- Research
- Open Access
- Published:
Pseudo almost automorphic solutions of quaternion-valued neural networks with infinitely distributed delays via a non-decomposing method
Advances in Difference Equations volume 2019, Article number: 356 (2019)
Abstract
In this paper, we consider the existence and global exponential stability of pseudo almost automorphic solutions to quaternion-valued cellular neural networks with infinitely distributed delays. Unlike most previous studies of quaternion-valued cellular neural networks, we do not decompose the systems under consideration into real-valued or complex-valued systems, but rather directly study quaternion-valued systems. Our method and the results of this paper are new. An example is given to show the feasibility of our main results.
1 Introduction
The quaternion was introduced into mathematics in 1843 by Hamilton [1]. The skew field of quaternions is
where \(q^{R},q^{I},q^{J},q^{K} \in \mathbb{R}\) and i, j, k satisfy Hamilton’s multiplication table formed by
and the norm of \(q\in \mathbb{H}\) is
where \(\bar{q}=q^{R}-iq^{I}-jq^{J}-kq^{K}\). For \(x=(x_{1},x_{2}, \ldots ,x_{n})^{T}\in \mathbb{H}^{n}\), we define \(\|x\|_{\mathbb{H} ^{n}}= \max_{1\leq p\leq n} \{\|x_{p}\|_{\mathbb{H}} \}\) and \(|x|_{\mathbb{H}^{n}}=\sum_{p=1}^{n}\|x_{p}\|_{\mathbb{H}}\). Quaternion algebra is a non-commutative divisible algebra. It is because of its non-commutative nature that the study of quaternions is much more difficult than real and complex numbers. In recent years, with the rapid development of quaternion algebra and the wide application of quaternions in many fields, the study of quaternion algebra and quaternion analysis has attracted more and more scholars from various fields. Quaternion-valued differential equations, as special differential equations, are widely used in quantum mechanics, fluid mechanics, Frenet–Serret frame in differential geometry, dynamics model, robot operation, Kalman filter design, spatial rigid body dynamics, computer Graphics, and so on [2,3,4,5,6,7,8,9,10].
On the one hand, since quaternion-valued neural network models have more advantages than the real-value neural network models in dealing with affine transformation in three-dimensional space, color image compression, color night vision, satellite attitude control, and so on [11, 12], in recent years research on quaternion-valued neural networks has become a hot research topic. As we know, the design, implementation, and application of neural networks greatly depend on the dynamic behavior of neural networks. Therefore, there are some research results in this area. Since the quaternion multiplication does not satisfy the commutative law, most of the results are obtained by decomposing the considered quaternion-valued systems into real-valued systems or a complex-valued systems [13,14,15,16,17,18,19]. Only very few results on the stability and dissipation of quaternion-valued neural networks are obtained by direct method [20,21,22].
On the other hand, almost automorphicity is an extension of almost periodicity and pseudo automorphicity is a natural generalization of almost automorphicity. At the same time, for non-autonomous neural networks, periodicity, almost periodicity, and almost automorphicity are important dynamics [23,24,25,26,27,28]. At present, there are no results on the almost automorphicity of quaternion-valued neural networks obtained by direct method.
Inspired by the above discussion, in this paper, we are concerned with the following quaternion-valued neural network with infinitely distributed delays:
where \(p\in \mathbb{I}_{n}:=\{1,2,\ldots ,n\}\), \(x_{p}(t):\mathbb{R} \rightarrow \mathbb{H}\) denotes the activation of the pth neuron at time t; \(a_{p}(t):\mathbb{R}\rightarrow \mathbb{R}^{+}\) represents the rate at which the pth unit will reset its potential to the resting state in isolation when disconnected from the network, and external inputs at time t; \(b_{pq}, c_{pq}:\mathbb{R}\rightarrow \mathbb{H}\) represent the connection weights and the distributively delayed connection weights between the qth neuron and the pth neuron at time t, respectively; \(f_{q},g_{q}:\mathbb{H}\rightarrow \mathbb{H}\) are the activation functions of signal transmission; \(Q_{p}:\mathbb{R} \rightarrow \mathbb{H}\) is an external input on the pth unit at time t; the kernel function \(k_{pq}: \mathbb{R}\rightarrow \mathbb{R} ^{+}\) satisfies \(\int _{0}^{+\infty }k_{pq}(s)\,ds=1\).
The initial value of system (1) is given by
where \(\varphi _{p}\in C((-\infty ,0],\mathbb{H})\).
The main purpose of this paper is to study the existence and global exponential stability of pseudo almost automorphic solutions to system (1). Our results and method are new, and our method can be used to study the existence and stability of almost periodic solutions, pseudo almost periodic solutions, almost automorphic solutions, and pseudo almost automorphic solutions for other types of quaternion-valued neural network models.
This paper is organized as follows. In Sect. 2, we introduce some basic definitions and lemmas. In Sect. 3, the existence of pseudo almost automorphic solutions of system (1) is discussed based on the contraction mapping principle. In Sect. 4, the global exponential stability of pseudo almost automorphic solutions is studied based on proof by contradiction. In Sect. 5, an example is given to illustrate the feasibility of our results of this paper.
2 Preliminaries
Let \(BC(\mathbb{R},\mathbb{H}^{n})\) be the set of all bounded continuous functions from \(\mathbb{R}\) to \(\mathbb{H}^{n}\).
Definition 1
Function \(f\in BC(\mathbb{R},\mathbb{H}^{n})\) is said to be almost automorphic if, for every sequence of real numbers \((s_{n}^{\prime })_{n \in \mathbb{N}}\), there exists a subsequence \((s_{n})_{n\in \mathbb{N}}\) such that
is well defined for each \(t \in \mathbb{R}\), and
for each \(t \in \mathbb{R}\).
For convenience, we denote by \(AA(\mathbb{R},\mathbb{H}^{n})\) the set of all almost automorphic functions from \(\mathbb{R}\) to \(\mathbb{H} ^{n}\).
Similar to the proofs of the corresponding results in Ref. [29], one can get the following.
Lemma 1
If \(f,g\in AA(\mathbb{R},\mathbb{H})\) and if \(\lambda \in \mathbb{R}\), then we have \(f+g, fg, \lambda f\in AA(\mathbb{R},\mathbb{H})\).
Lemma 2
\(x\in AA(\mathbb{R},\mathbb{H})\) and \(\tau \in \mathbb{R}\), then \(x(\cdot -\tau )\in AA(\mathbb{R},\mathbb{H})\).
Lemma 3
If \(f\in C(\mathbb{R},\mathbb{H})\) satisfies the Lipschitz condition, \(x\in AA(\mathbb{R},\mathbb{H})\), then \(f(x(\cdot ))\) belongs to \(AA(\mathbb{R},\mathbb{H})\).
Let
Definition 2
A function \(f\in BC(\mathbb{R},\mathbb{H})\) is said to be pseudo almost automorphic if it can be expressed as \(f=f_{1}+f_{0}\), where \(f_{1}\in AA(\mathbb{R},\mathbb{H})\) and \(f_{0}\in AA_{0}(\mathbb{R}, \mathbb{H})\). The collection of such functions will be denoted by \(PAA(\mathbb{R},\mathbb{H})\).
Lemma 4
If \(\varphi \in PAA(\mathbb{R},\mathbb{H})\), then \(\varphi (\cdot -h) \in PAA(\mathbb{R},\mathbb{H})\).
Proof
Since \(\varphi \in PAA(\mathbb{R},\mathbb{H})\), we can write \(\varphi =\varphi _{1}+\varphi _{0}\), where \(\varphi _{1}\in AA( \mathbb{R},\mathbb{H})\) and \(\varphi _{0}\in AA_{0}(\mathbb{R}, \mathbb{H})\). Then we have
In view of Lemma 2, \(\varphi _{1}(\cdot -h)\in AA(\mathbb{R}, \mathbb{H})\) and
which implies that \(\varphi _{0}(\cdot -h)\in AA_{0}(\mathbb{R}, \mathbb{H})\). So \(\varphi (\cdot -h)\in PAA(\mathbb{R},\mathbb{H})\). The proof is complete. □
Lemma 5
If \(\varphi ,\psi \in PAA(\mathbb{R},\mathbb{H})\), then \(\varphi \psi \in PAA(\mathbb{R},\mathbb{H})\).
Proof
We can write \(\varphi (t)=\varphi _{1}(t)+\varphi _{0}(t)\), \(\psi (t)= \psi _{1}(t)+\psi _{0}(t)\), where \(\varphi _{1}, \psi _{1}\in AA( \mathbb{R},\mathbb{H})\) and \(\varphi _{0}, \psi _{0}\in AA_{0}( \mathbb{R},\mathbb{H})\). Obviously,
By Lemma 1, \(\varphi _{1}\psi _{1}\in AA(\mathbb{R},\mathbb{H})\). Since
\(\varphi _{1}\psi _{0}+\psi _{1}\varphi _{0}+\varphi _{0}\psi _{0}\in AA _{0}(\mathbb{R},\mathbb{H})\). Therefore, \(\varphi \psi \in PAA( \mathbb{R},\mathbb{H})\). The proof is complete. □
Lemma 6
Let \(g\in C(\mathbb{R},\mathbb{H})\) and \(\varphi \in PAA(\mathbb{R}, \mathbb{H})\). If there exists a positive constant L such that
then the function \(g(\varphi (\cdot ))\in PAA(\mathbb{R},\mathbb{H})\).
Proof
Since \(\varphi \in PAA(\mathbb{R},\mathbb{H})\), we can write \(\varphi (t)=\varphi _{1}(t)+\varphi _{0}(t)\). Hence,
By Lemma 3, we have \(g(\varphi _{1}(\cdot ))\in AA( \mathbb{R},\mathbb{H}) \). Noticing that \(\varphi _{0}\in AA_{0}( \mathbb{R},\mathbb{H})\), we have
which implies that \(g(\varphi (\cdot ))-g(\varphi _{1}(\cdot ))\in AA _{0}(\mathbb{R},\mathbb{H})\). Consequently, \(g(\varphi (\cdot )) \in PAA(\mathbb{R},\mathbb{H})\). The proof is complete. □
In the rest of this paper, we will adopt the following notation:
and make the following assumptions:
- (\(H_{1}\)):
-
For all \(p,q\in \mathbb{I}_{n}\), \(a_{p}\in AP( \mathbb{R},\mathbb{R}^{+})\), \(b_{pq},c_{pq},Q_{p}\in PAA(\mathbb{R}, \mathbb{H})\), and \(a_{p}^{-}=\inf_{t\in \mathbb{R}} a_{p}(t)>0\).
- (\(H_{2}\)):
-
For all \(q\in \mathbb{I}_{n} \), \(f_{q},g_{q}\in C( \mathbb{H},\mathbb{H})\), and there exist constants \(L_{q}^{f}\), \(L_{q} ^{g}\) such that
$$ \bigl\Vert f_{q}(x)-f_{q}(y) \bigr\Vert _{\mathbb{H}} \leq L_{q}^{f} \Vert x-y \Vert _{\mathbb{H}},\qquad \bigl\Vert g_{q}(x)-g_{q}(y) \bigr\Vert _{\mathbb{H}} \leq L_{q}^{g} \Vert x-y \Vert _{ \mathbb{H}} $$for all \(x,y\in \mathbb{H}\) and \(f_{q}(0)=g_{q}(0)=0\).
- (\(H_{3}\)):
-
For every pair of \(p,q\in \mathbb{I}_{n}\), the kernel \(k_{pq}\in C(\mathbb{R},\mathbb{R}^{+})\) and satisfies \(\int _{0}^{+ \infty }k_{pq}(s)\,ds=1\).
- \((H_{4})\) :
-
\(K=\max_{1\leq p\leq n} \{\frac{1}{a_{p} ^{-}}\sum_{q=1}^{n} [b_{pq}^{+}L_{q}^{f} +c_{pq}^{+}L_{q} ^{g} ] \}<1\).
3 The existence of pseudo almost automorphic solutions
Before stating and proving our existence theorem, we first prove two lemmas.
Lemma 7
Assume that assumptions \((H_{1})\)–\((H_{3})\) hold and \(x_{q}\in PAA( \mathbb{R},\mathbb{H})\) for all \(q\in \mathbb{I}_{n}\), then for every pair of \(p,q\in \mathbb{I}_{n}\), the function \(\varphi _{p}:t\rightarrow \int _{-\infty }^{t}k_{pq}(t-s)g_{q}(x_{q}(s))\,ds\) belongs to \(PAA(\mathbb{R},\mathbb{H})\).
Proof
Because \(x_{q}\in PAA(\mathbb{R},\mathbb{H})\), so \(x_{q}\in BC( \mathbb{R},\mathbb{H})\). Since
we see that the integral \(\int _{-\infty }^{t}k_{pq}(t-s)g_{q}(x_{q}(s))\,ds\) is absolutely convergent and the function \(\varphi _{p}\) is bounded. In addition, it is easy to show that \(\varphi _{p}\) is continuous. Hence, \(\varphi _{p} \in BC(\mathbb{R},\mathbb{H})\).
Now, we prove that \(\varphi _{p}\in PAA(\mathbb{R},\mathbb{H})\).
By Lemma 6, we have \(g_{q}(x_{q}(\cdot ))\in PAA(\mathbb{R}, \mathbb{H})\). Hence, we can write \(g_{q}(x_{q}(t))=u_{q}(t)+v_{q}(t)\), where \(u_{q}\in AA(\mathbb{R},\mathbb{H}) \) and \(v_{q}\in AA_{0}( \mathbb{R},\mathbb{H})\). Consequently,
Step 1. We will prove that \(\varphi _{p}^{1}\in AA(\mathbb{R}, \mathbb{H})\). Let \((s_{n}^{\prime })\) be a sequence of real numbers, we can extract a subsequence \((s_{n})\) of \((s_{n}^{\prime })\) such that
for each \(t\in \mathbb{R}\). Denote
Then we have
By the Lebesgue dominated convergence theorem, we obtain
for each \(t\in \mathbb{R}\). Similarly, we can obtain
for each \(t\in \mathbb{R}\), which implies that \(\varphi _{p}^{1} \in AA(\mathbb{R},\mathbb{H})\).
Step 2. We will prove that \(\varphi _{p}^{0}\in AA_{0}(\mathbb{R}, \mathbb{H})\). Since
\(\varphi _{p}^{0}\in AA_{0}(\mathbb{R},\mathbb{H})\). Consequently, \(\varphi _{p}(\cdot )\in PAA(\mathbb{R},\mathbb{H})\). The proof is complete. □
Let \(\mathbb{X}=PAA(\mathbb{R},\mathbb{H}^{n})\), then \((\mathbb{X},\| \cdot \|_{0})\) is a Banach space, where \(\|x\|_{0}=\sup_{t\in \mathbb{R}}\|x(t)\|_{\mathbb{H}^{n}}\) for \(x\in \mathbb{X}\). Let
and take a constant \(\bar{\omega }>\|\varphi ^{0}\|_{0}\).
Lemma 8
Let \((H_{1})\)–\((H_{3})\) hold. For every \(\varphi =(\varphi _{1}, \varphi _{2},\ldots ,\varphi _{n})^{T}\in PAA(\mathbb{R},\mathbb{H}^{n})\) and \(p\in \mathbb{I}_{n}\), we have
is pseudo almost automorphic.
Proof
By \((H_{1})\)–\((H_{3})\), according to Lemmas 5–7, for every \(\varphi =(\varphi _{1},\varphi _{2},\ldots ,\varphi _{n})^{T} \in PAA(\mathbb{R},\mathbb{H}^{n})\), we have that, for each \(p\in \mathbb{I}_{n}\),
is pseudo almost automorphic. Consequently, for every \(p\in \mathbb{I}_{n}\), \(\varUpsilon _{p}\) can be expressed as \(\varUpsilon _{p}= \varUpsilon _{p}^{1}+\varUpsilon _{p}^{0}\), where \(\varUpsilon _{p}^{1}\in AA( \mathbb{R},\mathbb{H})\), \(\varUpsilon _{p}^{0}\in AA_{0}(\mathbb{R}, \mathbb{H})\). So
Step 1. We will prove \(\varLambda _{p}^{1}\varphi \in AA(\mathbb{R}, \mathbb{H})\). Let \((s_{n}^{\prime })_{n\in \mathbb{N}}\) be a sequence of real numbers, we can extract a subsequence \((s_{n})_{n\in \mathbb{N}}\) of \((s_{n}^{\prime })_{n\in \mathbb{N}}\) such that, for every \(t\in \mathbb{R}\) and \(p\in \mathbb{I}_{p}\),
and
Set
then we have
By the Lebesgue dominated convergence theorem, we obtain that \(\lim_{n\rightarrow +\infty }(\varLambda _{p}^{1}\varphi )(t+s_{n})=(\bar{ \varLambda }_{p}^{1}\varphi )(t)\) for each \(t\in \mathbb{R}\) and \(p\in \mathbb{I}_{p}\). Similarly, we can prove that \(\lim_{n\rightarrow +\infty }(\bar{\varLambda }_{p}^{1}\varphi )(t-s _{n})=(\varLambda _{p}^{1}\varphi )(t)\) for each \(t\in \mathbb{R}\) and \(p\in \mathbb{I}_{p}\). Hence, the function \(\varLambda _{p}^{1}\varphi \in AA(\mathbb{R},\mathbb{H})\).
Step 2. We will prove that \(\varLambda _{p}^{0}\varphi \in AA_{0}( \mathbb{R},\mathbb{H})\). For all \(p\in \mathbb{I}_{p}\), we have
where
Let \(\zeta =t-s\), by Fubini’s theorem one has
Since the function \(\varUpsilon _{p}^{0}\in AA_{0}(\mathbb{R},\mathbb{H})\),
Consequently, by the Lebesgue dominated convergence theorem, we obtain
On the other hand, since \(\varUpsilon _{p}^{0}\) is bounded, we have
Hence, \(\varLambda _{p}^{0}\varphi \in AA_{0}(\mathbb{R},\mathbb{H})\) for all \(p\in \mathbb{I}_{p}\). Therefore, \(\varLambda _{p}\varphi \in PAA( \mathbb{R},\mathbb{H})\). The proof is complete. □
Theorem 1
Suppose \((H_{1})\)–\((H_{4})\) hold. Then system (1) has a pseudo almost automorphic solution that is contained in \(\mathbb{X} _{0}=\{\varphi |\varphi \in \mathbb{X}, \|\varphi -\varphi ^{0}\|_{0} \leq \frac{K\bar{\omega }}{1-K}\}\).
Proof
Let \(x=(x_{1},x_{2},\ldots ,x_{n})^{T}\in C(\mathbb{R},\mathbb{H}^{n})\) satisfy
then we can deduce that
that is, x satisfies system (1).
Define an operator \(T :\mathbb{X}_{0}\rightarrow AA(\mathbb{R}, \mathbb{H}^{n}) \) by
where, for any \(\varphi \in AA(\mathbb{R},\mathbb{H}^{n})\) and \(p\in \mathbb{I}_{n}\),
Obviously, for any \(\varphi \in \mathbb{X}_{0}\), we have
Step 1. We prove that for every \(\varphi \in \mathbb{X}_{0}\), \(T\varphi \in \mathbb{X}_{0}\). Since
which implies that \(T\varphi \in \mathbb{X}_{0}\).
Step 2. We will prove that the mapping T is a contraction mapping of \(\mathbb{X}_{0}\). For any \(\varphi , \phi \in \mathbb{X}_{0}\), we have
which means that the mapping T is a contracting mapping. Therefore, there exists a unique fixed point \(\varphi ^{*}\in \mathbb{X}_{0}\) such that \(T\varphi ^{*}=\varphi ^{*}\), that is, system (1) has a pseudo almost automorphic solution. The proof is complete. □
4 Global exponential stability
In this section, for \(x=(x_{1},x_{2},\ldots ,x_{n})^{T}\in C((-\infty ,0], \mathbb{H}^{n})\), we denote
Definition 3
Let \(x=(x_{1},x_{2},\ldots ,x_{n})^{T}\) be a pseudo almost automorphic solution of system (1) with the initial value \(\varphi =(\varphi _{1},\varphi _{2},\ldots ,\varphi _{n})^{T}\in C((- \infty ,0],\mathbb{H}^{n})\) and \(y=(y_{1},y_{2},\ldots ,y_{n})^{T}\) be an arbitrary solution of system (1) with the initial value \(\psi =(\psi _{1},\psi _{2},\ldots ,\psi _{n})^{T}\in C((-\infty ,0], \mathbb{H}^{n})\), respectively. If there exist positive constants η and M such that
then the pseudo almost automorphic solution x of system (1) is said to be globally exponentially stable.
Theorem 2
Assume that \((H_{1})\)–\((H_{4})\) hold, and suppose further that there exists a positive constant \(\lambda _{0}\) such that
Then system (1) has a pseudo almost automorphic solution that is globally exponentially stable.
Proof
By Theorem 1, system (1) has a pseudo almost automorphic solution, let \(x(t)\) be the pseudo almost automorphic solution with the initial value \(\varphi (t)\), and \(y(t)\) be an arbitrary solution with the initial value \(\psi (t)\). Set \(z_{p}(t)=y _{p}(t)-x_{p}(t)\), \(\phi _{p}(t)=\psi _{p}(t)-\varphi _{p}(t)\), we have
where \(p\in \mathbb{I}_{n}\). Let \(\varTheta _{p}\) be defined by
where \(p\in \mathbb{I}_{n}\), \(\omega \in [0,+\infty )\) and \(\varTheta _{p}( \omega )\rightarrow -\infty ; \omega \rightarrow +\infty \), there exist \(\varepsilon _{p}^{*}>0\) such that \(\varTheta _{p}(\varepsilon _{p})>0\) for \(\varepsilon _{p}\in (0,\varepsilon _{p}^{*})\). Let \(\eta =\min \{ \varepsilon _{1}^{*},\varepsilon _{2}^{*},\ldots ,\varepsilon _{n}^{*}\}\), we obtain
So we can take a positive constant λ satisfying \(0<\lambda < \min \{\eta ,a_{1}^{-},a_{2}^{-},\ldots ,a_{n}^{-},\lambda _{0}\}\) such that \(\varTheta _{p}(\lambda )>0\), which implies that, for \(p=1,2,\ldots ,n\),
Multiplying both sides of (3) by \(e^{\int _{0}^{s}a_{p}(u)\,du}\) and integrating on \([0,t]\), we have
Let
In view of \((H_{4})\), \(M>1\), and we can deduce that
It is easy to see that
We claim that
To prove (7), we show for any \(\xi >1\) that the following inequality holds:
If (8) is false, then there must be some \(t_{1}>0\) and some \(p\in \{1,2,\ldots ,n\}\) such that
and
By (4), (5), (6), (10), and \((H_{3})\), we have
which contradicts equality (9), and so (8) holds. Let \(\xi \rightarrow 1\), then (7) holds. Hence, the pseudo almost automorphic solution of (1) is globally exponentially stable. The proof is completed. □
5 Example
In this section, we give an example to show the feasibility of our obtained results in this paper.
Example 1
In system (1), let \(n=2\), \(x_{p}(t)=x^{R}_{p}(t)+ix^{I}_{p}(t)+jx ^{J}_{p}(t)+kx^{K}_{p}(t)\in \mathbb{H}\), \(k_{pq}(t)=e^{-t}\), and take
By computing, we have \(L^{f}_{q}=\frac{1}{20}\), \(L^{g}_{q}=\frac{1}{25}\), \(a_{1}^{-}=2.2\), \(a_{2}^{-}=2.3\), \(b_{11}^{+}=0.061\), \(b_{12}^{+}=0.108\), \(b _{21}^{+}=0.274\), \(b_{22}^{+}=0.210\), \(c_{11}^{+}=0.120\), \(c_{12}^{+}=0.130\), \(c_{21}^{+}=0.153\), \(c_{22}^{+}=0.228\). So \((H_{1})\) and \((H_{2})\) are satisfied. Besides, it is easy to obtain that
Therefore, all of the conditions of Theorem 2 are satisfied. Thus, according to Theorem 2, system (1) has a pseudo almost automorphic solution that is globally exponentially stable (see Figs. 1–3).
6 Conclusion
In this paper, we have obtained the existence and global exponential stability of pseudo almost automorphic solutions to quaternion-valued cellular neural networks with infinitely distributed delays via direct method. Our method and the results of this paper are new, and our method can be used to study the existence and stability of almost periodic solutions, pseudo almost periodic solutions, almost automorphic solutions, and pseudo almost automorphic solutions for other types of quaternion-valued neural network models.
References
Hamilton, W.: Lectures on Quaternions. Hodges & Smith, Dublin (1853)
Adler, S.: Quaternionic quantum field theory. Commun. Math. Phys. 104(4), 611–656 (1986)
Adler, S.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)
Leo, S., Ducati, G.: Delay time in quaternionic quantum mechanics. J. Math. Phys. 53(2), 022102 (2012)
Leo, S., Ducati, G., Nishi, C.: Quaternionic potentials in non-relativistic quantum mechanics. J. Phys. A, Math. Gen. 35(26), 5411–5426 (2002)
Wertz, J.: Spacecraft Attitude Determination and Control. Kluwer Academic, Boston (1978)
Bachmann, E., Marins, J., Zyda, M., Mcghee, R., Yun, X.: An extended Kalman filter for quaternion-based orientation estimation using MARG sensors. In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 2003–2011 (2001)
Udwadia, F., Schttle, A.: An alternative derivation of the quaternion equations of motion for rigid-body rotational dynamics. J. Appl. Mech. 77(4), Article ID 044505 (2010)
Gibbon, J.: A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equation. Physica D 166(1–2), 17–28 (2002)
Gibbon, J., Holm, D., Kerr, R., Roulstone, I.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19(8), 1969–1983 (2006)
Nitta, T.: Complex-Valued Neural Networks: Utilizing High-Dimensional Parameters. IGI Global (2009)
Kusamichi, H., Isokawa, T., Matsui, N., Ogawa, Y., Maeda, K.: A New Scheme for Color Night Vision by Quaternion Neural Network. Proceedings of the 2nd International Conference on Autonomous Robots and Agents. Palmerston North, New Zealand (2004)
Chen, X., Song, Q., Li, Z., Zhao, Z., Liu, Y.: Stability analysis of continuous-time and discrete-time quaternion-valued neural networks with linear threshold neurons. IEEE Trans. Neural Netw. Learn. Syst. 29(7), 2769–2781 (2018)
Shu, H., Song, Q., Liu, Y., Zhao, Z., Alsaadi, F.E.: Global μ-stability of quaternion-valued neural networks with non-differentiable time-varying delays. Neurocomputing 247, 202–212 (2017)
Li, Y., Qin, J.: Existence and global exponential stability of periodic solutions for quaternion-valued cellular neural networks with time-varying delays. Neurocomputing 292, 91–103 (2018)
Popa, C.A., Kaslik, E.: Multistability and multiperiodicity in impulsive hybrid quaternion-valued neural networks with mixed delays. Neural Netw. 99, 1–18 (2018)
Li, Y., Qin, J., Li, B.: Periodic solutions for quaternion-valued fuzzy cellular neural networks with time-varying delays. Adv. Differ. Equ. 2019(2019), 63 (2019)
Li, Y., Meng, X., Ye, Y.: Almost periodic synchronization for quaternion-valued neural networks with time-varying delays. Complexity 2018, Article ID 6504590 (2018)
Li, Y., Qin, J., Li, B.: Existence and global exponential stability of anti-periodic solutions for delayed quaternion-valued cellular neural networks with impulsive effects. Math. Methods Appl. Sci. 42(1), 5–23 (2019)
Chen, X., Li, Z., Song, Q., Hu, J., Tan, Y.: Robust stability analysis of quaternion-valued neural networks with time delays and parameter uncertainties. Neural Netw. 91, 55–65 (2017)
Tu, Z., Cao, J., Alsaedi, A., Hayat, T.: Global dissipativity analysis for delayed quaternion-valued neural networks. Neural Netw. 89, 97–104 (2017)
Tu, Z., Zhao, Y., Ding, N., Feng, Y., Zhang, W.: Stability analysis of quaternion-valued neural networks with both discrete and distributed delays. Appl. Math. Comput. 343, 342–353 (2019)
Xu, C., Li, P.: Periodic dynamics for memristor-based bidirectional associative memory neural networks with leakage delays and time-varying delays. Int. J. Control. Autom. Syst. 16(2), 535–549 (2018)
Li, Y., Li, Y.: Existence and exponential stability of almost periodic solution for neutral delay BAM neural networks with time-varying delays in leakage terms. J. Franklin Inst. 350(9), 2808–2825 (2013)
Chaalal, M., Achour, N.: Stabilizing periodic orbits of a class of mechanical systems with impulse effects: a Lyapunov constraint approach. Int. J. Control. Autom. Syst. 15(5), 2213–2221 (2017)
Yang, W., Yu, W., Cao, J., Alsaadi, F.E., Hayat, T.: Almost automorphic solution for neutral type high-order Hopfield BAM neural networks with time-varying leakage delays on time scales. Neurocomputing 267, 241–260 (2017)
Aouiti, C., Gharbia, I.B., Cao, J., M’hamdi, M.S., Alsaedi, A.: Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms. Chaos Solitons Fractals 107, 111–127 (2018)
Tang, Y.: Exponential stability of pseudo almost periodic solutions for fuzzy cellular neural networks with time-varying delays. Neural Process. Lett. 47(1), 57–70 (2018)
Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces. Springer, New York (2013)
Acknowledgements
Not applicable.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Funding
This work is supported by the National Natural Science Foundation of People’s Republic of China under Grant 11861072.
Author information
Authors and Affiliations
Contributions
The two authors contributed equally to the manuscript and typed, read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Xiang, J., Li, Y. Pseudo almost automorphic solutions of quaternion-valued neural networks with infinitely distributed delays via a non-decomposing method. Adv Differ Equ 2019, 356 (2019). https://doi.org/10.1186/s13662-019-2295-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2295-x
Keywords
- Pseudo almost automorphic solution
- Global exponential stability
- Quaternion-valued neural networks