Skip to main content

Theory and Modern Applications

Further results on existence of positive solutions of generalized fractional boundary value problems

Abstract

This paper studies two classes of boundary value problems within the generalized Caputo fractional operators. By applying the fixed point result of α-ϕ-Geraghty contractive type mappings, we derive new results on the existence and uniqueness of the proposed problems. Illustrative examples are constructed to demonstrate the advantage of our results. The theorems reported not only provide a new approach but also generalize existing results in the literature.

1 Introduction

Recently, it has been realized that fractional calculus (FC) has played a very important role in different areas of research; see [26, 32] and the references cited therein. Consequently, fractional differential equations (FDEs) have grasped the interest of many researchers working in diverse applications [22, 39]. Most relevant results have been obtained in terms of the classical fractional derivatives (FDs) of Riemann–Liouville (RL), Caputo (Ca), Katugampola (Ka), Hadamard (Ha), Hilfer (Hi) FDs etc.

Generalized fractional derivatives (GFDs) with respect to another function κ have been considered in [32, 41] as a generalization of RL fractional operator (FO). The GFD is different from the other classical FD because the kernel appears in terms of another function κ. Recently, Almeida in [13] presented a generalized version of Ca with some advantageous properties. Many properties of the generalized FO can be found in [11, 32, 33, 41, 45]. The advantage of studying the generalized FD lay in providing a general platform that includes all particular derivatives. For some special cases of a function κ, one can realize that κ-Ca FD can be reduced to the (Ca, when \(\kappa (t)\rightarrow t\) see [32], Ca-Ha, when \(\kappa (t)\rightarrow \log t\) [28], Ca-Ka, when \(\kappa (t)\rightarrow t^{\rho }(\rho >0)\) [30, 31]) FD.

On the other hand, the investigation of existence and uniqueness of solutions to several types of fractional (impulsive, functional, evolution, etc.) differential equations is the main topic of applied mathematics research. Many interesting results with regard the existence, uniqueness, and stability of solutions or positive solutions by using some fixed point (FP) theorem have been discussed in Refs. [1, 12, 18, 19, 21, 23, 24, 27, 35, 37, 38, 44].

For the purpose of completeness, we refer thereafter to some relevant papers that deal with the existence of positive solutions involving classical Ca and RL derivatives. More precisely, the authors in [17] studied the existence and multiplicity of positive solutions for the following problem:

$$ \textstyle\begin{cases} {}^{\mathrm{RL}}D_{0+}^{\imath }\varpi (\varkappa )+g(\varkappa,\varpi ( \varkappa ))=0,\quad \varkappa \in (0,1), \\ \varpi (0)=\varpi (1)=0, \end{cases} $$

where \(1<\imath \leq 2\), and \({}^{\mathrm{RL}}D_{0+}^{\imath }\) is RL FO. Also, the problem

$$ \textstyle\begin{cases} {}^{C}D_{0+}^{\imath }\varpi (\varkappa )+g(\varkappa,\varpi ( \varkappa ))=0, \quad\varkappa \in (0,1), \\ \varpi (0)+\varpi ^{\prime }(0)=0, \qquad\varpi (1)+\varpi ^{\prime }(1)=0, \end{cases} $$

was discussed in [48], where \(1<\imath \leq 2\), and \({}^{C}D_{0+}^{\imath }\) is the CF operator.

For some recent findings on GFDs with respect to another function κ, see [2, 3, 14, 15, 25, 34, 36, 42, 43, 46, 47].

In other direction, Karapinar and Samet introduced the notion of generalized α-ψ-Geraghty contractive (α-ψ-GC) type mappings (see [29]). The generalized α-ψ-GC in complete b-metric spaces (b-MS) and their applications in b-metric spaces b-MS was introduced in [410, 16, 40].

To the best of our observation, the investigation of positive solutions to fractional BVP has not been studied within κ-Ca and κ-RL FOs yet. Moreover, the FP technique based on α-ψ-GC has never been applied to such problems.

Inspired by the above results and motivated by the recent evolutions in κ-fractional calculus, in this paper, we apply the FP technique of α-ψ-GC type mappings to investigate the existence of positive solutions for the following fractional BVPs:

$$ \textstyle\begin{cases} {}^{C}D_{0+}^{\imath,\kappa }\varpi (\varkappa )+g(\varkappa,\varpi ( \varkappa ))=0, \quad \varkappa \in (0,1), \\ \varpi (0)=\varpi (1)=0, \end{cases} $$
(1)

and

$$ \textstyle\begin{cases} {}^{C}D_{0+}^{\imath,\kappa }\varpi (\varkappa )+g(\varkappa, \varpi (\varkappa ))=0,\quad \varkappa \in (0,1), \\ \varpi (0)+\varpi ^{\prime }(0)=0, \qquad\varpi (1)+\varpi ^{\prime }(1)=0. \end{cases} $$
(2)

where \(1<\imath \leq 2\), and \({}^{C}D_{0+}^{\imath,\kappa }\) is κ-FD of order ı in the sense the κ-Ca operator, and \(g:\digamma \times \mathbb{R}\rightarrow \mathbb{ R}^{+}\) is a continuous function. Throughout the article \(\digamma =[0,1]\) and \(\mathbb{R}^{+}=[0,\infty )\).

We claim that our approach is new and the reported results are different form existing ones in the literature.

The remaining parts of the paper are outlined as follows: Some preliminary facts needed for the proofs of the main results are recalled in Sect. 2. In Sect. 3, we prove the existence of positive solutions for problems (1) and (2) by the aid of the FP result of α-ψ-GC type mappings. Examples are given in Sect. 4 to check the applicability of the theoretical findings. We end the paper by a conclusion.

2 Preliminaries

Definition 2.1

([32])

Let \(\iota >0\) and κ be an increasing function, having a continuous derivative \(\kappa ^{\prime }\) on \((a,b)\). The left-sided κ-RL fractional integral of a function h with respect to κ on \([a,b]\) is defined by

$$ I_{a^{+}}^{\iota,\kappa }h(\varrho )=\frac{1}{\Gamma (\iota )}\int _{a}^{\varrho }\kappa ^{\prime }(\varsigma ) \bigl[ \kappa ( \varrho )-\kappa (\varsigma ) \bigr] ^{\iota -1}h( \varsigma ) \,d \varsigma,\quad \varrho >a, \iota >0, $$

provided that \(I_{a^{+}}^{\iota,\kappa }\) exists. Note that when \(\kappa (\varrho )=\varrho \), we obtain the known classical RL fractional integral.

Definition 2.2

([32, 41])

Let \(\iota >0\), n be the smallest integer greater than or equal to ι and \(h\in L^{p}[a,b]\), \(p\geq 1\) let \(\kappa \in C^{n}[a,b]\) an increasing function such that \(\kappa ^{\prime }(\varrho )\neq 0\), for all \(\varrho \in [ a,b]\). The left-sided κ-RL FD of h of order ι is given by

$$ D_{a^{+}}^{\iota;\kappa }h(\varrho )= \biggl( \frac{1}{\kappa ^{\prime }(\varrho )} \frac{d}{d\varrho } \biggr) ^{n}I_{a^{+}}^{n- \iota,\kappa }h( \varrho ),\quad n-1< \iota < n,n\in \mathbb{N}. $$

Definition 2.3

([13, 14])

Let \(n-1<\iota <n\), \(h\in C^{n}[a,b]\), and let \(\kappa \in C^{n}[a,b]\) an increasing function such that \(\kappa ^{\prime }(\varrho )\neq 0\), for all \(\varrho \in [ a,b]\). The left-sided κ-Ca FD of h of order ι is given by

$$ {}^{C}D_{a^{+}}^{\iota;\kappa }h(\varrho )=I_{a^{+}}^{n-\iota,\kappa } D^{n,\kappa }h( \varrho ), $$

where \(D^{n,\kappa }:= ( \frac{1}{\kappa ^{\prime }(\varrho )} \frac{d}{d\varrho } ) ^{n}\), and \(n=[\iota ]+1\).

Definition 2.4

([20])

Let M be a nonempty set and \(r\geq 1\). A mapping \(d \colon M \times M\to \mathbb{R}^{+}\) is said to be a b-metric if for \(\varrho, \varsigma, \varpi \in M\);

\((bM_{1})\):

\(d(\varrho,\varsigma ) =0\) if and only if \(\varsigma = \varrho \);

\((bM_{2})\):

\(d(\varrho,\varsigma ) = d(\varsigma,\varrho )\);

\((bM_{3})\):

\(d(\varrho, \varpi ) \leq r[d(\varrho,\varsigma ) + d(\varsigma, \varpi ) ]\).

The pair \((M,d)\) is called a b-MS with constant r.

Let Φ be set of all increasing and continuous functions \(\phi:\mathbb{R^{+}}\rightarrow \mathbb{R^{+}}\) satisfying the property: \(\phi (c\varrho )\leq c\phi (\varrho )\leq c\varrho \) for \(c>1\) and \(\phi (0)=0\). We denote by \(\mathcal{F}\) the family of all nondecreasing functions \(\lambda:\mathbb{R^{+}}\rightarrow [ 0,\frac{1}{r^{2}})\) for some \(r\geq 1\).

Definition 2.5

([8])

Let \((M,d)\) be a b-MS and \(T:M\rightarrow M\), we say that T is a generalized α-ϕ-GC type mapping whenever there exists \(\alpha:M\times M\rightarrow \mathbb{R^{+}}\) such that

$$ \alpha (\varrho,\varsigma )\phi \bigl(r^{3}d(T\varrho,T\varsigma ) \bigr)\leq \lambda \bigl(\phi \bigl(d(\varrho,\varsigma ) \bigr) \bigr)\phi \bigl(d( \varrho,\varsigma ) \bigr), $$

for \(\varrho,\varsigma \in M\), where \(\lambda \in \mathcal{F}\) and \(\phi \in \Phi \).

Definition 2.6

([40])

For \(M (\neq \emptyset )\), let \(T: M\rightarrow M\) and \(\alpha: M\times M\rightarrow \mathbb{R^{+}}\) be given mappings. We say that T is α-admissible if, for \(\varrho,\varsigma \in M\), we have

$$ \alpha (\varrho,\varsigma )\geq 1 \quad\Longrightarrow\quad \alpha (T \varrho,T \varsigma )\geq 1. $$
(3)

Theorem 2.7

([8])

Let \((M,d)\) be a complete b-MS and \(T:M\rightarrow M\) be a generalized α-ϕ-GC type mapping such that

  1. (i)

    T is α-admissible;

  2. (ii)

    there exists \(\varrho _{0}\in M\) such that \(\alpha (\varrho _{0},T\varrho _{0})\geq 1\);

  3. (iii)

    if \(\{\varrho _{n}\}\subseteq M\) with \(\varrho _{n}\rightarrow \varrho \) and \(\alpha (\varrho _{n},\varrho _{n+1})\geq 1\), then \(\alpha (\varrho _{n},\varrho )\geq 1\).

Then T has a FP.

Lemma 2.8

([46])

Let \(g\in C(\digamma )\) and \(1<\iota \leq 2\). Then the FBVP

$$ \textstyle\begin{cases} {}^{C}D_{a+}^{\iota,\kappa }\varpi (\varkappa )+g(\varkappa,\varpi ( \varkappa ))=0,\quad \varkappa \in (0,1), \\ \varpi (0)=0,\qquad \varpi (1)=0, \end{cases} $$
(4)

is equivalent to

$$ \varpi (\varkappa )= \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g \bigl(\vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta, $$

where

$$ \mathcal{G}(\varkappa,\vartheta )= \frac{(\kappa (\varkappa )-\kappa (0))^{\iota -1}}{(\kappa (1)-\kappa (0))^{\iota -1}\Gamma (\iota )}\textstyle\begin{cases} (\kappa (1)-\kappa (\vartheta ))^{\iota -1}- \frac{(\kappa (1)-\kappa (0))^{\iota -1}}{(\kappa (\varkappa )-\kappa (0))^{\iota -1}}( \kappa (\varkappa )-\kappa (\vartheta ))^{\iota -1},\\ \quad 0\leq \vartheta \leq \varkappa \leq 1, \\ (\kappa (1)-\kappa (\vartheta ))^{\iota -1},\\ \quad 0\leq \varkappa \leq \vartheta \leq 1.\end{cases}$$
(5)

Lemma 2.9

([46])

For the function \(\mathcal{G}\) defined by (5) we have;

  1. (i)

    \(\mathcal{G}(\varkappa,\vartheta )>0\), for all \(\varkappa,\vartheta \in (0,1)\).

  2. (ii)

    For \(\vartheta \in (0,1)\), there exists a positive function γ such that

    $$ \min_{\varkappa \in [ 1/4,3/4]}\mathcal{G}(\varkappa, \vartheta )\geq \gamma ( \vartheta )\max_{\varkappa \in \digamma } \mathcal{G}(\varkappa,\vartheta ). $$

Lemma 2.10

([46])

Let \(g\in C[a,b]\), and \(1<\iota \leq 2\), then the FBVP

$$ \textstyle\begin{cases} {}^{C}D_{0+}^{\iota,\kappa }\varpi (\varkappa )-g(\varkappa )=0, \quad \varkappa \in (0,1), \\ \varpi (0)+\varpi ^{\prime }(0)=0,\qquad \varpi (1)+\varpi ^{\prime }(1)=0, \end{cases} $$
(6)

has a solution

$$ \varpi (\varkappa )= \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g(\vartheta )\,d\vartheta, $$

where

$$\begin{aligned} \Lambda (\varkappa,\vartheta )={}& \bigl( \Gamma (\iota -1) \bigl[ \bigl(\kappa (1)-\kappa (0) \bigr)+ \bigl(\kappa ^{\prime }(1)-\kappa ^{ \prime }(0) \bigr) \bigr] \bigr) ^{-1} \\ &{}\times \textstyle\begin{cases} ( (\kappa ^{\prime }(0)+\kappa (0)-\kappa (\varkappa ) ) [ ( (\kappa (1)-\kappa (\vartheta ) ) ^{\iota -2}+ \frac{1}{\iota -1}(\kappa (1)-\kappa (\vartheta ))^{\iota -1} ] \\ \quad{} + \frac{(\kappa (1)-\kappa (0))+(\kappa ^{\prime }(1)-\kappa ^{\prime }(0))}{\iota -1}(\kappa (\varkappa )-\kappa (\vartheta ))^{\iota -1}, \quad 0 \leq \vartheta \leq \varkappa \leq 1, \\ ( (\kappa ^{\prime }(0)+\kappa (0)-\kappa (\varkappa ) ) [ ( (\kappa (1)-\kappa (\vartheta ) ) ^{\iota -2}+ \frac{1}{\iota -1}(\kappa (1)-\kappa (\vartheta ))^{\iota -1} ],\\ \quad 0\leq \varkappa \leq \vartheta \leq 1.\end{cases}\displaystyle \end{aligned}$$
(7)

Lemma 2.11

([46])

Let \(\kappa (\varkappa )\leq \kappa (0)+\kappa ^{\prime }(0)\), then (7) satisfies \(\Lambda (\varkappa,\vartheta )>0\), for all \(\vartheta,\varkappa \in (0,1)\). Besides, there exists a positive function \(\upsilon \in (0,1)\), such that

$$ \min_{\varkappa \in [ 1/4,3/4]}\Lambda (\varkappa,\vartheta ) \geq \upsilon ( \vartheta )M(\vartheta ),\quad \vartheta \in (0,1), $$

and

$$ \max_{\varkappa \in \digamma }\Lambda (\varkappa,\vartheta )\leq M( \vartheta ), $$

where

$$\begin{aligned} & m(\vartheta )= \bigl( \kappa ^{\prime }(0)+\kappa (0)-\kappa (3/4) \bigr) \biggl[ \bigl(\kappa (1)-\kappa (\vartheta ) \bigr)^{\iota -2}+ \frac{1}{\iota -1} \bigl(\kappa (1)-\kappa (\vartheta ) \bigr)^{\iota -1} \biggr], \\ & M(\vartheta )= \bigl(\kappa (1)+\kappa ^{\prime }(1) \bigr) \biggl[ \bigl( \kappa (1)- \kappa (\vartheta ) \bigr)^{\iota -2}+\frac{2}{\iota -1}( \bigl( \kappa (1)- \kappa (\vartheta ) \bigr)^{\iota -1} \biggr], \end{aligned}$$

and

$$\begin{aligned} &\upsilon (\vartheta )=\frac{m(\vartheta )}{M(\vartheta )}= \frac{\kappa ^{\prime }(0)+\kappa (0)-\kappa (3/4)}{\kappa ^{\prime }(1)+\kappa (1)} \frac{(\iota -1)(\kappa (1)-\kappa (\vartheta ))^{\iota -2}+(\kappa (1)-\kappa (\vartheta ))^{\iota -1}}{(\iota -1)(\kappa (1)-\kappa (\vartheta ))^{\iota -2}+2 (\kappa (1)-\kappa (\vartheta ))^{\iota -1}},\\ &\quad \vartheta \in (0,1). \end{aligned}$$

3 Main results

Let \(M=C(\digamma,\mathbb{R}^{+})\) and \(d:M\times M\rightarrow \mathbb{R^{+}}\) be given by

$$ d(\varpi,w)= \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty }=\sup_{ \vartheta \in [ 0,1]} \bigl(\varpi (\vartheta )-w( \vartheta ) \bigr)^{2}. $$

Then, \((M,d)\) is a complete b-MS with \(r=2\).

Theorem 3.1

Suppose that

  1. (i)

    \(g:\digamma \times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that

    $$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl( \vartheta,w( \vartheta ) \bigr) \bigr\vert \\ &\quad\leq \frac{1}{2\sqrt{2}} \frac{\Gamma (\iota +1)}{(\kappa (1)-\kappa (0))^{\iota }}\sqrt{\phi \bigl( \bigl\Vert ( \varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl( \phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}, \end{aligned}$$

    where \(\phi \in \Phi \) and \(\lambda \in \mathcal{F}\);

  2. (ii)

    \(\varpi _{0}\in C(\digamma )\) and \(\mu:\mathbb{R}^{2}\rightarrow \mathbb{R}\) with \(\mu (\varpi _{0}(\vartheta ),\int _{0}^{1}\mathcal{G}(\varkappa,\vartheta )\kappa ^{\prime }(\vartheta )g( \vartheta,\varpi _{0}(\vartheta ))\,d\vartheta )\geq 0\), \(\vartheta \in \digamma \);

  3. (iii)

    for \(\vartheta \in \digamma \) and \(\varpi,w\in C(\digamma )\), \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\) implies

    $$ \mu \biggl( \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta )g \bigl(\vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta, \int _{0}^{1}\mathcal{G}(\varkappa, \vartheta )\kappa ^{\prime }(\vartheta )g \bigl( \vartheta,w(\vartheta ) \bigr)\,d\vartheta \biggr) \geq 0; $$
  4. (iv)

    If \(\{\varpi _{n}\}\subseteq C(\digamma )\) with \(\varpi _{n}\rightarrow \varpi \) and \(\mu (\varpi _{n},\varpi _{n+1})\geq 0\), then \(\mu (\varpi _{n},\varpi )\geq 0\).

    Then the problem (4) has at least one solution.

Proof

By Lemma 2.8, \(\varpi \in C(\digamma )\) is a solution of (6) if and only if ϖ is a solution of the integral equation \(\varpi (\varkappa )=\int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g(\vartheta,\varpi (\vartheta ))\,d \vartheta \), \(\varkappa \in \digamma \). Define, \(O:C(\digamma )\rightarrow C(\digamma )\) by \(O\varpi (\varkappa )=\int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g(\vartheta,\varpi (\vartheta ))\,d \vartheta \). We find a FP of O. Now, let \(\varpi,w\in C(\digamma )\) be such that \(\mu (\varpi (\varkappa ),w(\varkappa ))\geq 0\). On one hand we have

$$\begin{aligned} &\bigl|O\varpi (\varkappa )-Ow(\varkappa ))\bigr|^{2}\\ &\quad= \biggl\vert \int _{0}^{1} \mathcal{G}(\varkappa, \vartheta )\kappa ^{\prime }(\vartheta )g \bigl(\vartheta, \varpi (\vartheta ) \bigr)\,d\vartheta - \int _{0}^{1}\mathcal{G}(\varkappa, \vartheta ) \kappa ^{\prime }(\vartheta )g \bigl(\vartheta,w(\vartheta ) \bigr)\,d \vartheta \biggr\vert ^{2} \\ & \quad\leq \biggl[ \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta ) \bigl\vert g \bigl(\vartheta,\varpi ( \vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \,d \vartheta \biggr] ^{2}. \end{aligned}$$

By Lemma 2.8, for \(0<\varkappa <\vartheta <1\) we have

$$\begin{aligned} \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta )\,d\vartheta & = \frac{(\kappa (\varkappa )-\kappa (0))^{\iota -1}}{(\kappa (1)-\kappa (0))^{\iota -1}\Gamma (\iota )} \int _{0}^{1} \bigl(\kappa (1)-\kappa (\vartheta ) \bigr)^{\iota -1}\kappa ^{ \prime }(\vartheta )\,d\vartheta \\ & = \frac{(\kappa (\varkappa )-\kappa (0))^{\iota -1}}{(\kappa (1)-\kappa (0))^{\iota -1}\Gamma (\iota )} \biggl[ \frac{-(\kappa (1)-\kappa (\vartheta ))^{\iota }}{\iota } \biggr] _{0}^{1} \\ & \leq \frac{(\kappa (1)-\kappa (0))^{\iota -1}}{(\kappa (1)-\kappa (0))^{\iota -1}\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota } \\ & =\frac{(\kappa (1)-\kappa (0))^{\iota }}{\Gamma (\iota +1)}. \end{aligned}$$

For \(0<\vartheta <\varkappa <1\), the same estimates can be proved in analogous way to the previous one. So we will omit it.

Using (i), we get

$$\begin{aligned} & \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta ) \bigl\vert g \bigl(\vartheta,\varpi ( \vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \,d \vartheta \\ & \quad\leq \frac{(\kappa (1)-\kappa (0))^{\iota }}{\Gamma (\iota +1)} \bigl\vert g \bigl(\vartheta,\varpi ( \vartheta ) \bigr)-g \bigl(\vartheta,w(\vartheta ) \bigr) \bigr\vert \\ &\quad \leq \frac{1}{2\sqrt{2}}\sqrt{\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}. \end{aligned}$$

Thus,

$$ \bigl|O\varpi (\varkappa )-Ow(\varkappa ))\bigr|^{2}\leq \frac{1}{8}\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr). $$

Put \(\alpha:C(\digamma )\times C(\digamma )\rightarrow \mathbb{R^{+}}\) by

$$ \alpha (\varpi,w)=\textstyle\begin{cases} 1 & \mu (\varpi (\vartheta ),w(\vartheta ))\geq 0, \vartheta \in \digamma, \\ 0 & \text{else}.\end{cases} $$

So for \(\varpi,w\in C(\digamma )\) with \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\), we have

$$ \alpha (\varpi,w)8d(O\varpi,Ow)\leq 8d(O\varpi,Ow)\leq \lambda \bigl( \phi \bigl(d(\varpi,w) \bigr) \bigr)\phi \bigl(d(\varpi,w) \bigr), \quad\lambda \in \digamma. $$

So, we conclude that O is a α-ϕ-GC type mapping.

From (iii), we get

$$\begin{aligned} \alpha (\varpi,w)\geq 1\quad&\Rightarrow\quad \mu \bigl(\varpi (\vartheta ),w( \vartheta ) \bigr)\geq 0\quad\Rightarrow\quad \mu \bigl(O(\varpi ),O(w) \bigr)\geq 0 \\ &\Rightarrow \quad\alpha \bigl(O(\varpi ),O(w) \bigr)\geq 1, \end{aligned}$$

for \(\varpi,w\in C(\digamma )\). Thus, O is α-admissible. From (ii), there exists \(\varpi _{0}\) \(\in C(\digamma )\) with \(\alpha (\varpi _{0},O\varpi _{0})\geq 1\). By (iv) and Theorem 2.7, we find \(\varpi ^{\ast }\) with \(\varpi ^{\ast }=O\varpi ^{\ast }\), that is, a positive solution of (4). □

Theorem 3.2

Suppose that

  1. (i)

    \(g:\digamma \times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that

    $$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \\ & \quad\leq \frac{1}{2\sqrt{2}} \biggl( \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)- \kappa (0)+\kappa ^{\prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1}\frac{\kappa ^{\prime }(0)}{\iota -1} \\ &\qquad{} \times \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota -1} \biggl( 1+ \frac{1}{\iota } \bigl(\kappa (1)-\kappa (0) \bigr) \biggr) + \frac{1}{\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr)^{\iota } \biggr)^{-1} \\ & \qquad{}\times \sqrt{\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}, \end{aligned}$$

    where \(\phi \in \Phi \) and \(\lambda \in \mathcal{F}\);

  2. (ii)

    \(\varpi _{0}\in C(\digamma )\) and \(\mu:\mathbb{R}^{2}\rightarrow \mathbb{R}\) with \(\mu (\varpi _{0}(\vartheta ),\int _{0}^{1}\Lambda (\varkappa, \vartheta )\kappa ^{\prime }(\vartheta )g(\vartheta,\varpi _{0}( \vartheta ))\,d\vartheta )\geq 0\), \(\vartheta \in \digamma \);

  3. (iii)

    for \(\vartheta \in \digamma \) and \(\varpi,w\in C(\digamma )\), \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\) implies

    $$ \mu \biggl( \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta )g \bigl(\vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta, \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta )g \bigl(\vartheta,w(\vartheta ) \bigr)\,d \vartheta \biggr) \geq 0; $$
  4. (iv)

    if \(\{\varpi _{n}\}\subseteq C(\digamma )\) with \(\varpi _{n}\rightarrow \varpi \) and \(\mu (\varpi _{n},\varpi _{n+1})\geq 0\), then \(\mu (\varpi _{n},\varpi )\geq 0\).

    Then (6) has at least one solution.

Proof

By Lemma 2.10, \(\varpi \in C(\digamma )\) is a solution of (6) if and only if ϖ is a solution of the integral equation \(\varpi (\varkappa )=\int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g(\vartheta,\varpi (\vartheta ))\,d \vartheta \), \(\varkappa \in \digamma \). Define \(O:C(\digamma )\rightarrow C(\digamma )\) by \(O\varpi (\varkappa )=\int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g(\vartheta,\varpi (\vartheta ))\,d \vartheta \). Let \(\varpi,w\in C(\digamma )\) be such that \(\mu (\varpi (\varkappa ),w (\varkappa ))\geq 0\). On the one hand we have

$$\begin{aligned} &\bigl|O\varpi (\varkappa )-Ow(\varkappa ))\bigr|^{2}\\ &\quad= \biggl\vert \int _{0}^{1} \Lambda (\varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g \bigl( \vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta - \int _{0}^{1}\Lambda ( \varkappa,\vartheta ) \kappa ^{\prime }(\vartheta )g \bigl(\vartheta,w( \vartheta ) \bigr)\,d \vartheta \biggr\vert ^{2} \\ & \quad\leq \biggl[ \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta ) \bigl\vert g \bigl(\vartheta,\varpi ( \vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \,d\vartheta \biggr] ^{2}. \end{aligned}$$

By Lemma 2.10, for \(0<\vartheta <\varkappa <1\) we have

$$\begin{aligned} &\int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta )\,d\vartheta \\ &\quad \leq \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)- \kappa (0)+\kappa ^{\prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1} \bigl( \kappa ^{\prime }(0)+\kappa (0)-\kappa ( \varkappa ) \bigr) \\ & \qquad{}\times \int _{0}^{1} \biggl[ \bigl(\kappa (1)-\kappa ( \vartheta ) \bigr)^{\iota -2}+ \frac{1}{\iota -1} \bigl(\kappa (1)-\kappa ( \vartheta ) \bigr)^{\iota -1} \biggr]\kappa ^{\prime }( \vartheta )\,d \vartheta \\ &\qquad{} +\frac{1}{\Gamma (\iota )} \int _{0}^{1} \bigl(\kappa (1)-\kappa ( \vartheta ) \bigr)^{\iota -1}\kappa ^{\prime }(\vartheta )\,d\vartheta \\ & \quad\leq \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)-\kappa (0)+\kappa ^{ \prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1} \frac{\kappa ^{\prime }(0)}{\iota -1} \\ & \qquad{}\times \biggl\{ - \bigl[ \kappa (1)-\kappa (\vartheta ))^{\iota -1} \bigr] _{0}^{1}+\frac{1}{\iota } \bigl[ - \bigl( \kappa (1)- \kappa ( \vartheta ) \bigr)^{\iota } \bigr] _{0}^{1} \biggr\} \\ &\qquad{} +\frac{1}{\Gamma (\iota +1)} \bigl[ - \bigl(\kappa (1)-\kappa ( \vartheta ) \bigr)^{\iota } \bigr] _{0}^{1} \\ &\quad \leq \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)-\kappa (0)+\kappa ^{ \prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1} \frac{\kappa ^{\prime }(0)}{\iota -1} \\ & \qquad{}\times \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota -1} \biggl( 1+ \frac{1}{\iota } \bigl(\kappa (1)-\kappa (0) \bigr) \biggr) + \frac{1}{\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr)^{\iota }. \end{aligned}$$

For \(0<\varkappa <\vartheta <1\), we obtain the same estimates as analogous way to the previous one.

From (i), we get

$$\begin{aligned} & \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta ) \bigl\vert g \bigl(\vartheta,\varpi ( \vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \,d\vartheta \\ &\quad \leq \biggl[ \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)-\kappa (0)+ \kappa ^{\prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1} \frac{\kappa ^{\prime }(0)}{\iota -1} \\ & \qquad{}\times \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota -1} \biggl( 1+ \frac{1}{\iota } \bigl(\kappa (1)-\kappa (0) \bigr) \biggr) + \frac{1}{\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr)^{\iota } \biggr] \\ & \qquad{}\times \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl( \vartheta,w(\vartheta ) \bigr) \bigr\vert \\ & \quad\leq \frac{1}{2\sqrt{2}}\sqrt{\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}. \end{aligned}$$

Thus,

$$ \bigl|O\varpi (\varkappa )-Ow(\varkappa ))\bigr|^{2}\leq \frac{1}{8}\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr). $$

Put, \(\alpha:C(\digamma )\times C(\digamma )\rightarrow \mathbb{R^{+}}\) by

$$ \alpha (\varpi,w)=\textstyle\begin{cases} 1 & \mu (\varpi (\vartheta ),w(\vartheta ))\geq 0, \vartheta \in \digamma, \\ 0 & \text{else}.\end{cases} $$

Hence, for \(\varpi,w\in C(\digamma )\) with \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\), we have

$$ \alpha (\varpi,w)8d(O\varpi,Ow)\leq 8d(O\varpi,Ow)\leq \lambda \bigl( \phi \bigl(d(\varpi,w) \bigr) \bigr)\phi \bigl(d(\varpi,w) \bigr), \quad\lambda \in \mathcal{F}. $$

From (iii),

$$\begin{aligned} \alpha (\varpi,w)\geq 1\quad &\Rightarrow\quad \mu \bigl(\varpi (\vartheta ),w( \vartheta ) \bigr)\geq 0\quad\Rightarrow \quad\mu \bigl(O(\varpi ),O(w) \bigr)\geq 0\\ &\Rightarrow\quad \alpha \bigl(O(\varpi ),O(w) \bigr)\geq 1, \end{aligned}$$

for \(\varpi,w\in C(\digamma )\). Thus, O is α-admissible. From (ii), there exists \(\varpi _{0}\) \(\in C(\digamma )\) with \(\alpha (\varpi _{0},O\varpi _{0})\geq 1\). By (iv) and Theorem 2.7, we find \(\varpi ^{\ast }\) with \(\varpi ^{\ast }=O\varpi ^{\ast }\), that is, a positive solution of the problem (6). □

Setting \(\phi (t)=t\) and \(\lambda (t)=\frac{\cos ^{2}t}{4}\) in Theorems 3.1 and 3.2 we deduce the following corollaries.

Corollary 3.3

Suppose that

  1. (i)

    \(g:\digamma \times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that

    $$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl( \vartheta,w( \vartheta ) \bigr) \bigr\vert \\ &\quad\leq \frac{1}{2\sqrt{2}} \frac{\Gamma (\iota +1)}{(\kappa (1)-\kappa (0))^{\iota }} \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2}; \end{aligned}$$
  2. (ii)

    \(\varpi _{0}\in C(\digamma )\) and \(\mu:\mathbb{R}^{2}\rightarrow \mathbb{R}\) with \(\mu (\varpi _{0}(\vartheta ),\int _{0}^{1}\mathcal{G}(\varkappa,\vartheta )\kappa ^{\prime }(\vartheta )g( \vartheta,\varpi _{0}(\vartheta ))\,d\vartheta )\geq 0\), \(\vartheta \in \digamma \);

  3. (iii)

    for \(\vartheta \in \digamma \) and \(\varpi,w\in C(\digamma )\), \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\) implies

    $$ \mu \biggl( \int _{0}^{1}\mathcal{G}(\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta )g \bigl(\vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta, \int _{0}^{1}\mathcal{G}(\varkappa, \vartheta )\kappa ^{\prime }(\vartheta )g \bigl( \vartheta,w(\vartheta ) \bigr)\,d\vartheta \biggr) \geq 0; $$
  4. (iv)

    if \(\{\varpi _{n}\}\subseteq C(\digamma )\) with \(\varpi _{n}\rightarrow \varpi \) and \(\mu (\varpi _{n},\varpi _{n+1})\geq 0\), then \(\mu (\varpi _{n},\varpi )\geq 0\).

    Then (4) has at least one solution.

Corollary 3.4

Suppose that

  1. (i)

    \(g:\digamma \times \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) such that

    $$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \\ & \quad\leq \frac{1}{2\sqrt{2}} \biggl( \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)- \kappa (0)+\kappa ^{\prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1}\frac{\kappa ^{\prime }(0)}{\iota -1} \\ & \qquad{}\times \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota -1} \biggl( 1+ \frac{1}{\iota } \bigl(\kappa (1)-\kappa (0) \bigr) \biggr) + \frac{1}{\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr)^{\iota } \biggr)^{-1} \\ &\qquad{} \times \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2}, \end{aligned}$$

    where \(\phi \in \Phi \) and \(\lambda \in \mathcal{F}\);

  2. (ii)

    \(\varpi _{0}\in C(\digamma )\) and \(\mu:\mathbb{R}^{2}\rightarrow \mathbb{R}\) with \(\mu (\varpi _{0}(\vartheta ),\int _{0}^{1}\Lambda (\varkappa, \vartheta )\kappa ^{\prime }(\vartheta )g(\vartheta,\varpi _{0}( \vartheta ))\,d\vartheta )\geq 0\), \(\vartheta \in \digamma \);

  3. (iii)

    for \(\vartheta \in \digamma \) and \(\varpi,w\in C(\digamma )\), \(\mu (\varpi (\vartheta ),w(\vartheta ))\geq 0\) implies

    $$ \mu \biggl( \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{ \prime }(\vartheta )g \bigl(\vartheta,\varpi (\vartheta ) \bigr)\,d \vartheta, \int _{0}^{1}\Lambda (\varkappa,\vartheta ) \kappa ^{\prime }( \vartheta )g \bigl(\vartheta,w(\vartheta ) \bigr)\,d \vartheta \biggr) \geq 0; $$
  4. (iv)

    if \(\{\varpi _{n}\}\subseteq C(\digamma )\) with \(\varpi _{n}\rightarrow \varpi \) and \(\mu (\varpi _{n},\varpi _{n+1})\geq 0\), then \(\mu (\varpi _{n},\varpi )\geq 0\).

    Then (6) has at least one solution.

4 Examples

Example 4.1

Consider the κ-Ca fractional integral BVP

$$ \textstyle\begin{cases} {}^{C}D_{0^{+}}^{\frac{3}{2},\frac{e^{\varkappa }}{3}}\varpi ( \varkappa )=g(\varkappa,\varpi (\varkappa )),\quad \varkappa \in (0,1), \Vert \varpi \Vert _{\infty }< \frac{\pi }{4}, \\ \varpi (0)=\varpi (1)=0, \end{cases} $$
(8)

where \(\iota =\frac{3}{2}\), \(\kappa (\varkappa )=e^{\frac{\varkappa }{3}}\) and \(g(\varkappa,\varpi (\varkappa ))=\frac{3\sqrt{\pi }}{128\sqrt{2}} \frac{(\varkappa +3)}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}}\sin (2 \Vert \varpi \Vert _{\infty })\). Let \(\vartheta \in \digamma \), and \(\varpi,w\in \mathbb{R} \), we have

$$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \\ &\quad = \frac{3\sqrt{\pi }}{128\sqrt{2}} \frac{(\vartheta +3)}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}} \bigl\vert \sin 2 \Vert \varpi \Vert _{ \infty }-\sin 2 \Vert w \Vert _{\infty } \bigr\vert \\ &\quad=\frac{3\sqrt{\pi }}{128\sqrt{2}} \frac{(\vartheta +3)}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}} \bigl\vert 2\sin \bigl( \Vert \varpi \Vert _{ \infty }- \Vert w \Vert _{\infty } \bigr)\cos \bigl( \Vert \varpi \Vert _{\infty }+ \Vert w \Vert _{\infty } \bigr) \bigr\vert \\ &\quad\leq \frac{3\sqrt{\pi }}{128\sqrt{2}} \frac{(\vartheta +3)}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}} \bigl\vert 2 \Vert \varpi -w \Vert _{\infty } \cos \bigl( \Vert \varpi \Vert _{\infty }+ \Vert w \Vert _{ \infty } \bigr) \bigr\vert \\ &\quad\leq \frac{3\sqrt{\pi }}{128\sqrt{2}} \frac{(\vartheta +3)}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}} \bigl\vert 2 \Vert \varpi -w \Vert _{\infty } \cos \bigl( \Vert \varpi -w \Vert _{\infty } \bigr) \bigr\vert \\ &\quad\leq \frac{3\sqrt{\pi }}{8\sqrt{2} }\frac{1}{\sqrt{ ( e^{\frac{1}{3}}-1 ) ^{3}}} \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2} \\ &\quad\leq \frac{1}{2\sqrt{2}} \frac{\Gamma (\frac{5}{2})}{ ( e^{\frac{1}{3}}-1 ) ^{\frac{3}{2}}} \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2} \\ &\quad\leq \frac{1}{2\sqrt{2}} \frac{\Gamma (\frac{5}{2})}{ ( e^{\frac{1}{3}}-1 ) ^{\frac{3}{2}}} \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2} \\ &\quad=\frac{1}{2\sqrt{2}} \frac{\Gamma (\iota +1)}{(\kappa (1)-\kappa (0))^{\iota }}\sqrt{\phi \bigl( \bigl\Vert ( \varpi -w)^{2} \bigr\Vert _{\infty } \bigr)\lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}, \end{aligned}$$

where \(\phi (t)=t\) and \(\lambda (t)=\frac{{\cos }^{2}t}{4}\) for \(t\in \digamma \).

Hence, all assumptions of Corollary 3.3 hold. Therefore, (8) has a solution on Ϝ.

Example 4.2

Consider the κ-Ca fractional integral BVP

$$ \textstyle\begin{cases} ^{c}D_{0^{+}}^{\frac{3}{2},e^{\varkappa }}\varpi (\varkappa )=g( \varkappa,\varpi (\varkappa )),\quad \varkappa \in (0,1), \Vert \varpi \Vert _{\infty }< \frac{\pi }{4}, \\ \varpi (0)+\varpi ^{\prime }(0)=0,\qquad \varpi (1)+\varpi ^{\prime }(1)=0, \text{ }\end{cases} $$
(9)

where \(\iota =\frac{3}{2}\), \(\kappa (\varkappa )=e^{\varkappa }\) such that for

$$\begin{aligned} g \bigl(\varkappa,\varpi (\varkappa ) \bigr) ={}&\frac{1}{8\sqrt{2}} \biggl\vert \biggl( \bigl(\sqrt{ \pi } \bigl[e^{\varkappa }+e-1 \bigr] \bigr)^{-1}2 \bigl(e^{\varkappa } \bigr)^{\frac{1}{2}} \bigl(1+e^{\varkappa } \bigr) \\ &{}+2 \bigl[e^{\varkappa }+e-1 \bigr]\frac{2}{3} \bigl(e^{\varkappa } \bigr)^{\frac{3}{2}} \biggr)^{-1} \biggr\vert \sin \bigl(2 \Vert \varpi \Vert _{\infty } \bigr). \end{aligned}$$

Let \(\vartheta \in \digamma \), and \(\varpi,w\in \mathbb{R} \), we have

$$\begin{aligned} & \bigl\vert g \bigl(\vartheta,\varpi (\vartheta ) \bigr)-g \bigl(\vartheta,w( \vartheta ) \bigr) \bigr\vert \\ &\quad \leq \frac{1}{8\sqrt{2}} \biggl\vert \biggl( \bigl(\sqrt{\pi } \bigl[e^{\vartheta }+e-1 \bigr] \bigr)^{-1}2 \bigl(e^{\vartheta } \bigr)^{\frac{1}{2}} \bigl(1+e^{\vartheta } \bigr) \\ & \qquad{}+2 \bigl(e^{\vartheta }+e-1 \bigr)\frac{2}{3} \bigl(e^{\vartheta } \bigr)^{\frac{3}{2}} \biggr)^{-1} \biggr\vert \bigl\vert \sin 2 \Vert \varpi \Vert _{\infty }-\sin 2 \Vert w \Vert _{\infty } \bigr\vert \\ &\quad=\frac{1}{8\sqrt{2}} \biggl\vert \biggl( \bigl(\sqrt{\pi } \bigl[e^{\vartheta }+e-1 \bigr] \bigr)^{-1}2 \bigl(e^{\vartheta } \bigr)^{ \frac{1}{2}} \bigl(1+e^{\vartheta } \bigr) \\ &\qquad{} +2 \bigl(e^{\vartheta }+e-1 \bigr)\frac{2}{3} \bigl(e^{\vartheta } \bigr)^{\frac{3}{2}} \biggr)^{-1} \biggr\vert \bigl\vert 2\sin \bigl( \Vert \varpi \Vert _{\infty }- \Vert w \Vert _{\infty } \bigr)\cos \bigl( \Vert \varpi \Vert _{ \infty }+ \Vert w \Vert _{\infty } \bigr) \bigr\vert \\ &\quad\leq \frac{1}{8\sqrt{2}} \biggl\vert \biggl( \bigl(\sqrt{\pi } \bigl[e^{\vartheta }+e-1 \bigr] \bigr)^{-1}2 \bigl(e^{\vartheta } \bigr)^{\frac{1}{2}} \bigl(1+e^{\vartheta } \bigr) \\ &\qquad{} +2 \bigl(e^{\vartheta }+e-1 \bigr)\frac{2}{3} \bigl(e^{\vartheta } \bigr)^{\frac{3}{2}} \biggr)^{-1} \biggr\vert \bigl\vert 2 \Vert \varpi -w \Vert _{\infty }\cos \bigl( \Vert \varpi \Vert _{\infty }+ \Vert w \Vert _{\infty } \bigr) \bigr\vert \\ &\quad \leq \frac{1}{8\sqrt{2}} \biggl\vert \biggl( \bigl(\sqrt{\pi }e^{\vartheta }+e-1] \bigr)^{-1}2 \bigl(e^{\vartheta } \bigr)^{\frac{1}{2}} \bigl(1+e^{\vartheta } \bigr) \\ & \qquad{}+2 \bigl(e^{\vartheta }+e-1 \bigr)\frac{2}{3} \bigl(e^{\vartheta } \bigr)^{\frac{3}{2}} \biggr)^{-1} \biggr\vert \frac{\sqrt{{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }\cos }^{2}{ \Vert ( \varpi -w ) ^{2} \Vert _{\infty }}}}{2} \\ &\quad =\frac{1}{2\sqrt{2}} \biggl( \bigl( \Gamma (\iota -1) \bigl[ \kappa (1)- \kappa (0)+\kappa ^{\prime }(1)-\kappa ^{\prime }(0) \bigr] \bigr) ^{-1} \frac{\kappa ^{\prime }(0)}{\iota -1} \\ &\qquad{} \times \bigl( \kappa (1)-\kappa (0) \bigr) ^{\iota -1} \biggl( 1+ \frac{1}{\iota } \bigl(\kappa (1)-\kappa (0) \bigr) \biggr) + \frac{1}{\Gamma (\iota +1)} \bigl( \kappa (1)-\kappa (0) \bigr)^{\iota } \biggr)^{-1} \\ &\qquad{} \times \sqrt{\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \lambda \bigl(\phi \bigl( \bigl\Vert (\varpi -w)^{2} \bigr\Vert _{\infty } \bigr) \bigr)}. \end{aligned}$$

Hence, assumptions of Corollary 3.4 hold. So (9) has a solution on Ϝ.

Remark 4.3

One can easily see that Eqs. (8) and (9) considered in the above examples cannot be addressed via methods in the current literature. This in a certain sense confirms the superiority of the results of this paper over previous approaches.

5 Conclusion

In recent years and with the explosive growth of studies of derivatives of fractional order, there have appeared tremendous numbers of papers that reported their results by using the classical FDs and FP theorems. Meanwhile, interested researchers have raised the question of the possibility of introducing a different approach that covers all classical cases.

In this paper, we provided an affirmative answer to this inquiry by investigating the notion of existence of solutions for BVPs defined within κ-generalized FD and with the help of the FP technique based on α-ϕ-GC type mappings. The results reported in this paper generalize existing results in the literature. Two examples are presented as particular cases for our proposed theorems. It is proved that the results obtained are consistent with our theoretical findings.

We believe that the investigation of this problem in terms of a general approach will provide an effective platform for the study of BVPs via generalized FOs.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit Fractional Differential and Integral Equations: Existence and Stability, vol. 26. de Gruyter, Berlin (2018)

    Book  MATH  Google Scholar 

  2. Abdo, M.S., Panchal, S.K., Hussien, S.H.: Fractional integro-differential equations with nonlocal conditions and ψ-Hilfer fractional derivative. Math. Model. Anal. 24(4), 564–584 (2019)

    Article  MathSciNet  Google Scholar 

  3. Abdo, M.S., Panchal, S.K., Saeed, A.M.: Fractional boundary value problem with ψ-Caputo fractional derivative. Proc. Indian Acad. Sci. Math. Sci. 129(5), 65 (2019). https://doi.org/10.1007/s12044-019-0514-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Afshari, H.: Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces. Adv. Differ. Equ. 2018, 285 (2018)

    Article  MathSciNet  Google Scholar 

  5. Afshari, H., Aydi, H., Karapinar, E.: On generalized α-ψ-Geraghty contractions on b-metric spaces. Georgian Math. J. 27(1), 9–21 (2020). https://doi.org/10.1515/gmj-2017-0063

    Article  MathSciNet  MATH  Google Scholar 

  6. Afshari, H., Baleanu, D.: Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel. Adv. Differ. Equ. 2020, 140 (2020). https://doi.org/10.1186/s13662-020-02592-2

    Article  MathSciNet  Google Scholar 

  7. Afshari, H., Alsulami, H.H., Karapinar, E.: On the extended multivalued Geraghty type contractions. J. Nonlinear Sci. Appl. 9, 4695–4706 (2016). https://doi.org/10.22436/jnsa.009.06.108

    Article  MathSciNet  MATH  Google Scholar 

  8. Afshari, H., Aydi, H., Karapinar, E.: Existence of fixed points of set-valued mappings in b-metric spaces. East Asian Math. J. 32(3), 319–332 (2016)

    Article  MATH  Google Scholar 

  9. Afshari, H., Kalantari, S., Baleanu, D.: Solution of fractional differential equations via α-ϕ-Geraghty type mappings. Adv. Differ. Equ. 2018, 347 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015(286), 1 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Agrawal, O.P.: Some generalized fractional calculus operators and their applications in integral equations. Fract. Calc. Appl. Anal. 15, 4 (2012)

    Article  MathSciNet  Google Scholar 

  12. Ahmad, B., Matar, M.M., EL-Salmy, O.M.: Existence of solutions and Ulam stability for Caputo type sequential fractional differential equations of order \(\varrho \in (2,3)\). Int. J. Anal. Appl. 15(1), 86–101 (2017)

    MATH  Google Scholar 

  13. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Almeida, R., Malinowska, A.B., Monteiro, M.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41(1), 336–352 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Almeida, R.: Fractional differential equations with mixed boundary conditions. Bull. Malays. Math. Sci. Soc. 42(4), 1687–1697 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aydi, H., Jleli, M., Samet, B.: On positive solutions for a fractional thermostat model with a convex-concave source term via ϕ-Caputo fractional derivative. Mediterr. J. Math. 17(1), 16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bai, Z., Lu, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72, 916–924 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cabada, A., Aleksic, S., Tomovic, T.V., Dimitrijevic, S.: Existence of solutions of nonlinear and non-local fractional boundary value problems. Mediterr. J. Math. 16(5), , S.119 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1(1), 5–11 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Darwich, M.A., Ntouyas, S.K.: Existence results for a fractional functional differential equation of mixed type. Commun. Appl. Nonlinear Anal. 15, 47–55 (2008)

    MathSciNet  Google Scholar 

  22. Diethelm, K.: Analysis of Fractional Differential Equations, Lecture Notes in Mathematics. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  23. El-Shahed, E.M.: Positive solutions for boundary value problem of nonlinear fractional differential equation. Abstr. Appl. Anal. 2007, 10368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. El-Shahed, E.M.: On the existence and stability of solution of boundary value problem for fractional integro-differential equations with complex order. Filomat 32, 8 (2018)

    MathSciNet  Google Scholar 

  25. Harikrishnan, S., Elsayed, E.M., Kanagarajan, K.: Existence and uniqueness results for fractional pantograph equations involving ϕ-Hilfer fractional derivative. Dyn. Contin. Discrete Impuls. Syst. 25, 319–328 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Herrmann, R.: Fractional Calculus for Physicist. World Scientific, Singapore (2014)

    Book  Google Scholar 

  27. Ismail, M., Saeed, U., Alzabut, J., Rehman, M.U.: Approximate solutions for fractional boundary value problems via Green-CAS method. Mathematics 7, 1164 (2019) https://doi.org/10.3390/math7121164

    Article  Google Scholar 

  28. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification. J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karapinar, E., Samet, B.: Generalized α-ψ-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Katugampola, U.N.: A new approach to generalized fractional derivatives. Bull. Math. Anal. Appl. 6(4), 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Katugampola, U.N.: New approach to a generalized fractional integral. Appl. Math. Comput. 218(3), 860–865 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  33. Kiryakova, V.: Fractional Calculus and Applications. Longman, Harlow (1994)

    MATH  Google Scholar 

  34. Kucche, K.D., Mali, A.D., Sousa, J.V.C.: Theory of nonlinear ψ-Hilfer FDE (2018). arXiv:1808.01608

  35. Liang, S., Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545–5550 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, K., Wang, J., O’Regan, D.: Ulam–Hyers–Mittag-Lefler stability for ϕ-Hilfer fractional-order delay differential equations. Adv. Differ. Equ. 2019(1), 50 (2019). https://doi.org/10.1186/s13662-019-1997-4

    Article  MATH  Google Scholar 

  37. Marasi, H.R., Afshari, H., Zhai, C.B.: Some existence and uniqueness results for nonlinear fractional partial differential equations. Rocky Mt. J. Math. 47, 571–585 (2017). https://doi.org/10.1216/RMJ-2017-47-2-1

    Article  MathSciNet  MATH  Google Scholar 

  38. Obukhovskii, V., Zecca, P., Afanasova, M.: On some boundary value problems for fractional feedback control systems. Differ. Equ. Dyn. Syst. (2018). https://doi.org/10.1007/s12591-018-0435-5

    Article  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  40. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for α-ϕ-contractive type mappings. Nonlinear Anal. 75(4), 2154–2165 (2012). https://doi.org/10.1016/j.na.2011.10.014

    Article  MathSciNet  MATH  Google Scholar 

  41. Samko, S., Kilbas, A., Maricev, O.: Fractional Integrals and Derivatives. Gordon & Breach, New York (1993)

    Google Scholar 

  42. Sousa, J.V.C., de Oliveira, E.C.: On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018). https://doi.org/10.1016/j.cnsns.2018.01.005

    Article  MathSciNet  Google Scholar 

  43. Vivek, D., Elsayed, E., Kanagarajan, K.: Theory and analysis of ϕ fractional differential equations with boundary conditions. Commun. Appl. Anal. 22, 401–414 (2018)

    Google Scholar 

  44. Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal., Theory Methods Appl. 71(10), 4676–4688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Osler, T.J.: Fractional derivatives of a composite function. SIAM J. Math. Anal. 1, 288–293 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  46. Seemab, A., Rehman, M.U., Alzabut, J., Hamdi, A.: On the existence of positive solutions for generalized fractional boundary value problems. Bound. Value Probl. 2019(1), 186 (2019)

    Article  MathSciNet  Google Scholar 

  47. Wahash, H.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam–Hyers stability of the implicit fractional boundary value problem with ψ-Caputo fractional derivative. J. Appl. Math. Comput. Mech. 19(1), 89–101 (2020). https://doi.org/10.17512/jamcm.2020.1.08

    Article  MathSciNet  Google Scholar 

  48. Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

J. Alzabut would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hojjat Afshari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshari, H., Abdo, M.S. & Alzabut, J. Further results on existence of positive solutions of generalized fractional boundary value problems. Adv Differ Equ 2020, 600 (2020). https://doi.org/10.1186/s13662-020-03065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-020-03065-2

Keywords