- Research
- Open access
- Published:
Derivation of bounds of several kinds of operators via \((s,m)\)-convexity
Advances in Difference Equations volume 2020, Article number: 5 (2020)
Abstract
The objective of this paper is to derive the bounds of fractional and conformable integral operators for \((s,m)\)-convex functions in a unified form. Further, the upper and lower bounds of these operators are obtained in the form of a Hadamard inequality, and their various fractional versions are presented. Some connections with already known results are obtained.
1 Introduction
Nobody can deny the importance of convex functions in the field of mathematical analysis, mathematical statistics, and optimization theory. These functions motivate towards the theory of convex analysis, see [17–19].
We start with the definition of convex function.
Definition 1
A function \(f:[a,b]\rightarrow\mathbb{R}\) is said to be convex if
holds for all \(x, y\in[a, b]\) and \(t\in [0, 1 ]\). If inequality (1.1) is reversed, then the function f will be the concave on \([a,b]\).
Convex functions have been generalized theoretically extensively; these generalizations include m-convex function, n-convex function, r-convex function, h-convex function, \({(h-m)}\)-convex function, \((\alpha,m)\)-convex function, s-convex function, and many others. Here we are interested in the generalization of a convex function known as \((s,m)\)-convex function [3].
Definition 2
A function \(f:[0,b]\rightarrow\mathbb{R}\), \(b>0\), is said to be \((s,m)\)-convex, where \((s,m)\in[0,1]^{2}\) if
holds for all \(x,y\in[0,b]\) and \(t\in[0,1]\).
The following remark comprises the functions which can be obtained from the above definition.
Remark 1
-
(i)
If \((s,m)=(1,m)\), then (1.2) produces the definition of m-convex function.
-
(ii)
If \((s,m)=(1,1)\), then (1.2) produces the definition of convex function.
-
(iii)
If \((s,m)=(1,0)\), then (1.2) produces the definition of star-shaped function.
The goal of this paper is to prove generalized integral inequalities for \((s,m)\)-convex functions by the help of generalized integral operator given in Definition 7. This operator has interesting implications in fractional calculus operators. In the following we give definitions associated with Definition 7.
Definition 3
Let \(f\in L_{1}[a,b]\). Then the left-sided and right-sided Riemann–Liouville fractional integral operators of order \(\mu\in\mathbb {C}\) (\(\mathcal{R}(\mu) > 0\)) are defined as follows:
A k-fractional analogue of Riemann–Liouville fractional integral operator is given in [16].
Definition 4
Let \(f\in L_{1}[a,b]\). Then the k-fractional integral operators of f of order \(\mu\in\mathbb{C} \), \(\mathcal{R}(\mu) > 0\), \(k>0\) are defined as follows:
A more general definition of the Riemann–Liouville fractional integral operators is given in [13].
Definition 5
Let \(f:[a,b] \rightarrow\mathbb{R}\) be an integrable function. Also, let g be an increasing and positive function on \((a,b]\), having a continuous derivative \(g'\) on \((a,b)\). The left-sided and right-sided fractional integrals of a function f with respect to another function g on \([a,b]\) of order \(\mu\in\mathbb{C}\) (\(\mathcal{R}(\mu) > 0\)) are defined as follows:
where \(\varGamma(\cdot)\) is the gamma function.
Definition 6
([14])
Let \(f:[a,b] \rightarrow\mathbb{R}\) be an integrable function. Also, let g be an increasing and positive function on \((a,b]\), having a continuous derivative \(g'\) on \((a,b)\). The left-sided and right-sided k-fractional integral operators, \(k>0\), of a function f with respect to another function g on \([a,b]\) of order \(\mu\in\mathbb{C}\), \(\mathcal{R}(\mu) > 0\) are defined as follows:
where \(\varGamma_{k}(\cdot)\) is the k-gamma function.
The following generalized integral operator is given in [5].
Definition 7
Let \(f , g :[a,b]\rightarrow \mathbb{R} \), \(0< a< b\), be the functions such that f is positive and \(f\in L_{1}[a,b]\), and g be differentiable and strictly increasing. Also, let \(\frac{\phi}{x}\) be an increasing function on \([a,\infty)\). Then, for \(x\in[a,b]\), the left and right integral operators are defined as follows:
where \(K_{g}(x,y;\phi) = \frac{\phi(g(x)-g(y))}{g(x)-g(y)} \).
Integral operators defined in (1.11) and (1.12) produce several fractional and conformable integral operators defined in [1, 2, 8, 9, 11–13, 22, 25].
Remark 2
Integral operators given in (1.11) and (1.12) produce several known fractional and conformable integral operators corresponding to different settings of ϕ and g.
- (i)
If we consider \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma _{k}(\mu)}\), then (1.11) and (1.12) integral operators coincide with (1.9) and (1.10) fractional integral operators.
- (ii)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu> 0\), then (1.11) and (1.12) integral operators coincide with (1.7) and (1.8) fractional integral operators.
- (iii)
If we consider \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma _{k}(\mu)}\) and g as an identity function, then (1.11) and (1.12) integral operators coincide with (1.5) and (1.6) fractional integral operators.
- (iv)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu> 0\), and g the identity function, then (1.11) and (1.12) integral operators coincide with (1.3) and (1.4) fractional integral operators.
- (v)
If we consider \(\phi(t)=\frac{t^{\mu }}{\varGamma(\mu)}\) and \(g(x) = \frac{x^{\rho}}{\rho}\), \(\rho> 0\), then (1.11) and (1.12) produce Katugampola fractional integral operators defined by Chen et al. in [1].
- (vi)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\) and \(g(x) =\frac{x^{\tau+s}}{\tau+s}\), \(s>0\), then (1.11) and (1.12) produce generalized conformable integral operators defined by Khan et al. in [11].
- (vii)
If we consider \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma _{k}(\mu)}\) and \(g(x)=\frac{(x-a)^{s}}{s}\), \(s>0\), in (1.11) and \(\phi (t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma_{k}(\mu)}\) and \(g(x)= -\frac {(b-x)^{s}}{s}\), \(s>0\), in (1.12) respectively, then conformable \((k,s)\)-fractional integrals are achieved as defined by Habib et al. in [8].
- (viii)
If we consider \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma _{k}(\mu)}\) and \(g(x) =\frac{x^{1+s}}{1+s}\), then (1.11) and (1.12) produce conformable fractional integrals defined by Sarikaya et al. in [22].
- (ix)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\) and \(g(x)=\frac{(x-a)^{s}}{s}\), \(s>0\), in (1.11) and \(\phi(t)=\frac{t^{\mu }}{\varGamma(\mu)}\) and \(g(x)=-\frac{(b-x)^{s}}{s}\), \(s>0\), in (1.12) respectively, then conformable fractional integrals are achieved as defined by Jarad et al. in [9].
- (x)
If we consider \(\phi(t)=t^{\frac{\lambda}{k}}\mathcal{F}_{\rho ,\lambda}^{\sigma}(w(t)^{\rho})\), then (1.11) and (1.12) produce generalized k-fractional integral operators defined by Tunc et al. in [25].
- (xi)
If we consider \(\phi(t)=\frac{\exp{(-At)}}{\mu}\), \(A=\frac{1-\mu }{\mu}\), \(\mu>0\), then the following generalized fractional integral operators with exponential kernel are obtained [2]:
$$\begin{aligned}& _{g}^{\mu}E_{a^{+}}f(x)=\frac{1}{\mu} \int_{a}^{x}\exp \biggl(-\frac{1-\mu }{\mu} \bigl(g(x)-g(t)\bigr) \biggr)f(t)\,dt,\quad x>a, \end{aligned}$$(1.13)$$\begin{aligned}& _{g}^{\mu}E_{b_{-}}f(x)=\frac{1}{\mu} \int_{x}^{b}\exp \biggl(-\frac{1-\mu }{\mu} \bigl(g(x)-g(t)\bigr) \biggr)f(t)\,dt,\quad x< b. \end{aligned}$$(1.14) - (xii)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\) and \(g(t)=\ln t\), then Hadamard fractional integral operators will be obtained [12, 13].
- (xiii)
If we consider \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\) and \(g(t)=-t^{-1}\), then Harmonic fractional integral operators defined in [13] will be obtained and given as follows:
$$\begin{aligned}& ^{\mu}R_{a^{+}}f(x)=\frac{t^{\mu}}{\varGamma(\mu)} \int _{a}^{x}(x-t)^{\mu-1}\frac{f(t)}{t^{\mu+1}} \,dt,\quad x>a, \end{aligned}$$(1.15)$$\begin{aligned}& ^{\mu}R_{b_{-}}f(x)=\frac{t^{\mu}}{\varGamma(\mu)} \int _{a}^{x}(t-x)^{\mu-1}\frac{f(t)}{t^{\mu+1}} \,dt,\quad x< b. \end{aligned}$$(1.16) - (xiv)
If we consider \(\phi(t)=t^{\mu}\ln t\), then left- and right-sided logarithmic fractional integrals defined in [2] will be obtained and given as follows:
$$\begin{aligned}& _{g}^{\mu}\mathcal{L}_{a^{+}}f(x)= \int_{a}^{x}\bigl(g(x)-g(t)\bigr)^{\mu -1}\ln \bigl(g(x)-g(t)\bigr)g'(t)\,dt,\quad x>a, \end{aligned}$$(1.17)$$\begin{aligned}& _{g}^{\mu}\mathcal{L}_{b_{-}}f(x)= \int_{a}^{x}\bigl(g(t)-g(x)\bigr)^{\mu -1}\ln \bigl(g(x)-g(t)\bigr)g'(t)\,dt,\quad x< b. \end{aligned}$$(1.18)
In recent decades fractional and conformable integral operators have been used by many researchers to obtain corresponding operator versions of well-known inequalities. For some recent work, we refer the reader to [1, 2, 7, 8, 10, 20, 21, 24–26]. In the upcoming section we derive the bounds of sum of the left- and right-sided integral operators defined in (1.11) and (1.12) for \((s,m)\)-convex functions. These bounds lead to producing results for several kinds of well-known operators for convex function, m-convex function, s-convex function, and star-shaped function. Further, in Sect. 3, bounds are presented in the form of a Hadamard inequality, from which several fractional Hadamard inequalities are deduced.
2 Bounds of integral operators and their consequences
Theorem 1
Let \(f:[a,b]\rightarrow\mathbb{R}\)be a positive \((s,m)\)-convex function with \(m\in(0,1]\), and let \(g:[a,b]\rightarrow\mathbb{R}\)be a differentiable and strictly increasing function. Also, let \(\frac {\phi}{x}\)be an increasing function on \([a,b]\). Then, for \(x\in [a,b]\), the following inequality for integral operators (1.11) and (1.12) holds:
Proof
For the kernel of integral operator (1.11), we have
An \((s,m)\)-convex function satisfies the following inequality:
Inequalities (2.2) and (2.3) lead to the following integral inequality:
while (2.4) gives
Again, for the kernel of integral operator (1.12), we have
An \((s,m)\)-convex function satisfies the following inequality:
Inequalities (2.6) and (2.7) lead to the following integral inequality:
while (2.8) further gives
By adding (2.5) and (2.9), (2.1) can be obtained. □
The following remark connects the above theorem with already known results.
Remark 3
-
1.
For \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu>0\), and \((s,m) =(1,1)\) in (2.1), [6, Theorem 1] can be achieved.
-
2.
For \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu>0\), \(g(x)=x\), and \((s,m) =(1,1)\) in (2.1), [4, Theorem 1] can be achieved.
-
3.
For \((s,m)=(1,1)\) in (2.1), [15, Theorem 1] can be achieved.
The following results indicate upper bounds of several known fractional and conformable integral operators.
Proposition 1
Let \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu>0\). Then (1.11) and (1.12) produce the fractional integral operators (1.7) and (1.8) as follows:
Further, they satisfy the following bound for \(\mu\geq1\):
Proposition 2
Let \(g(x)=I(x)=x\). Then (1.11) and (1.12) produce integral operators defined in [23] as follows:
Further, they satisfy the following bound:
Corollary 1
If we take \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma_{k}(\mu)}\), then (1.11) and (1.12) produce the fractional integral operators (1.9) and (1.10) as follows:
Moreover, from (2.1) the following bound holds for \(\mu\geq k\):
Corollary 2
If we take \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu>0\), and \(g(x)=\frac{x^{\rho}}{\rho}\), \(\rho>0\), then (1.11) and (1.12) produce the fractional integral operators defined in [1] as follows:
Moreover, from (2.1) they satisfy the following bound:
Corollary 3
If we take \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), \(\mu>0\), and \(g(x)=\frac{x^{n+1}}{n+1}\), \(n>0\), then (1.11) and (1.12) produce the fractional integral operators defined as follows:
Moreover, from (2.1) they satisfy the following bound:
Remark 4
The bounds of Riemann–Liouville fractional and k-fractional integrals can be computed by setting \(\phi(t)=\frac{t^{\mu}}{\varGamma (\mu)}\), \(g(t)=t\) and \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma _{k}(\mu)}\), \(g(t)=t\) respectively in (2.1), we leave it for the reader.
For the function f which is differentiable and \(|f'|\) is \((s,m)\)-convex, the following result holds.
Theorem 2
Let \(f: I \rightarrow\mathbb{R}\)be a differentiable function if \(|f'|\)is \((s,m)\)-convex with \(m\in(0,1]\), and let \(g: I \rightarrow\mathbb{R}\)be a differentiable and strictly increasing function. Also, let \(\frac{\phi}{x}\)be an increasing function onI, then for \(a,b \in I\), \(a< b\)the following inequalities for integral operators hold:
where
Proof
An \((s,m)\)-convex function \(|f'|\) satisfies the following inequality:
from which we can write
Inequalities (2.2) and (2.21) lead to the following integral inequality:
while (2.22) further gives
From (2.20) we can write
Adopting the same method as we did for (2.21), the following integral inequality holds:
From (2.23) and (2.25), (2.18) can be obtained.
An \((s,m)\)-convex function \(|f'|\) satisfies the following inequality:
from which we can write
Inequalities (2.6) and (2.27) lead to the following integral inequality:
while (2.28) further gives
From (2.26) we can write
Adopting the same method as we did for (2.27), the following inequality holds:
3 Hadamard type inequalities for \((s,m)\)-convex function
In order to prove our next result, we need the following lemma.
Lemma 1
Let \(f: [0,\infty] \rightarrow\mathbb{R}\)be an \((s,m)\)-convex function with \(m\in(0,1]\). If \(0 \leq a< b\)and \(f(x)=f(\frac {a+b-x}{m})\), then the following inequality holds:
Proof
Since f is \((s,m)\)-convex, the following inequality is valid:
By using \(f(x)=f (\frac{a+b-x}{m} )\) in the above inequality, we get (3.1). □
By applying Lemma 1, we prove the following Hadamard type inequality.
Theorem 3
Let \(f: [a,b] \rightarrow\mathbb{R}\)be a positive \((s,m)\)-convex function with \(m\in(0,1]\), \(f(x)=f(\frac{a+b-x}{m})\)and \(g:[a,b] \rightarrow\mathbb{R}\)be a differentiable and strictly increasing function. Also, let \(\frac{\phi}{x}\)be an increasing function on \([a,b]\). Then, for \((\alpha,m)\in[0,1]^{2}\), the following inequality holds:
Proof
For the kernel of integral operator (1.11), we have
An \((s,m)\)-convex function satisfies the following inequality:
Inequalities (3.3) and (3.4) lead to the following integral inequality:
while (3.5) further gives
On the other hand, for the kernel of integral operator (1.12), we have
Inequalities (3.4) and (3.7) lead to the following integral inequality:
while the above inequality gives
From (3.6) and (3.8), the following inequality can be obtained:
Now, using Lemma 1 and multiplying (3.1) with \(K_{g}(x,a;\phi)g'(x)\), then integrating over \([a,b]\), we have
from which we get
Again using Lemma 1 and multiplying (3.1) with \(K_{g}(b,x;\phi)g'(x)\), then integrating over \([a,b]\), we have
from which we get
From (3.11) and (3.12), the following inequality can be achieved:
From (3.9) and (3.13), (3.2) can be obtained. □
Remark 5
For \((s,m)=(1,1)\), in (3.2), [15, Theorem 3] can be obtained.
Corollary 4
If we put \(\phi(t)=\frac{t^{\frac{\mu}{k}}}{k\varGamma_{k}(\mu)}\), then inequality (3.2) produces the following Hadamard inequality:
Corollary 5
If we put \(\phi(t)=\frac{t^{\mu}}{\varGamma(\mu)}\), then inequality (3.2) produces the following Hadamard inequality:
Remark 6
The Hadamard inequality for Riemann–Liouville fractional and k-fractional integrals can be computed by setting \(\phi(t)=\frac {t^{\mu}}{\varGamma(\mu)}\), \(g(t)=t\) and \(\phi(t)=\frac{t^{\frac{\mu }{k}}}{k\varGamma_{k}(\mu)}\), \(g(t)=t\) respectively in (3.2), we leave it for the reader.
4 Concluding remarks
This work produces some generalized integral operator inequalities via \((s,m)\)-convex function. From these inequalities the bounds of all integral operators defined in Remark 2 can be established for convex function, m-convex function, s-convex function, and star-shaped function. The reader can produce a plenty of Hadamard type inequalities for fractional and conformable integral operators deduced in Remark 2 by applying Theorem 3.
References
Chen, H., Katugampola, U.N.: Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446, 1274–1291 (2017)
Dragomir, S.S.: Inequalities of Jensen’s type for generalized \(k-g\)-fractional integrals of functions for which the composite \(f \circ g^{-1}\) is convex. RGMIA Res. Rep. Collect. 20, Article ID 133 (2017)
Efthekhari, N.: Some remarks on \((s,m)\)-convexity in the second sense. J. Math. Inequal. 8(3), 485–495 (2014)
Farid, G.: Some Riemann–Liouville fractional integral for inequalities for convex functions. J. Anal. (2018). https://doi.org/10.1007/s41478-0079-4
Farid, G.: Existence of an integral operator and its consequences in fractional and conformable integrals. Open J. Math. Sci. 3, 210–216 (2019)
Farid, G., Nazeer, W., Saleem, M.S., Mehmood, S., Kang, S.M.: Bounds of Riemann–Liouville fractional integrals in general form via convex functions and their applications. Mathematics 6(11), Article ID 248 (2018)
Farid, G., Rehman, A.U., Ullah, S., Nosheen, A., Waseem, M., Mehboob, Y.: Opial-type inequalities for convex function and associated results in fractional calculus. Adv. Differ. Equ. 2019, Article ID 152 (2019)
Habib, S., Mubeen, S., Naeem, M.N.: Chebyshev type integral inequalities for generalized k-fractional conformable integrals. J. Inequal. Spec. Funct. 9(4), 53–65 (2018)
Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017)
Kang, S.M., Farid, G., Waseem, M., Ullah, S., Nazeer, W., Mehmood, S.: Generalized k-fractional integral inequalities associated with \((\alpha, m)\)-convex functions. J. Inequal. Appl. 2019, Article ID 255 (2019)
Khan, T.U., Khan, M.A.: Generalized conformable fractional operators. J. Comput. Appl. Math. 346, 378–389 (2019)
Kilbas, A.A., Marichev, O.I., Samko, S.G.: Fractional Integrals and Derivatives. Theory and Applications. Gordon & Breach, New York (1993)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, New York (2006)
Kwun, Y.C., Farid, G., Nazeer, W., Ullah, S., Kang, S.M.: Generalized Riemann–Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities. IEEE Access 6, 64946–64953 (2018)
Mishra, V.N., Farid, G., Bangash, B.K.: Bounds of an integral operator for convex functions and results in fractional calculus (submitted)
Mubeen, S., Habibullah, G.M.: k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)
Niculescu, C.P., Persson, L.E.: Convex Functions and Their Applications, a Contemporary Approach. CMS Books in Mathematics, vol. 23. Springer, New York (2006)
Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academics Press, New York (1992)
Roberts, A.W., Varberg, D.E.: Convex Functions. Academic Press, New York (1973)
Saleem, M.S., Set, J.P., Munir, M., Ali, A., Tubssam, M.S.I.: The weighted square integral inequalities for smooth and weak subsolution of fourth order Laplace equation. Open J. Math. Sci. 2(1), 228–239 (2018)
Sarikaya, M.Z., Alp, N.: On Hermite–Hadamard–Fejér type integral inequalities for generalized convex functions via local fractional integrals. Open J. Math. Sci. 3(1), 273–284 (2019)
Sarikaya, M.Z., Dahmani, M., Kiris, M.E., Ahmad, F.: \((k, s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016). https://doi.org/10.15672/HJMS.20164512484
Sarikaya, M.Z., Ertuğral, F.: On the generalized Hermite–Hadamard inequalities. https://www.researchgate.net/publication/321760443
Sarikaya, M.Z., Kaplan, S.: Some estimations Cebysev–Gruss type inequalities involving functions and their derivatives. Open J. Math. Sci. 2(1), 146–155 (2018)
Tunc, T., Budak, H., Usta, F., Sarikaya, M.Z.: On new generalized fractional integral operators and related fractional inequalities. https://www.researchgate.net/publication/313650587
Ullah, S., Farid, G., Khan, K.A., Waheed, A., Mehmood, S.: Generalized fractional inequalities for quasi-convex functions. Adv. Differ. Equ. 2019, Article ID 15 (2019)
Acknowledgements
We thank the editor and referees for their careful reading and valuable suggestions to make the article reader friendly.
Availability of data and materials
There is no additional data required for the finding of results of this paper.
Funding
This work was supported by the Dong-A University Research Fund.
Author information
Authors and Affiliations
Contributions
All authors have equal contribution in this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
It is declared that the authors have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chel Kwun, Y., Farid, G., Min Kang, S. et al. Derivation of bounds of several kinds of operators via \((s,m)\)-convexity. Adv Differ Equ 2020, 5 (2020). https://doi.org/10.1186/s13662-019-2470-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2470-0