- Research
- Open Access
- Published:
Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters
Advances in Difference Equations volume 2019, Article number: 102 (2019)
Abstract
We consider the multiplicity of positive solutions (PSs) for a coupled system involving nonlinear impulsive fractional differential equations with parameters. By employing the classical Guo–Krasnosel’skii fixed point theorem, some sufficient criteria for the existence of multiple PSs in terms of different values of parameters are derived. As an application, an example is given to illustrate the theoretical results.
1 Introduction
The fractional calculus is an extension of the traditional integer calculus, which has the properties of an infinity memory and is hereditary. In recent decades, fractional calculus has aroused much attention and has been extensively applied to establish mathematical models in the fields of signals, viscoelastic theory, fluid dynamics, computer networking, electrical circuits, control theory and so on [1,2,3,4,5,6,7,8,9]. As a consequence, the subject of fractional differential equations (FDEs) is very popular and of importance. Especially, the investigation of the existence of the solution for FDEs has received considerable attention, the reader may refer to [10,11,12,13,14,15,16,17,18,19,20,21,22] and the references therein.
Though the theory of positive solutions (PSs) for ordinary differential equations with parameters is mature, not much has been done for FDEs with parameters [12, 13, 17, 20]. By using the Guo–Krasnosel’skii fixed point theorem on cones, some sufficient conditions for the existence of multiple PSs and eigenvalue intervals are established in [17] for the following FDEs with parameter:
It should be emphasized that much work focuses on the BVPs of nonlinear FDEs with impulses [11, 16, 18, 19, 21, 22]. The authors in [21] consider the following generalized antiperiodic BVPs for impulsive FDEs:
where \(q\in (1,2)\) and \(a\geq b>0\). Some new existence theorems of at least one solution are established via fixed point methods.
For the BVPs of a nonlinear coupled fractional differential system with parameters, the existence of PSs is considered in [20]. Some multiplicity theorems of PSs for nonlinear impulsive FDEs are presented in [16]. However, as far as we know, there is no paper to investigate the multiplicity of PSs for impulsive fractional differential coupled system with parameters. The above-mentioned work and observation inspire us to address the following coupled system of nonlinear impulsive FDEs with parameters (abbreviated by BVPs (1)):
where \(\alpha ,\beta \in (1,2]\), \(a, b,c,d\in (1,+\infty )\), \(\lambda , \mu \in (0,+\infty )\) are parameters, \({}^{c}D_{0^{+}}^{ \alpha }({}^{c}D_{0^{+}}^{\beta })\) is the standard Caputo fractional derivative of order \(\alpha (\beta )\), \(f,g: J\times {R}^{+}\times {R}^{+}\to {R}^{+}\) are jointly continuous, \(I_{k}, J_{k},P_{k}, Q _{k}\in C({R}^{+},{R}^{-})\), \({R}^{+}=[0,+\infty )\), \({R}^{-}=(-\infty ,0]\), \(\Delta u(t_{k})=u(t_{k}^{+})-u(t_{k}^{-})\), in which \(u(t_{k}^{-})= \lim_{\theta \to 0^{-}}u(t_{k}+\theta )\) and \(u(t_{k}^{+})= \lim_{\theta \to 0^{+}}u(t_{k}+\theta )\) indicate the left and right limits of \(u(t)\) at \(t=t_{k}\), respectively, and the impulsive point set \(\{t_{k}\}_{k=1}^{m}\) satisfies \(0< t_{1}<\cdots <t_{m}<t_{m+1}=1\). Let us set \({J}_{0}=[0,t_{1}]\) and \({J}_{k}=(t_{k},t_{k+1}]\), where \(k=1,\dots ,m\). So \(J=\bigcup_{k=0}^{m}{J}_{k}\).
Due to the existence of impulsiveness in the nonlinear coupled system (1), it is challenging to deal with the existence of multiple PSs for BVPs (1). We first give the natural formulas of PSs for the nonlinear coupled system by constructing the associated Green’s function. Based on the properties of the Green’s function and some assumptions on the nonlinear functions, some sufficient criteria for the multiplicity of PSs are obtained. Meanwhile, the ranges of the parameters λ and μ of the existence for PSs are also given. The multiplicity theorems of this paper are established by applying the Guo–Krasnosel’skii fixed point theorem. Finally, an example is provided to illustrate the validity of our main results.
2 Preliminaries
Definition 2.1
The Riemann–Liouville fractional integral of the function \(f(t)\in C^{n}([0,\infty ),R)\) is defined as
where \(n-1<\alpha \leq n\), \(n\in \{1,2,\ldots \}\) and \(\varGamma (\cdot )\) is the well-known Gamma function, defined as \(\varGamma (z)=\int _{0} ^{\infty }t^{z-1}e^{-t}\,dt\).
Definition 2.2
The Caputo fractional derivative of the function \(f(t)\in C^{n}([0,\infty ),R)\) is defined as
where \(n-1<\alpha \leq n\), \(n\in \{1,2,\ldots \}\).
Lemma 2.1
If \(u\in C^{n}(J)\) and \({}^{c}D_{0^{+}}^{\alpha }u\in L^{1}(J)\) with a Caputo fractional derivative of order \(\alpha >0\), then
where \(c_{k} \in {R}\) and n is the smallest integer not less than α.
Lemma 2.2
(Guo–Krasnosel’skii fixed point theorem [24])
Let \(P\subseteq E\) be a cone, \(K_{1}\) and \(K_{2}\) be two bounded open balls of the Banach space E centered at the origin with \(0\in K_{1}\) and \(\overline{K}_{1}\subset K_{2}\). Assume that \(T:P\cap ( \overline{K}_{2}\setminus K_{1})\to P\) is a completely continuous operator such that either
-
(i)
\(\|Tv\| \leq \|v\|\), \(v\in P\cap \partial K_{1}\) and \(\|Tv\| \geq \|v\|\), \(v\in P\cap \partial K_{2}\), or
-
(ii)
\(\|Tv\| \geq \|v\|\), \(v\in P\cap \partial K_{1}\) and \(\|Tv\| \leq \|v\|\), \(v\in P\cap \partial K_{2}\) hold.
Then T has at least one fixed point in \(P\cap (\overline{K}_{2} \setminus K_{1})\).
Lemma 2.3
Given \(h\in C(J)\) and \(\alpha \in (1,2]\), the unique solution of
is \(u(t)=\int _{0}^{1}G_{\alpha }(t,s)h(s)\,ds-\sum_{i=1}^{m}G _{a,b}(t,t_{i})J_{i}(u)-\sum_{i=1}^{m}G_{a}(t,t_{i})I_{i}(u)\), \(t\in J\), where
Proof
By applying Lemma 2.1, the solution of impulsive BVPs (2) can be uniquely expressed as
From (6), one has
Applying the boundary value conditions of BVPs (2), we can see from (6) and (7) that
It can be derived from the impulsive condition of BVPs (2) that
It thus follows from (9) and (11) that
In the light of (11) and (12), we have
We can see from (8), (10) and (13) that
this together with (10) implies that
where \(k=1,2,\ldots ,m\). It thus follows from (14) and (16) that
For \(t\in {J}_{k}=(t_{k},t_{k+1}]\), \(k=1,\ldots ,m\), by substituting (17) into (6), we obtain
in which \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\) and \(G_{a}(t,t_{i})\) are defined by (3), (4) and (5), respectively.
For \(t\in {J}_{0}= [0,t_{1}]\), substituting (12) and (15) into (6) yields
in which \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\) and \(G_{a}(t,t_{i})\) are defined by (3), (4) and (5), respectively. The proof is thus completed. □
Lemma 2.4
Let \(a,b>1\), the functions \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\) and \(G_{a}(t,t_{i})\) are continuous and satisfy the following properties:
Proof
We can see from the expressions of \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\) and \(G_{a}(t,t_{i})\) that \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\), \(G_{a}(t,t_{i})\in C(J\times J)\). For \(t,s\in J\), using (3) yields
Clearly, for \(t\in J\), \(G_{\alpha }(t,s)\) is decreasing with respect to t. Therefore,
In view of (4) and (5), it is obviously that
The proof is thus completed. □
Similar results to Lemmas 2.3 and 2.4 can be formulated for the following BVPs (19):
where \(\beta \in (1,2]\) and \(\zeta (t)\in C(J)\), \(k=1,\ldots ,m\). We introduce \(G_{\beta }(t,s)\), \(G_{c,d}(t,t_{i})\) and \(G_{c}(t,t_{i})\), the corresponding functions for the BVPs (19) defined in a similar manner to \(G_{\alpha }(t,s)\), \(G_{a,b}(t,t_{i})\) and \(G_{a}(t,t_{i})\), respectively.
3 Main results
In this section, some sufficient criteria are derived to guarantee the multiplicity of PSs for BVPs (1).
Let \(E=\{(u,v):u,v\in C(J)\}\) be endowed with the norm \(\|\cdot \|\) defined as \(\|(u,v)\|=\|u\|+\|v\|\) for \((u,v)\in E\), where \(\|u\|= \max_{t\in J}|u(t)|\) and \(\|v\|=\max_{t\in J}|v(t)|\). Let the Banach space \(PC(J)\) and the cone \(K\in PC(J)\) be, respectively, defined as
and
To begin with, we need the following assumptions to derive the main results.
- (\(B_{1}\)):
-
\(a,b,c,d\in (1,+\infty )\) and \(\sigma _{1}, \sigma _{2}\in (0,+\infty )\) with \(\sigma _{1}=\int _{0}^{1}G_{\alpha }(1,s)\,ds\) and \(\sigma _{2}= \int _{0}^{1}G_{\beta }(1,s)\,ds\).
- (\(B_{2}\)):
-
\(f(t,u,v), g(t,u,v)\in C(J\times {R}^{+}\times {R} ^{+},{R}^{+})\).
- (\(B_{3}\)):
-
\(I_{k}(u), J_{k}(u),P_{k}(v), Q_{k}(v)\in C({R}^{+}, {R}^{-})\), \(k=1,\ldots ,m\).
For simplicity, some important notations and functions are introduced as follows:
where \(f(\cdot )=f (t,u(t),v(t) )\), \(g(\cdot )=g (t,u(t),v(t) )\) and δ denotes 0 or +∞.
Define two operators \(T_{\alpha },T_{\beta }:PC(J)\to PC(J)\) as
and the operator \(T:PC(J)\to PC(J)\) as
It is obvious that \((u,v)\) is a pair of PSs of BVPs (1) if \((u,v)\) is a fixed point of T.
Lemma 3.1
Assume that \((B_{1})\)–\((B_{3})\) hold, then \(T:K\to K\) is completely continuous.
Proof
Due to the functions \(G_{\alpha }\), \(G_{\beta }\), \(G_{a}\), \(G_{b}\), \(G_{a,b}\), \(G _{c,d}\), f, g, \(-I_{k}\), \(-J_{k}\), \(-P_{k}\) and \(-Q_{k}\) are nonnegative and continuous, λ and μ are positive parameters. It can be concluded that \(T:K\to K\) is continuous. For every \((u,v)\in PC(J)\) we have
Similarly, one gets \(T_{\beta }(u,v)\geq (cd)^{-1}\|T_{\beta }(u,v)\|\). Therefore
namely \(T(K)\subset K\). We can further see from the Ascoli–Arzela theorem that \(T:K \to K\) is completely continuous. □
Theorem 3.1
Suppose that \((B_{1})\)–\((B_{3})\) hold and there exist two constants ρ and δ with \(\rho \geq 4\eta >0\) and \(\delta >0\) such that
Then, for each
BVPs (1) have at least two pairs of PSs \((u_{i},v_{i})\), \(i=1,2\), which satisfy
Proof
We first choose two constants r and R such that \(0< r<\rho <R\). Considering the case when \(\lambda > (2\gamma \sigma _{1}f_{0})^{-1}\) and \(\mu > (2\gamma \sigma _{2}g_{0})^{-1}\). From the definitions of \(f_{0}\) and \(g_{0}\), we can conclude that there exists \(r>0\) such that \(f(\cdot )\geq (f_{0}-\varepsilon _{1})(u+v)\) and \(g(\cdot )\geq (g _{0}-\varepsilon _{2})(u+v)\) as \(u+v\in [0,r]\) and \(t \in J\), where \(\varepsilon _{1}>0\) and \(\varepsilon _{2}>0\) satisfy \(2\lambda \gamma \sigma _{1}(f_{0}-\varepsilon _{1})\geq 1\) and \(2\mu \gamma \sigma _{2}(g _{0}-\varepsilon _{2})\geq 1\). Then for each \((u,v)\in \partial K_{r}= \{(u,v)\in K:\|(u,v)\| =r\}\) and \(t\in J\), it can be derived from Lemma 2.4 that
Next, considering the case when \(\lambda > (2\gamma \sigma _{1}f_{ \infty })^{-1}\) and \(\mu > (2\gamma \sigma _{2}g_{\infty })^{-1}\). In view of the definitions of \(f_{\infty }\) and \(g_{\infty }\), we can see that there exists \(R>0\) such that \(f(\cdot )\geq (f_{\infty }- \varepsilon _{3})(u+v)\) and \(g(\cdot )\geq (g_{\infty }-\varepsilon _{4})(u+v)\) as \(u+v\in [R,\infty )\) and \(t\in J\), where \(\varepsilon _{3},\varepsilon _{4}>0\) with \(2\lambda \gamma \sigma _{1}(f_{\infty }- \varepsilon _{3})\geq 1\) and \(2\mu \gamma \sigma _{2}(g_{\infty }- \varepsilon _{4})\geq 1\). Then, for \((u,v)\in \partial K_{R}\) and \(t\in J\), it follows from (23) that
Finally, we can see from (21) that
Then, for each \((u,v)\in \partial K_{\rho }\) with \(\rho \geq 4\eta \), it follows from Lemma 2.4 that
Hence,
Thus, applying Lemma 2.2 to (23)–(25) shows that \(T(u,v)\) has the fixed point \((u_{1},v_{1})\in K\cap ( \overline{K}_{\rho }\setminus K_{r})\) and the fixed point \((u_{2},v _{2})\in K\cap (\overline{K}_{R}\setminus K_{\rho })\). In the light of (25) being a strict inequality, \(\|(u_{1},v_{1})\|\neq \rho \) and \(\|(u_{2},v_{2})\|\neq \rho \). Consequently, BVPs (1) have at least two pairs of PSs \((u_{i},v_{i})\), \(i=1,2\), satisfying (22). The proof is thus completed. □
Theorem 3.2
Suppose that \((B_{1})\)–\((B_{3})\) hold and there exist three constants \(\xi _{i}\) (\(i=1,2,3\)) with \(4\eta \leq \xi _{1}<\xi _{2}<\xi _{3}\) such that either
- (\(H_{1}\)):
-
\(\frac{\overline{\varphi }}{2\sigma _{1}}\leq \lambda \leq \frac{\xi _{2}}{4a\sigma _{1}\varPhi (\xi _{2})}\) and \(\frac{\overline{ \varphi }}{2\sigma _{2}}\leq \mu \leq \frac{\xi _{2}}{4c\sigma _{2} \varPhi (\xi _{2})}\), or
- (\(H_{2}\)):
-
\(\frac{\xi _{2}}{2\sigma _{1}\phi (\xi _{2})}<\lambda \leq \frac{\underline{\varphi }}{4a\sigma _{1}}\) and \(\frac{\xi _{2}}{2 \sigma _{2}\phi (\xi _{2})}<\mu \leq \frac{\underline{\varphi }}{4c \sigma _{2}}\) hold,
where \(\overline{\varphi }=\max \{\xi _{1}\phi ^{-1}(\xi _{1}),\xi _{3}\phi ^{-1}(\xi _{3}) \}\) and \(\underline{\varphi }=\min \{\xi _{1}\varPhi ^{-1}(\xi _{1}),\xi _{3}\varPhi ^{-1}(\xi _{3}) \}\). Then BVPs (1) have at least two pairs of PSs \((u_{i},v_{i})\), \(i=1,2\), which satisfy
Proof
Due to the proofs of case \((H_{1})\) and case \((H_{2})\) being similar, here we prove only case \((H_{1})\). We first consider the case when \(\lambda \geq \xi _{1}(2\sigma _{1}\phi (\xi _{1}))^{-1}\) and \(\mu \geq \xi _{1}(2\sigma _{2}\phi (\xi _{1}))^{-1}\). Note that \(f(\cdot ) \geq \phi (\xi _{1})\) and \(g(\cdot )\geq \phi (\xi _{1})\) as \(u+v\in [\gamma \xi _{1},\xi _{1} ]\) and \(t \in J\). Then, for \((u,v)\in \partial K_{\xi _{1}}\) and \(t\in J\), one has
For the case when \(\lambda \leq \xi _{2}(4a\sigma _{1}\varPhi (\xi _{2}))^{-1}\) and \(\mu \leq \xi _{2}(4c\sigma _{2}\varPhi (\xi _{2}))^{-1}\), noting that \(f(\cdot )\leq \varPhi (\xi _{2})\) and \(g(\cdot )\leq \varPhi (\xi _{2})\) as \(u+v\in [\gamma \xi _{2},\xi _{2} ]\) and \(t \in J\). Then for \((u,v)\in \partial K_{\xi _{2}}\), \(t\in J\), one obtains
Considering \(\lambda \geq \xi _{3}(2\sigma _{1}\phi (\xi _{3}))^{-1}\) and \(\mu \geq \xi _{3}(2\sigma _{2}\phi (\xi _{3}))^{-1}\), for \((u,v)\in \partial K_{\xi _{3}}\), \(t\in J\), we derive
Thus, applying Lemma 2.2 to (27)–(29) shows that T has the fixed point \((u_{1},v_{1})\in K\cap (\overline{K} _{\xi _{2}}\setminus K_{\xi _{1}})\) and the fixed point \((u_{2},v_{2}) \in K\cap (\overline{K}_{\xi _{3}}\setminus K_{\xi _{2}})\). In the light of (28), one gets \(\|(u_{1},v_{1})\|\neq \xi _{2}\) and \(\|(u_{2},v_{2})\|\neq \xi _{2}\). Therefore (26) holds, and the proof is thus completed. □
The following general theorem can be obtained by following a similar analysis to that of Theorem 3.2.
Theorem 3.3
Suppose that \((B_{1})\)–\((B_{3})\) hold and there exist \(n+1\) constants \(\xi _{i}\) (\(i=1,2,\ldots , n+1\)) with \(4\eta \leq \xi _{1}<\xi _{2}<\cdots <\xi _{n+1}\) such that either
- (\(H_{3}\)):
-
\(\frac{\xi _{2j-1}}{2\sigma _{1}\phi (\xi _{2j-1})}< \lambda <\frac{\xi _{2j}}{4a\sigma _{1}\varPhi (\xi _{2j})}\) and \(\frac{ \xi _{2j-1}}{2\sigma _{2}\phi (\xi _{2j-1})}<\mu <\frac{\xi _{2j}}{4c \sigma _{2}\varPhi (\xi _{2j})}\), \(j=1,2,\ldots ,[\frac{n+2}{2}]\), or
- (\(H_{4}\)):
-
\(\frac{\xi _{2j}}{2\sigma _{1}\phi (\xi _{2j})}<\lambda <\frac{\xi _{2j-1}}{4a\sigma _{1}\varPhi (\xi _{2j-1})}\) and \(\frac{\xi _{2j}}{2 \sigma _{2}\phi (\xi _{2j})}<\mu <\frac{\xi _{2j-1}}{4c\sigma _{2}\varPhi ( \xi _{2j-1})}\), \(j=1,2,\ldots ,[\frac{n+2}{2}]\) hold.
Then BVPs (1) have at least n pairs of PSs \((u_{i},v_{i})\), \(i=1,2,\ldots ,n\), which satisfy
Proof
When \(n=1\), we can see from the case \((H_{3})\) that \(\xi _{1}(2\sigma _{1}\phi (\xi _{1}))^{-1}<\lambda <\xi _{2}(4a\sigma _{1}\varPhi (\xi _{2}))^{-1}\) and \(\xi _{1}(2\sigma _{2}\phi (\xi _{1}))^{-1}<\mu <\xi _{2}(4c\sigma _{2}\varPhi (\xi _{2}))^{-1}\). Then it follows from (27) and (28) that \(\|T(u,v)\|>\|(u,v)\|\) for \((u,v)\in \partial K_{\xi _{1}}\) and \(\|T(u,v)\|<\|(u,v)\|\) for \((u,v)\in \partial K_{\xi _{2}}\). This together with Lemma 2.2 implies that T has a fixed point \((u_{1},v_{1})\) satisfies \(\xi _{1} < \|(u_{1},v_{1})\| < \xi _{2}\). Similarly, when \(n=2\) or \(n=3\), namely \(j=1,2\), we can further see that
Thus, applying Lemma 2.2 to (31) shows that T has at least three fixed points \((u_{i},v_{i})\), \(i=1,2,3\), satisfying
Therefore, by following the above analysis, we can see that (30) holds if \((H_{3})\) or \((H_{4})\) is satisfied. The proof is thus completed. □
4 Example
Consider the BVPs of the following nonlinear coupled system with impulses:
where
\(g=\frac{u+v}{20(5+t)} \vert \ln (u+v) \vert \), \(I(u)=- \frac{u}{15(1+u)}\), \(J(u)=-\frac{2u}{5(1+6u)}\), \(P(v)= \frac{2\cos (5v)-3}{50}\) and \(Q(v)=\frac{\sin (v)-1}{10}\). Obviously, \((B_{1})\)–\((B_{3})\) hold. By simple calculation, one can easily obtain \(\eta =\frac{1}{2}\), \(\gamma =\frac{1}{6}\), \(\sigma _{1}=\sigma _{2}=\frac{10}{3\sqrt{ \pi }}\), \(f_{0}=\frac{76}{25}\), \(f_{\infty }=1\) and \(g_{0}=g_{\infty }=+\infty \). We then further see that
Choose \(\delta =2\sqrt{\pi }\) and \(\rho =6\), then, for \(t\in J\) and \(u+v\in [1,6]\), one gets
Thus, one has
We can see from Theorem 3.1 that, for \(\lambda \in (\frac{9\sqrt{ \pi }}{10},2\sqrt{\pi }]\) and \(\mu \in (0,2\sqrt{\pi }]\), BVPs (33) have at least two pairs of PSs.
5 Conclusions
This paper has discussed the multiplicity of PSs of impulsive BVPs for a fractional-order coupled system involving parameters. Some sufficient conditions have been derived to guarantee the existence of multiple PSs for the considered fractional-order coupled system. An example has been provided to illustrate the obtained results. Note that only a two-point BVP is considered in this paper. Similar to the work in [25], an interesting topic for future research is to deal with the multi-point even nonlocal BVP. Another interesting topic is to consider the multiplicity of the solutions for impulsive FDEs on the half-line.
References
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent result. Appl. Mech. Rev. 63, 010801 (2010)
Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2011)
Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. 4(50), 2453–2461 (2010)
Gong, P.: Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies. IET Control Theory Appl. 10(18), 2515–2525 (2016)
Gong, P.: Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Franklin Inst. 354(5), 2226–2244 (2017)
Wu, G., Baleanu, D., Huang, L.: Novel Mittag-Leffler stability of linear fractional delay difference equations with impulse. Appl. Math. Lett. 82, 71–78 (2018)
Wu, G., Baleanu, D.: Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 21, 354–375 (2018)
Baleanu, D., Agarwal, R., Khan, H., Khan, R., Jafari, H.: On the existence of solution for fractional differential equations of order \(3<\delta _{1}\leq 4\). Adv. Differ. Equ. 2015, Article ID 362 (2015). https://doi.org/10.1186/s13662-015-0686-1
Anguraj, A., Karthikeyan, P., Rivero, M., Trujillo, J.: On new existence results for fractional integro-differential equations with impulsive and integral conditions. Comput. Math. Appl. 66(12), 2587–2594 (2014)
Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian. Appl. Math. Comput. 257, 526–536 (2015)
Ma, T., Tian, Y., Huo, Q., Zhang, Y.: Boundary value problem for linear and nonlinear fractional differential equations. Appl. Math. Lett. 86, 1–7 (2018)
Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order Caputo fractional differential equation. Qual. Theory Dyn. Syst. 14(1), 157–171 (2015)
Zhao, K., Gong, P.: Positive solutions of Riemann–Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential. Adv. Differ. Equ. 2014, Article ID 254 (2014). https://doi.org/10.1186/1687-1847-2014-254
Zhao, K., Gong, P.: Positive solutions for impulsive fractional differential equations with generalized periodic boundary value conditions. Adv. Differ. Equ. 2014, Article ID 255 (2014). https://doi.org/10.1186/1687-1847-2014-255
Zhao, Y., Sun, S., Han, Z., Zhang, M.: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217(16), 6950–6958 (2011)
Zhao, Y., Chen, H., Xu, C.: Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl. Math. Comput. 307, 170–179 (2017)
Lin, Z., Wang, J., Wei, W.: Multipoint BVPs for generalized impulsive fractional differential equations. Appl. Math. Comput. 258, 608–616 (2015)
Zhao, K., Gong, P.: Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order fractional differential. Math. Slovaca 67, 447–466 (2017)
Li, X., Chen, F., Li, X.: Generalized anti-periodic boundary value problems of impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 18(1), 28–41 (2013)
Tian, Y., Bai, Z.: Impulsive boundary value problem for differential equations with fractional order. Differ. Equ. Dyn. Syst. 21, 253–260 (2013)
Podlubny, I., Trujillo, J.: Fractional Differential Equations. Academic Press, New York (1993)
Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Mathematics and Its Applications, vol. 373. Kluwer Academic, Dordrecht (1996)
Zhao, K., Gong, P.: Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional differential equations. Bound. Value Probl. 2015, Article ID 19 (2015). https://doi.org/10.1186/s13661-014-0280-6
Acknowledgements
The authors would like to thank the anonymous referees for their useful and valuable suggestions.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, K., Gong, P. Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters. Adv Differ Equ 2019, 102 (2019). https://doi.org/10.1186/s13662-019-2049-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2049-9
MSC
- 26A33
- 35A15
- 34A08
- 58E05
Keywords
- Impulsive
- Caputo fractional differential
- Coupled system
- Multiplicity