- Research
- Open access
- Published:
Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus
Advances in Difference Equations volume 2019, Article number: 475 (2019)
Abstract
In this investigation, by applying the definition of the fractional q-derivative of the Caputo type and the fractional q-integral of the Riemann–Liouville type, we study the existence and uniqueness of solutions for a multi-term nonlinear fractional q-integro-differential equations under some boundary conditions \({}^{c}D_{q}^{\alpha} x(t) = w ( t, x(t), (\varphi_{1} x)(t), (\varphi_{2} x)(t), {}^{c}D_{q} ^{ \beta_{1}} x(t), {}^{c}D_{q}^{\beta_{2}} x(t), \ldots, {}^{c}D _{q}^{ \beta_{n}}x(t) )\). Our results are based on some classical fixed point techniques, as Schauder’s fixed point theorem and Banach contraction mapping principle. Besides, some instances are exhibited to illustrate our results and we report all algorithms required along with the numerical result obtained.
1 Introduction
The subjects of fractional calculus and q-calculus are one of the significant branches in mathematical analysis. In 1910, the subject of q-difference equations was introduced by Jackson [1]. After that, at the beginning of the last century, studies on the q-difference equation appeared in much work, especially in [2,3,4,5,6]. For some earlier work on the topic, we refer to [7, 8], whereas the preliminary concepts on q-fractional calculus can be found in [9], as indicated: Perhaps Leibniz did not expect this number of applications when he sent a letter in 1695 to L’Hopital asking about the meaning of the derivative of order half. For countless applications on the q-fractional calculus, see for example [10,11,12,13,14,15,16,17].
In the recent years, there have appeared many papers about differential and integro-differential equations and inclusions which are valuable tools in the modeling of many phenomena in various fields of science [18,19,20,21,22,23,24,25]. In 2012, Ahmad et al. [26] discussed the existence and uniqueness of solutions for the fractional q-difference equations \({}^{c}D_{q}^{\alpha }u(t)= T ( t, u(t) ) \), \(\alpha _{1} u(0) - \beta _{1} D_{q} u(0) = \gamma _{1} u( \eta _{1})\) and \(\alpha _{2} u(1) - \beta _{2} D_{q} u(1) = \gamma _{2} u( \eta _{2})\), for \(t \in I\), where \(\alpha \in (1, 2]\), \(\alpha _{i}\), \(\beta _{i}\), \(\gamma _{i}\), \(\eta _{i}\) are real numbers, for \(i=1,2\) and \(T \in C(J \times \mathbb{R}, \mathbb{R})\). In 2013, Zhao el al. [27] reviewed the q-integral problem \((D_{q}^{\alpha }u)(t) + f(t, u(t) )=0\), with the conditions that \(u(1)\), \(u(0)\) are equal to \(\mu I_{q}^{\beta }u(\eta ) \), 0, respectively, for almost all \(t \in (0,1)\), where \(q \in (0,1)\) and α, β, η belong to \((1, 2]\), \((0, 2]\), \((0,1)\), respectively, μ is positive real number, \(D_{q}^{\alpha }\) is the q-derivative of Riemann–Liouville and we have a real-valued continuous map u defined on \(I \times [0, \infty )\). In 2014, Ahmad et al. [28] considered the problem
for \(t, q \in [0,1]\), where \({}^{c}D_{q}^{\beta }\) and \({}^{c}D_{q} ^{\gamma }\) denote the fractional q-derivative of the Caputo type, \(0 < \beta \), \(\gamma \leq 1\), \(I_{q}^{\xi }(.) \) denotes the Riemann–Liouville integral with \(\xi \in (0, 1)\), f, g are given continuous functions, λ and p, k are real constants and \(\alpha _{i}, \beta _{i}, \sigma _{i}\in \mathbb{R}\), \(\eta _{i} \in (0, 1)\), \(i=1,2\). Also, one may refer to some research of Ahmad et al., in the recent years in [12, 14, 29,30,31]. In 2016, Abdeljawad et al. [32] stated and proved a new discrete q-fractional version of Gronwall inequality, \({}_{q}C_{a}^{\alpha }u(t) = T ( t, u(t) )\), where \(u(a)=\gamma \), such that \(\alpha \in (0, 1]\), \(a \in \mathbb{T}_{q}= \{q^{n}: n \in \mathbb{Z} \}\), t belongs to \(\mathbb{T}_{a}= [0, \infty )_{q} = \{ q^{-i} a: i=0, 1, 2, \ldots \} \), \({}_{q}C_{a}^{\alpha }\) means the Caputo fractional difference of order α and \(T(t, x)\) fulfills a Lipschitz condition for all t and x. In 2019, Samei et al. [25] investigated the existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions
In this article, motivated by these achievements and the following results, we are working to stretch out solutions for the multi-term nonlinear fractional q-integro-differential equation with boundary conditions,
under conditions \(x(0) + a x(1)=0\) and \(x'(0) + bx'(1)=0\), for \(t \in J: =[0,1]\) and all \(q \in (0,1)\), where \(1 < \alpha < 2\), \(\beta _{i} \in (0,1)\) with \(i=1, 2,\dots , n\), \(a, b\ne -1\), \(w : J {\times } \mathbb{R}^{n+3} \to \mathbb{R}\) is continuous for all variables and the mappings \(\gamma _{j}\) map \(J\times J\) to \(\mathbb{R}^{+}\) such that \(\sup_{t\in J} \vert \int _{0}^{t} \gamma _{j} (t,s) \,d_{q}s \vert \), where \(j=1,2\), are finite, the maps \(\varphi _{j}\), where \(j=1,2\), are defined by \((\varphi _{j} u)(t) = \int _{0}^{t} \gamma _{j}(t,s) u(s) \,d_{q}s\).
The rest of the paper is arranged as follows: in Sect. 2, we recall some preliminary concepts and fundamental results of q-calculus. Section 3 is devoted to the main results, while examples illustrating the obtained results and algorithm for the problems are presented in Sect. 4.
2 Preliminaries
First of all, we point out some of the materials on the fractional q-calculus and fundamental results of it which needed in the next sections (for more information, consider [1, 9,10,11, 33]). Then, some well-known theorems of fixed point theorems are presented.
Assume that \(q \in (0,1)\) and \(a \in \mathbb{R}\). Define \([a]_{q}=\frac{1-q ^{a}}{1-q}\) [1]. The power function \((x-y)_{q} ^{n}\) with \(n \in \mathbb{N}_{0} \) is \((x-y)_{q}^{(n)}= \prod_{k=0} ^{n-1} (x - yq^{k})\) and \((x-y)_{q}^{(0)}=1\) where \(x, y \in \mathbb{R}\) and \(\mathbb{N}_{0} := \{ 0\} \cup \mathbb{N}\) [10]. Also, for \(\alpha \in \mathbb{R}\) and \(a \neq 0\), we have \((x-y)_{q}^{(\alpha )}= x^{\alpha }\prod_{k=0} ^{\infty }(x-yq^{k}) / (x - yq^{\alpha + k})\). If \(y=0\), then it is clear that \(x^{(\alpha )}= x^{\alpha }\) (Algorithm 1). The q-Gamma function is given by \(\varGamma _{q}(z) = (1-q)^{(z-1)} / (1-q)^{z -1}\), where \(z \in \mathbb{R} \backslash \{0, -1, -2, \ldots \}\) [1]. Note that \(\varGamma _{q} (z+1) = [z]_{q} \varGamma _{q} (z)\). The value of the q-Gamma function, \(\varGamma _{q}(z)\), for input values q and z with counting the number of sentences n in summation is addressed by a simplifying analysis. For this design, we present a pseudo-code description of the technique for estimating q-Gamma function of order n which show in Algorithm 2. The q-derivative of the function f is defined by \((D_{q} f)(x) = \frac{f(x) - f(qx)}{(1- q)x}\) and \((D_{q} f)(0) = \lim_{x \to 0} (D _{q} f)(x)\), which is shown in Algorithm 3 [4]. Also, the higher order q-derivative of a function f is defined by \((D_{q}^{n} f)(x) = D_{q}(D_{q}^{n-1} f)(x)\) for all \(n \geq 1\), where \((D_{q}^{0} f)(x) = f(x)\) [4]. The q-integral of a function f defined on \([0,b]\) is defined by
for \(0 \leq x \leq b\), provided that the series absolutely converges [4]. For any positive number α and β, the q-Beta function is defined by [33]
The q-derivative of the function f is defined by \((D_{q} f)(x) = \frac{f(x) - f(qx)}{(1- q)x}\) and \((D_{q} f)(0) = \lim_{x \to 0} (D _{q} f)(x)\), which is shown in Algorithm 3 [4, 11, 33]. If a is in \([0, b]\), then
whenever the series exists, which is shown in Algorithm 4. The operator \(I_{q}^{n}\) is given by \((I_{q}^{0} h)(x) = h(x) \) and
for \(n \geq 1\) and \(g \in C([0,b])\) [4]. It has been proved that \((D_{q} (I_{q} f))(x) = f(x) \) and \((I_{q} (D_{q} f))(x) = f(x) - f(0)\) whenever f is continuous at \(x =0\) [4]. The fractional Riemann–Liouville type q-integral of the function f on J, of \(\alpha \geq 0\) is given by \((I_{q}^{0} f)(t) = f(t) \) and
for \(t \in J\) and \(\alpha >0\) [31, 34]. Also, the fractional Caputo type q-derivative of the function f is given by
for \(t \in J\) and \(\alpha >0\) [31, 34]. It has been proved that \(( I_{q}^{\beta } (I_{q}^{\alpha } f)) (x) = ( I_{q} ^{\alpha + \beta } f) (x)\) and \((D_{q}^{\alpha } (I_{q}^{\alpha } f) ) (x) = f(x)\), where \(\alpha , \beta \geq 0\) [34]. By using Algorithm 2, we can calculate \((I_{q}^{\alpha }f)(x)\) which is shown in Algorithm 5.
Theorem 1
(Schauder’s fixed point theorem [35])
LetEbe a closed, convex and bounded subset of a Banach spaceXand self-mapTdefined onEbe continuous. ThenThas a fixed point inEwhenever \(T(E)\)is a relatively compact subset ofX.
3 Main results
Here, we investigate the inclusion of fractional q-derivative (1). First, we recall the following key result.
Lemma 2
([17])
Let \(\alpha >0\)and \(n=[\alpha ]+1\). Then \({I_{q}^{\alpha }}^{c}D_{q} ^{\alpha } x(t) = x(t) + c_{0} + c_{1} t + c_{2} t + \cdots + c_{n-1} t^{n-1}\), where \(c_{0}, c_{1}, \ldots , c_{n-1}\)belong to \(\mathbb{R}\).
Let us define the set X of all \(f \in C(I)\), such that \({}^{c}D_{q} ^{{\beta }_{i}} x \) belongs to \(C(I)\) (\(i=1, 2, \dots , n\)) and \(q\in (0,1)\), where \(0<\beta _{i}<1\). It is known that \((X,\| \cdot \|)\) with the norm \(\Vert x \Vert = \max_{t\in J} \vert x(t) \vert + \sum_{i=1}^{n} \max_{t\in J} \vert {}^{c}D_{q}^{ \beta _{i}} x(t) \vert \), is a Banach space.
Lemma 3
Suppose thatfin \(C(J)\)and \(\alpha \in (1,2)\). Then the boundary value problem
is equivalent to the followingq-integral equation:
Proof
First of all, we see that Lemma 2 implies that
where \(c_{1}\), \(c_{2}\) are arbitrary constants. By applying the boundary conditions we find
Substituting \(c_{1}\) and \(c_{2}\) in (5) we get (4). The converse follows by direct computation. The proof is completed. □
Theorem 4
Let \(\ell \in L^{\frac{1}{\kappa }}(J,\mathbb{R}^{+})\), \(0<\kappa < \alpha -1\)such that
for each \(t\in J\), \(x_{i}\), \(x'_{i}\), with \(i=1,2,3\)and \(u_{1}, u_{2}, \dots , u_{n}\), \(v_{1}, v_{2}, \dots , v_{n} \in \mathbb{R}\), where \(F_{t,x_{i},u_{i}} = w(t, x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \dots , u _{n})\)and \(F_{t,x'_{i},v_{i}} =w (t, x'_{1}, x'_{2}, x'_{3}, v_{1}, v _{2}, \dots , v_{n})\). Then the problem (1) has a unique solution provided
where
\(k_{1} = ( \frac{1-\kappa }{ \alpha - \kappa } )^{1- \kappa }\)and \(k_{2}= ( \frac{1- \kappa }{ \alpha -\kappa -1} ) ^{ 1-\kappa }\).
Proof
Briefly, we put
and using Lemma 3, we define a self-map T on X by
where \(a_{0} = \frac{a}{1+a}\) and \(g(t) = \frac{ab-b(1+a)t }{(1+a)(1+b) }\) is a real-valued function on J. At present, by using the Hölder inequality, for each \(u, v\in X\) and \(t\in J\), we get
where \(d=\|u-v\|\), \(a_{1} =\frac{|a|}{|1+a|}\), \(a_{2} = \frac{|b|}{|1 + a||1+b|}\), \(b_{1} =\frac{1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2}}{ \varGamma _{q}( \alpha )}\) and \(b_{2} =\frac{ 1+ {}_{0}\lambda _{1} + {}_{0}\lambda _{2}}{ \varGamma _{q}( \alpha -1)}\). Also, we have
where \(a_{3} =\frac{|b|}{|b+1|}\). Since
we obtain
for all \(i=1,2,\dots ,n\). Hence, we get
By assumption, \(\Delta < 1\), thus the mapping F is a contraction and so by using the Banach contraction mapping principle, F has a unique fixed point which is the unique solution of the problem (1). This completes the proof. □
Corollary 1
Assume that there exists \(M>0\)such that
for each \(t\in J\)and real numbers \(x_{i}\), \(x'_{i}\)for \(i=1, 2, 3\), \(u_{i}\), \(v_{i}\)for \(i=1,2,\dots , n\), where \(F_{t,x_{i}, u_{i}} = f(t, x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \dots ,u_{n})\), and \(F_{t, x'_{i}, v_{i}} =f (t, x'_{1}, x'_{2}, x'_{3}, v_{1}, v_{2}, \dots , v_{n})\). Then the problem (1) has a unique solution whenever
where \({}_{0}\lambda _{i} = \sup_{t\in J} \vert \int _{0}^{t} \gamma _{i}(t,s) \,d_{q}s \vert \), \(i=1,2\).
Theorem 5
Let \(f : J {\times }\mathbb{R}^{n+3}\to \mathbb{R} \)be a continuous function. In addition, we assume that there exist a positive constant \(\kappa < \alpha - 1\)and a function \(\ell \in L^{\frac{1}{\kappa }}( J, \mathbb{R}^{+})\). Then problem (1) has a solution whenever
where \(c_{j}\), \(\nu _{j}\)belong to \([0, \infty )\), \((0,1)\), respectively, for \(j=1,2,3\)and \(d_{i}\), \(\eta _{i}\)belong to \([0, \infty )\), \((0,1)\), respectively, for \(i=1,2, \dots , n\), or whenever
where \(c_{j}\), \(\nu _{j}\)belong to \((0, \infty )\), \((1,\infty )\), respectively, for \(j=1,2,3\)and \(d_{i}\), \(\eta _{i}\)belong to \((0, \infty )\), \((1,\infty )\), respectively, for \(i=1,2, \dots , n\).
Proof
First, we assume that the condition (7) is satisfied. Recall that \(k_{1}= ( \frac{1-\kappa }{\alpha - \kappa } )^{1- \kappa }\) and \(k_{2}= ( \frac{1-\kappa }{\alpha - \kappa - 1} )^{1- \kappa }\). Let \(B_{r}\) is the set of all \(u \in X\) such that \(\|u\| \) less than or equal to r; here
and \(\ell ^{*} = ( \int _{0}^{1} (\ell (t) )^{ \frac{1}{ \kappa }} \,d_{q}s )^{\kappa }\). Note that \(B_{r}\) is a closed, bounded and convex subset of the Banach space X. For each \(u \in B_{r}\), we obtain
where \(a_{0}\) and \(g(t)\) as defined in Theorem 4 (i.e. \(a_{0} = \frac{a}{1+a}\) and \(g(t) = \frac{ab-b(1+a)t }{(1+a)(1+b) }\), \(t\in J\)),
and \(A_{r} = c_{1}r^{\nu }_{1} + c_{2} {}_{0}\lambda _{1}^{\nu _{2}} r ^{\nu _{2}} + c_{3} {}_{0}\lambda _{2}^{\nu _{3}} r^{\nu _{3}} + \sum_{i=1}^{n} d_{i} r^{\eta _{i}}\). Also, we have
Since, by considering Eq. (2),
and on the other hand
we conclude that
for each \(i=1, 2,\dots , n\). Hence,
Hence, T maps \(B_{r}\) into \(B_{r}\). Now, suppose that T satisfy the condition (8). In this case, choose
By applying a similar argument, one can prove that \(\|Tu\| \leq r\) and so T is a self-map on \(B_{r}\). Also, one can easy to check that T is continuous, because w is continuous. For each \(u\in B_{r}\), take
Thus, for each \(0< t_{1}< t_{2}< 1\), we have
Furthermore, for all \(i= 1,2, \dots , n \), we obtain
Hence,
which implies that \(\|Tu (t_{2}) - Tu(t_{1}) \| \to 0\) as \(t_{1} \to t_{2}\). Thus, T is uniformly bounded and equicontinuous and so the theorem of Arzelá–Ascoli implies that T is completely continuous. At present, from Theorem 1, T has a fixed point in \(B_{r}\). Finally, the problem (1) has a solution. □
Corollary 2
Assume that a real-valued functionfdefined on \(J {\times } \mathbb{R}^{n+3}\)is continuous. Then the problem (1) has at least one solution whenever there exist a positive constant \(l< \alpha -1\)and a real-valued function \(\ell \in L^{ \frac{1}{l}} (J, \mathbb{R}^{+})\)such that \(\vert w ( t , x_{1}, x_{2}, x_{3}, u_{1}, u_{2}, \ldots , u_{n} ) \vert \leq \ell (t)\), for eachtinJ, and \(x_{j}\), with \(j=1,2,3\), \(u_{i}\), with \(1\leq i \leq n\), in \(\mathbb{R}\).
4 Examples illustrative for the problems with algorithms
In this part, we give complete computational techniques for checking working to illustrate of the problem (1), in our theorems, such that it covers all the problems and we present numerical examples which entail perfect solutions. Foremost, we present a simplified analysis that can be executed to calculate the value of the q-Gamma function, \(\varGamma _{q} (x)\), for input q, x and different values of n. To this aim, we consider a pseudo-code description of the method for calculating the q-Gamma function of order n in Algorithm 2 (for more details, see the link https://en.wikipedia.org/wiki/Q-gamma_function). Now we give the following examples to illustrate our results.
Example 1
Consider the multi-term nonlinear fractional q-integro-differential equation
under boundary conditions \(u(0) + u(1)=0\) and \(u'(0) + u'(1)=0\), where \((\varphi _{1} u)(t) \) and \((\varphi _{2} u)(t) \) are defined by \(\frac{1}{10} \int _{0}^{t} e^{-2(s-t)} u(s) \,d_{q}s\) and \(\frac{1}{10} \int _{0}^{t} e^{-(s - t)/4} u(s) \,d_{q}s\), respectively, with
and
Then we have
where
Take \(\ell (t) =\frac{1}{30 \sqrt{\pi }}\) belongs to \(L^{\frac{1}{5}}( J, \mathbb{R}^{+})\), \(\kappa =\frac{1}{5}\) and
For different values of q, which are shown in Tables 1, 2 and 3, by using Algorithm 6, we obtain
where \(k_{1}= (\frac{ 1 -\kappa }{\alpha -\kappa } )^{1-\kappa }\) and \(k_{2}= (\frac{1-\kappa }{ \alpha -\kappa -1} )^{1-\kappa }\). Now, by using Algorithms 1 and 2, we calculated \({}_{0}\lambda _{1}\), \({}_{0}\lambda _{2}\), \(\ell ^{\ast }\), \(\varGamma _{q}( \frac{8}{5})\), \(\varGamma _{q}(\frac{3}{5})\), \(\varGamma _{q}(\frac{7}{5})\), \(\varGamma _{q}(\frac{31}{15})\) and \(\varGamma _{q}(2)\) for some values \(n \in \mathbb{N}\) and \(q \in (0,1)\). Table 1 shows these calculated values. So, from Theorem 4, the problem (9) has a unique solution. In Tables 1, 2 and 3, we put
Algorithm 6 shows the technique of calculation Δ which was introduced in Eq. (6). Tables 1, 2 and 3 show variables of Δ when \(q=\frac{1}{3}\), \(q=\frac{1}{2}\) and \(q=\frac{4}{5}\), respectively. As it is seen, always \(\Delta <1\) for all n and \(q \in (0,1)\). In addition, when values q are close to one, Δ is obtained with more values of n in comparison with other rows. It is shown by underlined rows. They have been underlined in line 10 of Table 1, line 14 of Table 2 and line 31 of Table 3.
Example 2
Consider the multi-term nonlinear fractional q-integro-differential equation
under boundary conditions \(u(0) + \frac{1}{4} u(1) =0\) and \(u'(0) + \frac{3}{4} u'(1) =0\), here \(\beta _{1}=\frac{1}{3}\), \(\beta _{2} = \frac{3}{5} \), \(\beta _{3}=\frac{1}{2}\), \(\beta _{4} =\frac{1}{6}\), \(\lambda \in [0,\infty )\),
Hence, we obtain
where
and \(m(t) = \frac{\lambda e^{-\pi t}}{\sqrt{1+t^{2}}}\) for t belongs to J. Also, if \(l=\frac{1}{2}\) and \(\lambda =1\), then we have
Table 4 shows the variables of \(\varGamma _{q}(\alpha )\), \(\varGamma _{q}(\alpha -1)\), \(A_{0}\), \(\ell ^{*}\) and \(K_{0}\) when \(q =\frac{1}{3}\) and \(m=1, \ldots , 40\). Since \(0< \sigma _{j} \), for \(j=1, 2, 3\), and \(\delta _{i} < 1\), for \(i=1, 2, 3, 4\), the assumption (7) holds. At present, if \(\lambda = 0\), \(\delta _{i} > 1\) and \(\sigma _{j}> 1\) for \(i=1, 2, 3, 4\) and \(j=1, 2, 3\), respectively, the second condition, (8) of Theorem 5 holds. Thus, problem (10) has at least one solution. Note the features of the q-Gamma function, for values of q close to one, the results are obtained at a greater rate of m.
References
Jackson, F.H.: q-difference equations. Am. J. Math. 32, 305–314 (1910). https://doi.org/10.2307/2370183
Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)
Mason, T.E.: On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915)
Adams, C.R.: The general theory of a class of linear partial q-difference equations. Trans. Am. Math. Soc. 26, 283–312 (1924)
Adams, C.R.: Note on the integro-q-difference equations. Trans. Am. Math. Soc. 31(4), 861–867 (1929)
Trjitzinsky, W.J.: Analytic theory of linear q-difference equations. Acta Math. 61, 1–38 (1933). https://doi.org/10.1007/BF02547785
Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15, 135–140 (1966–1967). https://doi.org/10.1017/S0013091500011469
Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969). https://doi.org/10.1017/S0305004100045060
Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Cambridge (2012). https://doi.org/10.1007/978-3-642-30898-7
Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, 311–323 (2007)
Stanković, M.S., Rajković, P.M., Marinković, S.D.: On q-fractional derivatives of Riemann–Liouville and Caputo type (2009). e-prints arXiv:0909.0387
Ahmad, B., Ntouyas, S.K., Tariboon, J.: Quantum Calculus. New Concepts, Impulsive IVPs and BVPs, Inequalities. Trends in Abstract and Applied Analysis, vol. 4. World Scientific, Hackensack (2016). https://doi.org/10.1142/10075
Goodrich, C., Peterson, A.: Discrete Fractional Calculus. Springer, Berlin (2015). https://doi.org/10.1007/978-3-319-25562-0
Ahmad, B., Ntouyas, S.K.: Existence of solutions for nonlinear fractional q-difference inclusions with nonlocal robin (separated) conditions. Mediterr. J. Math. 10, 133–1351 (2013). https://doi.org/10.1007/s00009-013-0258-0
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000). https://doi.org/10.1142/3779
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Ahmad, B., Sivasundaram, S.: On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order. Appl. Math. Comput. 217(2), 480–487 (2010). https://doi.org/10.1016/j.amc.2010.05.080
Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, 36 (2011). https://doi.org/10.1186/1687-2770-2011-36
Anguraj, A., Karthikeyan, P., Trujillo, J.J.: Existence of solutions to fractional mixed integrodifferential equations with nonlocal initial condition. Adv. Differ. Equ. 2011(1), 690653 (2011). https://doi.org/10.1155/2011/690653
Rezapour, S., Shabibi, M.: A singular fractional differential equation with Riemann–Liouville integral boundary condition. J. Adv. Math. Stud. 8(1), 80–88 (2015)
Shabibi, M., Rezapour, S., Vaezpour, S.M.: A singular fractional integro-differential equation. UPB Sci. Bull., Ser. A 79(1), 109–118 (2017)
Ntouyas, S.K., Etemad, S.: On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 266, 235–243 (2017). https://doi.org/10.1016/j.amc.2015.05.036
Samei, M.E., Khalilzadeh Ranjbar, G.: Some theorems of existence of solutions for fractional hybrid q-difference inclusio. J. Adv. Math. Stud. 12(1), 63–76 (2019)
Samei, M.E., Ranjbar, G.K., Hedayati, V.: Existence of solutions for equations and inclusions of multi-term fractional q-integro-differential with non-separated and initial boundary conditions. J. Inequal. Appl. 2019, 273 (2019). https://doi.org/10.1186/s13660-019-2224-2
Ahmad, B., Ntouyas, S.K., Purnaras, I.K.: Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations. Adv. Differ. Equ. 2012, 140 (2012). https://doi.org/10.1186/1687-1847-2012-140
Zhao, Y., Chen, H., Zhang, Q.: Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions. Adv. Differ. Equ. 2013, 48 (2013). https://doi.org/10.1186/1687-1847-2013-48
Ahmad, B., Nieto, J.J., Alsaedi, A., Al-Hutami, H.: Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. J. Franklin Inst. 351, 2890–2909 (2014). https://doi.org/10.1016/j.jfranklin.2014.01.020
Ahmad, B., Alsaedi, A., Al-Hutami, H.: A study of sequential fractional q-integro-difference equations with perturbed anti-periodic boundary conditions. In: Fractional Dynamics, pp. 110–128. De Gruyter, Berlin (2015). https://doi.org/10.1515/9783110472097-007
Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions. Adv. Differ. Equ. 2014, 257 (2014). https://doi.org/10.1186/1687-1847-2014-257
Ahmad, B., Etemad, S., Ettefagh, M., Rezapour, S.: On the existence of solutions for fractional q-difference inclusions with q-antiperiodic boundary conditions. Bull. Math. Soc. Sci. Math. Roum. 59(107)(2), 119–134 (2016)
Abdeljawad, T., Alzabut, J., Baleanu, D.: A generalized q-fractional Gronwall inequality and its applications to non-linear delay q-fractional difference systems. J. Inequal. Appl. 2016, 240 (2016). https://doi.org/10.1186/s13660-016-1181-2
Kac, V., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002). https://doi.org/10.1007/978-1-4613-0071-7-1
Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)
Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, Dordrecht (2009). https://doi.org/10.1007/978-0-387-75818-3
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in this manuscript and they read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ntouyas, S.K., Samei, M.E. Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. Adv Differ Equ 2019, 475 (2019). https://doi.org/10.1186/s13662-019-2414-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2414-8