
(3.3)
and define an integral operator \(T:U\times[0,1] \to U\) by
$$T(u,\lambda) (r) = \textstyle\begin{cases} \alpha\varphi^{-1} ( \int_{\xi}^{\sigma}\lambda a(s)f(s,u(s),u'(s))\mathrm {\,d}s ) \\ \quad {}+\int_{0}^{r}\varphi^{-1} ( \int _{s}^{\sigma}\lambda a(t)f(t,u(t),u'(t))\mathrm {\,d}t )\mathrm {\,d}s, & 0\leq r\leq \sigma, \\ \sum_{i=1}^{m-3} \beta_{i}\varphi^{-1} ( \int_{\sigma}^{\eta_{i}} \lambda a(s)f(s,u(s),u'(s))\mathrm {\,d}s ) \\ \quad {}+\int _{r}^{1}\varphi^{-1} ( \int_{\sigma}^{s} \lambda a(t)f(t,u(t),u'(t))\mathrm {\,d}t )\mathrm {\,d}s, & \sigma\leq r\leq1, \end{cases} $$
where \(\sigma\in(0,1)\). Similar to the above proof, we know that T is compact. Moreover, u is a fixed point of \(u=T(u,1)\) if and only if u is a solution of problem (1.1). To achieve the result by Leray–Schauder degree theory, we just need to prove that
-
(i)
for any \(\lambda\in[0,1)\), \(u=T(u,\lambda)\) has no solution on \(\partial\Omega_{t}\);
-
(ii)
\(\deg(I-T(u,0), \Omega_{t}, 0)\neq0\).
Firstly, we verify that (i) holds. Without loss of generality, there exist \(\lambda\in[0,1)\) and \(u\in\partial\Omega_{t}\) such that \(u=T(u,\lambda)\), then we have
$$\bigl\vert u'(r) \bigr\vert ^{p(r)-2}u'(r)=- \lambda \int_{\sigma}^{1} a(s)f\bigl(s,u(s),u'(s) \bigr)\mathrm {\,d}s, \quad r\in(0,1). $$
Since \(u\in\partial\Omega_{t}\), it is easy to see that
$$\Vert u \Vert + \bigl\Vert u' \bigr\Vert =t. $$
If \(\|u\|\geq2t/3\), then \(\|u'\|\leq t/3\), but
$$\bigl\vert u(r) \bigr\vert = \biggl\vert \int_{\sigma}^{r} u'(s) \biggr\vert \mathrm {\,d}s \leq \int _{0}^{1} \bigl\vert u'(s) \bigr\vert \mathrm {\,d}s \leq\frac{t}{3}, $$
which is a contradiction.
Similarly, if \(\|u\|\leq2t/3\), then \(\|u'\|>t/3\). Hence, there exists \(r_{0}\in[0,1]\) such that
$$\bigl\vert u'(r_{0}) \bigr\vert ^{p(r_{0})-1}> \biggl( \frac{t}{3} \biggr)^{p(r_{0})-1}. $$
According to condition (3.2), we get that
$$\begin{aligned} \bigl\vert u'(r_{0}) \bigr\vert ^{p(r_{0})-1} &= \biggl\vert \int_{\sigma}^{r_{0}}\lambda a(s)f\bigl(s,u(s),u'(s) \bigr)\mathrm {\,d}s \biggr\vert \\ &\leq \int_{0}^{1} \bigl\vert a(s)f\bigl(s,u(s),u'(s) \bigr) \bigr\vert \mathrm {\,d}s \\ &\leq\min \biggl\{ \biggl(\frac{t}{3} \biggr)^{p^{-}-1}, \biggl( \frac {t}{3} \biggr)^{p^{+}-1} \biggr\} , \end{aligned}$$
which together with \(\|u'\|\leq t/3\) leads to a contradiction. So problem (3.3) has no solution on \(\partial\Omega_{t}\).
Secondly, when \(\lambda=0\), problem (3.3) becomes the following one:
$$ \textstyle\begin{cases} (|u'(r)|^{p(r)-2})u'(r)=0,\quad r\in(0,1), \\ u(0)-\alpha u'(\xi)=0,\qquad u(1)+\sum_{i=1}^{m-3}\beta_{i}u'(\eta_{i})=0. \end{cases} $$
(3.4)
We can easily find that problem (3.4) has a solution on \(\Omega_{t}\). From the solvability on Leray–Schauder degree theory, we get that
$$\deg\bigl(I-T(u,0),\Omega_{t},0\bigr)\neq0. $$
Thus condition (ii) is satisfied.
Therefore, upon an application of Leray–Schauder degree method, we obtain that problem (1.1) has at least one solution. This completes the proof. □