- Research
- Open Access
- Published:
Traveling wave solutions for a neutral reaction–diffusion equation with non-monotone reaction
Advances in Difference Equations volume 2019, Article number: 344 (2019)
Abstract
In the present paper, we firstly improve the results on traveling wave solution that were established in (Liu and Weng in J. Differ. Equ. 258:3688–3741, 2015) for a neutral reaction–diffusion equation with quasi-monotone reaction. Secondly, by constructing two auxiliary equations and using Schauder’s Fixed Point Theorem, we further establish the existence and the asymptotic properties of the traveling wave solution for the equation with non-monotone reaction. Two examples are also given as the application of our results.
1 Introduction
In the present paper, we consider the following neutral reaction–diffusion equation
where \(L(u)(t,x)=u(t,x)-bu(t-r,x)\), and \(D>0\), \(r\geq 0\), \(0\leq b<1\) are constants; \(F(0,0,0)= F((1-b)K,K,K)=0\) for some \(K>0\).
When \(b=0\), then Eq. (1) reduces to the delayed reaction–diffusion equation
A special case of such equations reads as
or its local version (taking formally \(J(x)=\delta (x)\), the Dirac delta function)
which has been wildly investigated in the literature (see [22, 26, 27, 31] and references therein).
As a prototype of such equations, we mention the evolution model of the adult population of a single species with two age classes and moving around in an unbounded 1-dimensional spatial domain as follows:
which was derived by So, Wu and Zou [25], where \(D > 0\) and \(d > 0\) denote respectively the diffusion and death rates of the adult population, \(r\geq 0\) is the maturation time for the species, \(b(\cdot )\) is the birth function, and \(\epsilon > 0\) and \(\alpha \geq 0\) reflect the impact of the death and the dispersal rates of the immature on the matured population, respectively.
There are also other prototypes of Eq. (2) or Eq. (3) which have been studied intensively, such as the model
proposed by Gourley and Kuang [8] to describe the evolution of the mature population of a single species with age structure, the well-known diffusive Hutchison’s equation
and Nicholson’s blowflies diffusive equation
or its non-local version
and so on. For more details about these models, we refer the readers to [3, 18, 26, 33], and the references therein.
The neutral equations are usually adopted to model the evolution of population [5, 7, 17]. To model a ring array of coupled lossless transmission lines, Wu and Xia [29] proposed a neutral difference–differential system with discrete diffusion. In [30], by taking a limit, they further derived the following partial neutral functional differential equation:
and established the existence and global continuation of rotating waves.
In the last few decades, neutral equations have been investigated wildly, and a variety of themes have been touched, such as the existence and uniqueness, regularity and stability of solutions [1, 4, 9, 11, 14, 16, 28], periodic solutions [10, 24], controllability [23], and so on. But, to the best of our knowledge, there are few works that treat the traveling wave solution of partial neutral functional equations [12, 13, 20].
In [20], Liu and Weng established the existence of spreading speed and traveling wave solution for Eq. (1) with \(0< b<1\) and with a quasi-monotone reaction (i.e., \(F(s_{1},s_{2},s_{3})\) is monotone in \(s_{2},s_{3}\in [0,K]\)), and the equation
where \(p>a>0\), \(0< b<1\), \(1< \frac{p}{a(1-b)}\leq e\).
However, when \(0\leq b<1\), it is still an open problem to study the existence of traveling wave solution for Eq. (1) with non-monotone reaction \(F(s_{1},s_{2},s_{3})\), or Eq. (10) with \(\frac{p}{a(1-b)}> e\).
Concerning the traveling wave solution for the delayed diffusion equation (not of neutral type) with non-monotone reaction, we firstly cite the paper by Ma [22]. In this paper, the author established the existence of a traveling wave solution for a non-local delayed diffusion equation (3) with non-monotone function f by constructing two auxiliary equations with monotone reaction and by using Schauder’s Fixed Point Theorem. This method is powerful when dealing with the traveling wave solution of evolution equations with non-monotone reaction (see [2, 6, 15, 19, 33,34,35] and the references therein). Another paper we cite here is [36] by Yi and Zou. In it, the authors studied a class of non-monotone discrete-time dynamical systems. By using two properly chosen auxiliary systems with order preserving, they obtained results on the asymptotic behavior, the spreading speed, and the existence/nonexistence of traveling waves which can be applied to many classes of evolution equation with non-monotone nonlinearity in the reaction term.
Motivated by the above paper, we study the traveling wave solution for Eq. (1) with \(0\leq b<1\) and with non-monotone reaction \(F(s_{1},s_{2},s_{3})\), and this paper is organized as follows. In Sect. 2, we will relax some conditions which were stated in [20] and investigate the existence and asymptotic properties of traveling wave solution for Eq. (1) with quasi-monotone reaction \(F(s_{1},s_{2},s_{3})\), by adopting new super- and subsolutions and using Schauder’s Fixed Point Theorem. In Sect. 3, we study the existence and asymptotic properties of the traveling wave solution for Eq. (1) with non-monotone reaction. Two special models are discussed in Sect. 4 as an application of our results.
2 The quasi-monotone case
In this section, we study the existence of traveling wave solution for Eq. (1) with quasi-monotone reaction F.
In [20], the authors have obtained the existence of a traveling wave solution for Eq. (1) with quasi-monotone reaction F and with \(0< b<1\), but they imposed more stringent conditions on the reaction function F because of the methods they used. Here we relax some restrictions on F and use new methods to establish the existence of a traveling wave solution for Eq. (1) and list basic assumptions as follows:
-
(H1)
\(F((1-b)s,s,s)>0\) for \(s\in (0,K)\) and \(F(s_{1},s_{2},s _{3})\) is non-decreasing with respect to \(s_{2},s_{3}\in [0,K]\);
-
(H2)
\(F^{\prime }_{2}, F^{\prime }_{3}\geq 0\), and \(F^{\prime }_{1}+\frac{1}{1-b}(F^{\prime }_{2}+F^{\prime }_{3})>0\), where \(F^{\prime }_{j}=\frac{\partial F}{\partial s_{j}}(0,0,0)\), \(j=1,2,3\);
-
(H3)
There exist \(\sigma \in (0,1]\) and \(M_{1},M_{2},M_{3} \geq 0\), such that for any \(s_{1},s_{2},s_{3}\in [0,K]\),
$$ 0\leq F^{\prime }_{1} s_{1}+F^{\prime }_{2} s_{2}+F^{\prime }_{3} s _{3}-F(s_{1},s_{2},s_{3}) \leq M_{1}s_{1}^{1+\sigma }+M_{2}s_{2}^{1+ \sigma }+M_{3}s_{3}^{1+\sigma }; $$ -
(H4)
\(F(s_{1},s_{2},s_{3})\) is Lipschitz continuous with respect to \(s_{1},s_{2},s_{3}\in [0,K]\).
Let \(v(t,x):=L(u)(t,x)\), then we get
and Eq. (1) is transformed into a partial functional differential equation with infinite number of delays as follows:
Obviously, \(v\equiv 0\) and \(v\equiv (1-b)K\) are exactly two equilibria of Eq. (12).
It is clear that the traveling wave solution \(v(t,x)=V(\xi )\) (\(\xi =x+ct\)) of Eq. (12) is a solution of the wave profile equation
Next, we pursue the solution \(V(\xi )\) of Eq. (13), which satisfies
Let \(q(\lambda ,c)=0\) be the characteristic equation of Eq. (13) at \(V=0\), where
By a similar argument as in [20], we obtain the following lemma.
Lemma 1
Assume (H2) holds. Then there exists a pair \((\lambda _{*},c _{*})\) such that
-
(i)
\(q(\lambda _{*},c_{*})=0\), \(\frac{\partial q}{\partial \lambda }(\lambda _{*},c_{*})=0\);
-
(ii)
If \(c\in (0,c_{*})\), then \(q(\lambda ,c)>0\) for all \(\lambda >0\);
-
(iii)
For any \(c>c_{*}\), \(q(\lambda ,c)=0\) has two roots \(\lambda _{1}\) and \(\lambda _{2}\) with \(0<\lambda _{1}<\lambda _{2}\) and \(q(\lambda ,c)<0\) for all \(\lambda \in (\lambda _{1},\lambda _{2})\).
Remark 1
It is clear that \(c_{*}\) in Lemma 1 can also be defined by
Definition 1
\(V:\mathbb{R}\to \mathbb{R}\) is called a supersolution (subsolution) of Eq. (13), if V is continuous on \(\mathbb{R}\), twice differentiable on \(\mathbb{R}\setminus \varGamma \), \({V^{\prime }( \xi +)}\leq (\geq )\ {V^{\prime }(\xi -)}\), \(\xi \in \varGamma \) and satisfies
where Γ is a finite set.
For any \(c>c_{*}\), define the functions
where \(1<\beta <\min \{1+\sigma ,\frac{\lambda _{2}}{\lambda _{1}}\}\).
Let \(\xi _{1}\), \(\xi _{2}\) be the roots of equations
respectively, then \(\xi _{2}=- \frac{\ln \theta }{\lambda _{1}(\beta -1)}\leq 0\) whenever \(\theta \geq 1\). By [32, Lemma 2.2], we have the following lemma.
Lemma 2
\(\overline{V}(\xi )\) and \(\underline{V}(\xi )\) have the following properties:
-
(i)
\(\overline{V}(\xi )\geq \underline{V}(\xi )\), \(\xi \in \mathbb{R}\);
-
(ii)
\(\overline{V}(\xi )\) is non-decreasing on \(\mathbb{R}\);
-
(iii)
For any \(\xi ^{\prime },\xi ^{\prime \prime }\in \mathbb{R}\), \(|\overline{V}(\xi ^{\prime })-\overline{V}( \xi ^{\prime \prime })|\leq \alpha \beta \lambda _{1}(1-b)K|\xi ^{\prime }-\xi ^{\prime \prime }|\).
Lemma 3
Assume (H1)–(H3) hold, and for any \(c>c_{*}\), α, θ satisfy the inequalities:
then \(\overline{V}(\xi )\) and \(\underline{V}(\xi )\) are a supersolution and a subsolution of Eq. (13), respectively.
Proof
Firstly, we show that \(\overline{V}(\xi )\) is a supersolution of Eq. (13). In fact, by the definition of \(\overline{V}(\xi )\), \(\overline{V}(\xi )=(1-b)K\) for any \(\xi >\xi _{1}\), and \(\overline{V}( \xi )=\alpha ( e^{\lambda _{1}\xi }+\theta e^{\beta \lambda _{1}\xi })\) for any \(\xi \leq \xi _{1}\), so \(\overline{V}(\xi )\) is continuous on \(\mathbb{R}\), twice differentiable on \(\mathbb{R}\setminus \{\xi _{1} \}\), \({\overline{V}^{\prime }(\xi _{1}+)}=0\leq {\overline{V}^{\prime }(\xi _{1}-)}=\alpha ( \lambda _{1}e^{\lambda _{1}\xi _{1}}+\theta \beta \lambda _{1}e^{\beta \lambda _{1}\xi _{1}})\).
Furthermore, \(\overline{V}(\xi )\leq (1-b)K\) for all \(\xi \in \mathbb{R}\), so from (H1) it follows that, for any \(\xi >\xi _{1}\),
On the other hand, by Lemma 1(iii), we have \(q(\beta \lambda _{1},c)<0\). Again, for any \(\xi <\xi _{1} \), \(\overline{V}(\xi -cir)= \alpha ( e^{\lambda _{1}(\xi -cir)}+\theta e^{\beta \lambda _{1}(\xi -cir)})\) (\(i=0,1,2,\ldots \)). So from (H3) we have
Next, we prove that \(\underline{V}(\xi )\) is a subsolution of Eq. (13). In fact, we have \(\underline{V}(\xi )=0\) for \(\xi >\xi _{2}\), and \(\underline{V}(\xi )=\alpha ( e^{\lambda _{1}\xi }-\theta e ^{\beta \lambda _{1}\xi })\) for \(\xi \leq \xi _{2}\), so \(\underline{V}( \xi )\) is continuous on \(\mathbb{R}\), twice differentiable on \(\mathbb{R}\setminus \{\xi _{2}\}\), \({\underline{V}^{\prime }(\xi _{2}+)}=0 \geq {\underline{V}^{\prime }(\xi _{2}-)}=\alpha \lambda _{1}(1-\beta ) \theta ^{\frac{1}{1-\beta }}\). Note that \(\underline{V}(\xi )\geq 0\) for all \(\xi \in \mathbb{R}\), we get from (H1) that, for \(\xi >\xi _{2}\),
On the other hand, for any \(\xi <\xi _{2}\), \(\underline{V}(\xi -cir)= \alpha ( e^{\lambda _{1}(\xi -cir)}-\theta e^{\beta \lambda _{1}(\xi -cir)})\) (\(i=0,1,2,\ldots \)), then from (H1), (H3) and Lemma 1(iii), we get
□
From the above lemma, we indeed get a family of pairs of super- and subsolutions which take α, β, θ as parameters. Next, we just adopt a pair of super- and subsolution with \(\alpha =1\), and still denote them by V̅, \(\underline{V}\).
By (H4), there exist \(L_{1},L_{2},L_{3}>0\), such that, for any \(s_{i}^{\prime },s_{i}^{\prime \prime }\in [0,K]\), \(i=1,2,3\),
Let \(\gamma \geq L_{1}\) and rewrite Eq. (13) as follows:
Set
and let \(0<\mu <\varLambda _{2}\). Define
and
then \((\mathbf{E},\|\cdot \|_{\mu })\) is a Banach space. Obviously, \(\overline{V}\in \varOmega \) with \(\beta \lambda _{1}\leq 2\sqrt{\frac{ \gamma }{D}}\), i.e., Ω is non-empty. Moreover, it is easy to verify that Ω is convex and compact in E.
Set
and define an operator \(\mathcal{T}\) on Ω by
then a fixed point \(V(\xi )\) of \(\mathcal{T}\) is the solution of Eq. (13), and vice versa.
Lemma 4
Assume (H1) and (H4) hold, then
-
(1)
\(0\leq \mathcal{T}[V](\xi )\leq (1-b)K\) for all \(V\in C(\mathbb{R};[0,(1-b)K])\);
-
(2)
For any \(\xi \in \mathbb{R},\mathcal{T}[V](\xi )\) is non-decreasing with respect to \(V\in C(\mathbb{R};[0,(1-b)K])\);
-
(3)
\(\underline{V}(\xi )\leq \mathcal{T}[\underline{V}]( \xi )\leq \mathcal{T}[V](\xi )\leq \mathcal{T}[\overline{V}](\xi ) \leq \overline{V}(\xi )\) for any \(V\in \varOmega \), \(\xi \in \mathbb{R}\);
-
(4)
For any \(V\in \varOmega ,\mathcal{T}[V](\xi )\) is non-decreasing with respect to \(\xi \in \mathbb{R}\);
-
(5)
For any \(V\in \varOmega \) and \(\xi ^{\prime },\xi ^{\prime \prime }\in \mathbb{R}\), it follows that
$$ \bigl\vert \mathcal{T}[V] \bigl(\xi ^{\prime } \bigr)-\mathcal{T}[V] \bigl(\xi ^{\prime \prime } \bigr) \bigr\vert \leq 2(1-b)K\sqrt{ \frac{\gamma }{D}} \bigl\vert \xi ^{\prime }-\xi ^{\prime \prime } \bigr\vert . $$
Proof
(1) Firstly, we claim that, for any \(\xi \in \mathbb{R}, H[V](\xi )\) is non-decreasing with respect to \(V\in C(\mathbb{R};[0,(1-b)K])\).
In fact, for any \(V_{1},V_{2}\in C(\mathbb{R};[0,(1-b)K])\) with \(V_{1}(\xi )\leq V_{2}(\xi )\), \(\xi \in \mathbb{R}\), it follows that
The claim holds. So, for any \(V\in C(\mathbb{R};[0,(1-b)K])\),
and then, we get that, for any \(V\in C(\mathbb{R};[0,(1-b)K])\), \(\xi \in \mathbb{R}\),
(2) The monotonicity of \(\mathcal{ T}[V](\xi )\) with respect to \(V\in C(\mathbb{R};[0,(1-b)K])\) follows from that of \(H[V](\xi )\).
(3) For any \(V\in \varOmega \), from (2), we get that
and a similar argument as in [21] shows that
(4) For any \(V\in \varOmega \) and \(\xi ^{\prime },\xi ^{\prime \prime } \in \mathbb{R}\) with \(\xi ^{\prime }\leq \xi ^{\prime \prime }\), we have \(V(\xi ^{\prime })\leq V(\xi ^{\prime \prime })\), so \(H(V)(\xi ^{\prime })\leq H(V)(\xi ^{\prime \prime })\). Noting the fact that
it is easy to see that \(\mathcal{T}(V)(\xi )\) is non-decreasing with respect to \(\xi \in \mathbb{R}\).
(5) For any \(V\in \varOmega \), we have \(0\leq H[V](\xi )\leq \gamma (1-b)K\), \(\xi \in \mathbb{R}\), and then, for any \(\xi ^{\prime }, \xi ^{\prime \prime }\in \mathbb{R}\) with \(\xi ^{\prime }\geq \xi ^{\prime \prime }\),
i.e.,
□
Theorem 1
Assume that (H1)–(H4) hold. Then
-
(1)
For any \(c\geq c_{*}\), the traveling wave solution \(V(\xi )\) of Eq. (12) exists; \(V(\xi )\) is nondecreasing on \(\mathbb{R}\), \(V(-\infty )=0\), and \(V(+\infty )=(1-b)K\). In addition, for \(c> c_{*}\),
$$ \lim_{\xi \to -\infty }V(\xi )e^{-\lambda _{1}\xi }=1\quad \textit{and} \quad \lim_{\xi \to -\infty }V^{\prime }( \xi )e^{- \lambda _{1}\xi }= \lambda _{1}; $$ -
(2)
For any \(c< c_{*}\) and \(\lambda >0\), there is no traveling solution \(V(\xi )\) of Eq. (12) which satisfies
$$ \lim_{\xi \to -\infty }V(\xi )e^{-\lambda \xi }=1 \quad \textit{and} \quad \lim_{\xi \to -\infty }V^{\prime }( \xi )e^{- \lambda \xi }= \lambda . $$
Proof
(1) Firstly, by Lemma 4, we have \(\mathcal{T}(\varOmega ) \subset \varOmega \).
Next, we will show that \(\mathcal{T}\) is continuous with respect to \(\|\cdot \|_{\mu }\) in Ω.
In fact, for any \(V_{1},V_{2}\in \varOmega \), we have
By virtue of Schauder’s Fixed Point Theorem, for any \(c> c_{*}\), there exists a fixed point \(V(\xi )\) of \(\mathcal{T}(V)\) on Ω, i.e., there exists traveling wave solution \(V(\xi )\) of Eq. (12) which is nondecreasing on \(\mathbb{R}\), and \(V(-\infty )=0\), \(V(+\infty )=(1-b)K\).
Furthermore, by using a similar argument to the proof of [20, Theorem 3.3], we get
For the case \(c=c_{*}\), let \(\{c_{n}\}\) be a sequence such that \(c_{n}>c_{*}\), \(n=1,2,\ldots \) , and \(\lim_{n\to +\infty }c_{n}=c _{*}\), then for \(c=c_{n}\), \(n=1,2,\ldots \) , Eq. (12) admits a nondecreasing solution \(V_{n}(\xi )\), which satisfies
and
where
Adopting a limit argument similar to the proof of [20, Theorem 3.3] or [34, Theorem 2.5], we can obtain a subsequence of \(\{V_{n}(\xi )\}\) which is convergent uniformly for ξ in any bounded subset of \(\mathbb{R}\). Without loss of generality, denote it still by \(\{V_{n}(\xi )\}\), then there exists limit \(\lim_{n\to +\infty }V_{n}(\xi )=V_{*}(\xi )\), \(\xi \in \mathbb{R}\), and \(V_{*}(0)=\frac{(1-b)K}{2}\), \(V_{*}(\xi )\) is nondecreasing in \(\mathbb{R}\), \(V_{*}(-\infty )=0\), and \(V_{*}(+ \infty )=(1-b)K\).
(2) Suppose that there exist some \(c< c_{*}\) and \(\lambda >0\), such that the traveling wave solution \(V(\xi )\) of Eq. (12) exists and satisfies
then we have
Let \(\xi \to -\infty \), we get
and then
From \(\lim_{\xi \to -\infty }V^{\prime }(\xi )e^{- \lambda \xi }= \lambda \), we get \(\lim_{\xi \to -\infty }[V^{\prime }( \xi )e^{- \lambda \xi }]^{\prime }= 0\), so \(q(\lambda ,c)=0\). This is a contradiction to Lemma 1(ii). □
Theorem 2
Assume that (H1)–(H4) hold. Then
-
(1)
For any \(c\geq c_{*}\), the traveling wave solution \(U(\xi )\) of Eq. (1) exists; \(U(\xi )\) is nondecreasing on \(\mathbb{R}\), \(U(-\infty )=0\), \(U(+\infty )=K\), and for any \(c>c_{*}\),
$$ \lim_{\xi \to -\infty }U(\xi )e^{-\lambda _{1}\xi }=\frac{1}{1-be ^{-\lambda _{1}cr}} \quad \textit{and}\quad \lim_{\xi \to -\infty }U^{ \prime }(\xi )e^{- \lambda _{1}\xi }= \frac{\lambda _{1}}{1-be^{-\lambda _{1}cr}}; $$ -
(2)
For any \(c< c_{*}\) and \(\lambda >0\), there is no traveling solution \(U(\xi )\) of Eq. (1) which satisfies
$$ \lim_{\xi \to -\infty }U(\xi )e^{-\lambda \xi }=\frac{1}{1-be ^{-\lambda cr}} \quad \textit{and}\quad \lim_{\xi \to -\infty }U^{\prime }(\xi )e^{- \lambda _{\xi }}= \frac{\lambda }{1-be^{-\lambda cr}}. $$
Proof
(1) For any \(c\geq c_{*}\), by the Theorem 1, the traveling wave solution \(V(\xi )\) of Eq. (12) exists, and \(V(\xi )\) is nondecreasing on \(\mathbb{R}\), \(V(-\infty )=0\), \(V(+\infty )=(1-b)K\), and for any \(c>c_{*}\),
Firstly, the boundedness of \(V(\xi -cir)\) (\(i=0,1,\ldots \)) implies that \(\sum_{i=0}^{+\infty }b^{i}V(\xi -cir)\) is uniformly convergent on \(\xi \in \mathbb{R}\). Let \(U(\xi )=\sum_{i=0}^{+\infty }b ^{i}V(\xi -cir)\), then \(U(\xi )\) is a traveling wave solution of Eq. (1) and is non-decreasing on \(\mathbb{R}\), \(U(-\infty )=0\), \(U(+ \infty )=K\) and \(U^{\prime }(\xi )=\sum_{i=0}^{+\infty }b^{i}V ^{\prime }(\xi -cir)\).
Furthermore, for any \(c>c_{*}\), \(\sum_{i=0}^{+\infty }b^{i}V( \xi -cir)e^{- \lambda _{1}\xi }\) and \(\sum_{i=0}^{+\infty }b ^{i}V^{\prime }(\xi -cir)e^{- \lambda _{1}\xi }\) are uniformly convergent for \(\xi \in \mathbb{R,}\) respectively, since
for all \(i=0,1,2\ldots \) , and
So,
and
(2) Assume that there exist \(c< c_{*}\) and \(\lambda >0\), such that Eq. (1) has traveling wave solution \(U(\xi )\) which satisfies
Let \(V(\xi )=U(\xi )-bU(\xi -cr)\), then \(V(\xi )\) is a traveling wave solution of Eq. (12) and
and
This is a contradiction to Theorem 1(2). □
3 The non-monotone case
In this section, we will discuss the traveling wave solution of Eq. (1) with the non-monotone reaction \(F(s_{1},s_{2},s_{3})\), and we need the following assumptions: there exist continuous functions \(F_{\pm }(s_{1},s_{2},s_{3})\) and constants \(K_{1},K_{2}>0\), such that \(K_{1}\leq K\leq K_{2}\) and
-
(A1)
\(F_{\pm }(0,0,0)=0\), \(F_{+}((1-b)K_{2},K_{2},K_{2})= F_{-}((1-b)K _{1},K_{1},K_{1})=0\), \(F_{+}((1-b)s,s,s)>0\) for \(s\in (0,K_{2})\) and \(F_{-}((1-b)s,s,s)>0\) for \(s\in (0,K_{1})\);
-
(A2)
\(F_{-}(s_{1},s_{2},s_{3})\leq F(s_{1},s_{2},s_{3})\leq F _{+}(s_{1},s_{2},s_{3})\) for \(s_{1},s_{2},s_{3}\in [0,K_{2}]\);
-
(A3)
\(F_{\pm ,j}^{\prime }= F^{\prime }_{j}\), where \(F_{\pm ,j} ^{\prime }\) are defined similarly to \(F^{\prime }_{j}\) in (H4), \(j=1,2,3\);
-
(A4)
There exist \(\sigma \in (0,1]\) and \(M_{\pm ,1},M_{\pm ,2},M _{\pm ,3}\geq 0\), such that
$$ 0\leq F_{-,1}^{\prime }s_{1}+F_{-,2}^{\prime }s_{2}+F_{-,3}^{\prime }s _{3}-F_{-}(s_{1},s_{2},s_{3}) \leq M_{-,1}s_{1}^{1+\sigma }+M_{-,2}s _{2}^{1+\sigma }+M_{-,3}s_{3}^{1+\sigma }; $$for any \(s_{1},s_{2},s_{3}\in [0,K_{1}]\), and
$$ 0\leq F_{+,1}^{\prime }s_{1}+F_{+,2}^{\prime }s_{2}+F_{+,3}^{\prime }s _{3}-F_{+}(s_{1},s_{2},s_{3}) \leq M_{+,1}s_{1}^{1+\sigma }+M_{+,2}s _{2}^{1+\sigma }+M_{+,3}s_{3}^{1+\sigma }; $$for any \(s_{1},s_{2},s_{3}\in [0,K_{2}]\);
-
(A5)
\(F_{\pm }(s_{1},s_{2},s_{3})\) is non-decreasing with respect to \(s_{2},s_{3}\in [0,K_{2}]\) and Lipschitz continuous with respect to \(s_{1},s_{2},s_{3}\in [0,K_{2}]\).
Consider the following equations:
and
From (A1), it is obvious that \(u\equiv 0\) and \(u\equiv K_{1}\) are equilibria of Eq. (23) and \(u\equiv 0\) and \(u\equiv K_{2}\) are those of Eq. (24).
By the transformation \(v(t,x)=L(u)(t,x)\), Eqs. (23) and (24) reduce to
and
respectively, and the wave profile equations are given as follows:
and
respectively.
It is obviously that, Eqs. (13), (27), and (28) have the same characteristic equation, \(q(\lambda ,c)=0\) at \(V=0\), where \(q(\lambda ,c)\) is defined in (14). Let \(c_{*}\) and \(\lambda _{1}\) are defined as in Lemma 1, then we have the following lemma.
Lemma 5
Assume (H2), (A1)–(A5) hold. Then:
-
(1)
For any \(c\geq c_{*}\), the traveling wave solutions \(V_{+}(\xi )\) of Eq. (25) and \(V_{-}(\xi )\) of Eq. (26) exist; \(V_{\pm }(\xi ) \) is nondecreasing on \(\mathbb{R}\), \(V_{\pm }(-\infty )=0\), \(V_{-}(+\infty )=(1-b)K_{1}\), \(V_{+}(+ \infty )=(1-b)K_{2}\), and for any \(c>c_{*}\),
$$ \lim_{\xi \to -\infty }V_{\pm }(\xi )e^{-\lambda _{1}\xi }=1 \quad \textit{and}\quad \lim_{\xi \to -\infty }V_{\pm }^{\prime }( \xi )e ^{- \lambda _{1}\xi }= \lambda _{1}; $$ -
(2)
For any \(c< c_{*}\) and \(\lambda >0\), there is no traveling solution \(V_{+}(\xi )\) of Eq. (25) and \(V_{-}(\xi )\) of Eq. (26) such that
$$ \lim_{\xi \to -\infty }V_{\pm }(\xi )e^{-\lambda \xi }=1 \quad \textit{and} \quad \lim_{\xi \to -\infty }V_{\pm }^{\prime }( \xi )e ^{- \lambda \xi }= \lambda . $$
Lemma 6
For any \(c\geq c_{*}\), let \(V_{+}(\xi )\) and \(V_{-}(\xi )\) be the traveling wave solution of Eqs. (25) and (26), respectively, then there exists \(\overline{\xi }\in \mathbb{R}\) such that \(V_{-}(\xi )\leq V_{+}(\xi +\overline{\xi })\), \(\xi \in \mathbb{R}\).
The proof is similar to that of [34, Lemma 3.5] and we omit it here.
Assume \(L_{+,j},L_{-,j}>0\) (\(j=1,2,3\)) are Lipschitz constants of \(F_{+}\) and \(F_{-}\), respectively, and \(L_{1}\) is as defined in Sect. 2. Let \(\overline{\gamma }\geq \max \{L_{+,1},L_{-,1},L_{1}\}\) and rewrite Eqs. (27) and (28), respectively, as follows:
and
Set
and let \(0<\overline{\mu }<\overline{\varLambda }_{2}\). Define
and
Then \((\overline{\mathbf{E}},\|\cdot \|_{\overline{\mu }})\) is a Banach space and Ω̅ is non-empty since \(V_{\pm }\in \overline{ \varOmega }\). Moreover, it is easy to verify that Ω̅ is convex and compact in \(\overline{\mathbf{E}}\).
Set
and define an operator \(\overline{\mathcal{T}}\) on Ω by
where H is defined as in (21) with γ replaced by γ̅.
Theorem 3
Assume (H2), (H4), (A1)–(A5) hold. Then for any \(c\geq c_{*}\), there exists a traveling wave solution \(V(\xi )\) of Eq. (12) with \(V(-\infty )=0\),
and for any \(c>c_{*}\),
Proof
For any \(V\in \overline{\varOmega }\), we have \(0\leq V_{-}(\xi )\leq V( \xi )\leq {V_{+}(\xi +\overline{\xi })}\leq (1-b)K_{2}\), and then
Furthermore,
Again, since \(V_{-}(\xi )\) is a solution of Eq. (28) and \(H_{-}(V)(\xi )\) is non-decreasing on \(V\in C(\mathbb{R},[0,(1-b)K _{2}])\) for any \(\xi \in \mathbb{R}\), we have that, for any \(V\in \overline{\varOmega }\), \(\xi \in \mathbb{R}\),
Similarly, we have \(\overline{\mathcal{T}}(V)(\xi )\leq {V_{+}( \xi +\overline{\xi })}\) for any \(V\in \overline{\varOmega }\), \(\xi \in \mathbb{R}\).
By a similar proof to that of Lemma 4(5), we get that, for any \(V\in \overline{\varOmega }\),
So, \(\overline{\mathcal{T}}(\overline{\varOmega })\subset \overline{ \varOmega }\). It is easy to verify that \(\overline{\mathcal{T}}\) is continuous with respect to the norm \(\|\cdot \|_{\overline{\mu }}\) on Ω̅ by making use of a similar argument as in the proof of Theorem 1. By virtue of Schauder’s Fixed Point Theorem, operator \(\overline{\mathcal{T}}\) has a fixed point \(V(\xi )\) on Ω̅, which is the traveling wave solution of Eq. (12) and satisfies
Furthermore, by Lemma 5, we have \(V(-\infty )=0\),
and for any \(c>c_{*}\),
□
By a similar proof as for Theorem 2, we obtain a theorem as follows.
Theorem 4
Assume that (H2), (H4), (A1)–(A5) hold. Then for any \(c\geq c_{*}\), there exists a traveling wave solution \(U(\xi )\) of Eq. (1) with \(U(-\infty )=0\),
and for any \(c>c_{*}\),
4 Applications and discussions
In this section, as an application of Theorem 4, we firstly consider the following partial functional differential equation of neutral type:
We need the following assumptions:
-
(a1)
\(g(0)=f(0)=0\); \(g((1-b)K)=h(K)f(K)\) for some \(K>0\);
-
(a2)
There exists \(K_{2}\geq K\) such that \(0< f(u)\leq g((1-b)K _{2})/h(K_{2})\), \(u\in (0,K_{2}]\); \(g((1-b)u)\leq g((1-b)K_{2})/h(K_{2})\), \(u \in (0,K_{2})\);
-
(a3)
\(h(0)f^{\prime }(0)>(1-b)g^{\prime }(0)>0\); \(f^{\prime }(0)u \geq f(u)\), \(g(u)\geq g^{\prime }(0)u\), \(h(0)\geq h(u)>0\) and \(f^{\prime }(0)u> g((1-b)u)/h(u)\), \(u\in (0,K_{2})\);
-
(a4)
There exists \(\sigma \in (0,1]\) such that
$$ \limsup_{u\to 0^{+}} \bigl[f^{\prime }(0)-f(u)/u \bigr]u^{-\sigma }< + \infty ;\qquad \limsup_{u\to 0^{+}} \bigl[g(u)/u-g^{\prime }(0) \bigr]u^{- \sigma }< +\infty ; $$and
$$ \limsup_{u\to 0^{+}} \bigl[h(0)-h(u) \bigr]u^{-(1+\sigma )}< + \infty ; $$ -
(a5)
g, h and f are Lipschitz continuous on \([0,K_{2}]\).
Let
From the conditions \(f^{\prime }(0)>(1-b)g^{\prime }(0)/h(0)\) and \(f(u)>0\), \(u\in (0,K_{2}]\) in (a3), \(K_{1}\) is well defined and \(0< K_{1}\leq K\) and \(f(u)\geq g((1-b)u)\), \(u\in (0,K_{1})\).
Define the following functions:
and
then \(f_{1}\) and \(f_{2}\) have the following properties:
Lemma 7
Assume (a1)–(a5) hold. Then
-
(1)
\(f_{n}\) (\(n=1,2\)) is Lipschitz continuous on \([0,+\infty )\) and non-decreasing on \([0,K_{2}]\);
-
(2)
\(f_{1}(u)\leq f(u)\leq f_{2}(u)\), \(u\in [0,+\infty )\);
-
(3)
\(f_{n}(0)=0\), \(f_{n}(K_{n})=g((1-b)K_{n})/h(K_{n})\) and \(f_{n}(u)>g((1-b)u)/h(u)\), \(u\in (0,K_{n})\), \(n=1,2\);
-
(4)
\(f_{n}^{\prime }(0)=f^{\prime }(0)\), \(n=1,2\);
-
(5)
\(\limsup_{u\to 0^{+}}[f_{n}^{\prime }(0)-f_{n}(u)/u]u ^{-\sigma }<+\infty \).
Set
and
From assumptions (a3)–(a5) and Lemma 7, it is easy to verify that F and \(F_{\pm }\) satisfy assumptions (H2), (H4), and (A1)–(A5).
Let
and assume \(c_{*}\) is defined as in (15). Then from the Theorem 4, we have
Theorem 5
Assume that (a1)–(a5) hold. Then for any \(c\geq c_{*}\), there exists a traveling wave solution \(U(\xi )\) of (29) with \(U(-\infty )=0\),
and there exists some \(\overline{\xi }\in \mathbb{R}\) such that, for any \(c>c_{*}\),
where \(\lambda _{1}\) is the smaller root of \(q(\lambda ,c)=0\).
As another application example of Theorem 4, we consider Eq. (10) and state it again as follows for convenience of reading:
where \(p>a>0\), \(0\leq b<1\), \(\frac{p}{a(1-b)}>e\). It is obvious that Eq. (30) has exactly two equilibria \(u=0\) and \(u=K=\ln {\frac{p}{a(1-b)}}>0\).
Let \(F(s_{1},s_{2},s_{3})=-as_{1}+\frac{p}{2}[s_{2}e^{-s_{2}}+s_{3}e ^{-s_{3}}]\), \(K_{2}=\frac{p}{a(1-b)}\), then \(K_{2}>K\), and \(F(s_{1},s _{2},s_{3})\) is non-monotone on \(s_{2},s_{3}\in [0,K_{2}]\).
Set \(f(s)=\frac{p}{2}se^{-s}\), and choose \(\overline{K}\in (0,K)\), such that \(f(\overline{K})=\frac{p}{2}K_{2}e^{-K_{2}}= \frac{p^{2}}{2a(1-b)}e^{-\frac{p}{a(1-b)}}\). Let \(K_{1}=\frac{p^{2}}{a ^{2}(1-b)^{2}}e^{-\frac{p}{a(1-b)}}\), then \(\overline{K}< K_{1}< K\).
Define
and
Then it is easy to verify that F and \(F_{\pm }\) satisfy assumptions (H2), (H4), and (A1)–(A5).
Let
and suppose \(c_{*}\) is defined as in (15). Then from Theorem 4, we have
Theorem 6
For any \(c\geq c_{*}\), there exists a traveling wave solution \(U(\xi )\) of (30) with \(U(-\infty )=0\),
and there exists some \(\overline{\xi }\in \mathbb{R}\) such that, for any \(c>c_{*}\),
where \(\lambda _{1}\) is the smaller root of \(q(\lambda ,c)=0\).
References
Adimy, M., Ezzinbi, K.: Existence and stability in the α-norm for partial functional equations of neutral type. Ann. Mat. Pura Appl. 185(3), 437–460 (2006)
Bai, Z.G., Zhao, T.: Spreading speed and traveling waves for a non-local delayed reaction–diffusion system without quasi-monotonicity. Discrete Contin. Dyn. Syst., Ser. B 23(10), 4063–4085 (2018)
Ducrot, A., Nadin, G.: Asymptotic behaviour of traveling waves for the delayed Fisher–KPP equation. J. Differ. Equ. 256, 3115–3140 (2014)
Ezzinbi, K., Ghnimib, S.: Existence and regularity of solutions for neutral partial functional integrodifferential equations. Nonlinear Anal., Real World Appl. 11, 2335–2344 (2010)
Fang, H., Li, J.: On the existence of periodic solutions of a neutral delay model of single-species population growth. J. Math. Anal. Appl. 259, 8–17 (2001)
Fang, J., Zhao, X.Q.: Existence and uniqueness of traveling waves for non-monotone integral equations with applications. J. Differ. Equ. 248, 2199–2226 (2010)
Freedman, H.I., Kuang, Y.: Some global qualitative analyses of a single species neutral delay differential population model. Rocky Mt. J. Math. 25(1), 201–215 (1995)
Gourley, S.A., Kuang, Y.: Wavefronts and global stability in a time-delayed population model with stage structure. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 459(2034), 1563–1579 (2003)
Hale, J.K.: Partial neutral functional-differential equations. Rev. Roum. Math. Pures Appl. 39(4), 339–344 (1994)
Henrquez, H.R., Cuevas, C., Caicedo, A.: Asymptotically periodic solution of neutral partial differential equations with infinity delay. Commun. Pure Appl. Anal. 12(5), 2031–2068 (2013)
Hernandez, E., O’Regan, D.: On a new class of abstract neutral differential equations. J. Funct. Anal. 261, 3457–3481 (2011)
Hernandez, E., Trofimchuk, S.: Nonstandard quasi-monotonicity: an application to the wave existence in a neutral KPP–Fisher equation. arXiv:1902.0038
Hernandez, E., Wu, J.H.: Traveling wave front for partial neutral differential equations. Proc. Am. Math. Soc. 146(4), 1603–1617 (2018)
Hernandeza, E., Pierri, M., Prokopczyk, A.: On a class of abstract neutral functional differential equations. Nonlinear Anal. 74, 3633–3643 (2011)
Hsu, S., Zhao, X.: Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal. 40(2), 776–789 (2008)
Hu, Z.R., Jin, Z.: Necessary and sufficient conditions for the regularity and stability of solutions for some partial neutral functional differential equations with infinite delay. Nonlinear Anal. 73, 2752–2765 (2010)
Kuang, Y.: Global stability in one or two species neutral delay population models. Can. Appl. Math. Q. 1(1), 23–45 (1993)
Kwong, M.K., Ou, C.H.: Existence and nonexistence of monotone traveling waves for the delayed Fisher equation. J. Differ. Equ. 249, 728–745 (2010)
Li, B.T., Lewi, M.A., Weinberger, H.F.: Existence of traveling waves for integral recursions with nonmonotone growth functions. J. Math. Biol. 58, 323–338 (2009)
Liu, Y.B., Weng, P.X.: Asymptotic pattern for a partial neutral functional differential equation. J. Differ. Equ. 258, 3688–3741 (2015)
Ma, S.: Traveling wavefronts for delayed reaction–diffusion systems via a fixed point theorem. J. Differ. Equ. 171, 294–314 (2001)
Ma, S.: Traveling waves for non-local delayed diffusion equations via auxiliary equations. J. Differ. Equ. 237, 259–277 (2007)
Radhakrishnan, B., Balachandran, K.: Controllability of neutral evolution integrodifferential systems with state dependent delay. J. Optim. Theory Appl. 153, 85–97 (2012)
Santos, J.P.C.D., Guzzo, S.M.: Solutions in several types of periodicity for partial neutral integro-differential equation. Electron. J. Differ. Equ. 2013, 31 (2013)
So, J.W.-H., Wu, J.H., Zou, X.F.: A reaction–diffusion model for a single species with age structure. I. Traveling wavefronts on unbounded domains. Proc. R. Soc. A, Math. Phys. Eng. Sci. 457, 1841–1853 (2001)
Trofimchuk, E., Pinto, M., Trofimchuk, S.: Monotone waves for non-monotone and non-local monostable reaction–diffusion equations. J. Differ. Equ. 261, 1203–1236 (2016)
Wang, H.Y.: On the existence of traveling waves for delayed reaction–diffusion equations. J. Differ. Equ. 247, 887–905 (2009)
Wu, J.H.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)
Wu, J.H., Xia, H.X.: Self-sustained oscillations in a ring array of coupled lossless transmission lines. J. Differ. Equ. 124, 247–278 (1996)
Wu, J.H., Xia, H.X.: Rotating waves in neutral partial functional differential equations. J. Dyn. Differ. Equ. 11(2), 209–238 (1999)
Wu, S.L., Hsu, C.H.: Entire solutions of non-quasi-monotone delayed reaction–diffusion equations with applications. Proc. R. Soc. Edinb. A 144, 1085–1112 (2014)
Xu, Z.Q., Weng, P.X.: Traveling waves in a convolution model with infinite distributed delay and non-monotonicity. Nonlinear Anal., Real World Appl. 12, 633–647 (2011)
Xu, Z.Q., Xiao, D.M.: Spreading speeds and uniqueness of traveling waves for a reaction–diffusion equation with spatio-temporal delays. J. Differ. Equ. 260, 268–303 (2016)
Xu, Z.T., Weng, P.X.: Traveling waves for nonlocal and non-monotone delayed reaction–diffusion equations. Acta Math. Sin. 29(11), 2159–2180 (2013)
Yao, L., Yu, Z., Yuan, R.: Spreading speed and traveling waves for a nonmonotone reaction–diffusion model with distributed delay and nonlocal effect. Appl. Math. Model. 35, 2916–2929 (2011)
Yi, T.S., Zou, X.F.: Asymptotic behavior, spreading speeds, and traveling waves of nonmonotone dynamical systems. SIAM J. Math. Anal. 47(4), 3005–3034 (2015)
Acknowledgements
The author would like to thank the anonymous referees for their hard work and valuable comments and suggestions.
Availability of data and materials
Not applicable.
Funding
This paper is supported partially by NSF of China (11601180, 1162611), NSF of Guangdong Province (2016A030310100) and FDYT in Higher Education of Guangdong, China (2015KQNCX155).
Author information
Authors and Affiliations
Contributions
The author contributed to the writing of this paper independently. The author conceived of the study, participated in its design and coordination, and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declare to have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Liu, Y. Traveling wave solutions for a neutral reaction–diffusion equation with non-monotone reaction. Adv Differ Equ 2019, 344 (2019). https://doi.org/10.1186/s13662-019-2256-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2256-4
MSC
- 35K57
- 35Q99
- 34K40
Keywords
- Neutral reaction–diffusion equation
- Traveling wave solution
- Schauder’s Fixed Point Theorem
- Auxiliary equations