World Health Organization (WHO), assessed on June 19, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/news

Lin, Q., Zhao, S., Gao, D., et al.: A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. **93**, 211–216 (2020)

Article
Google Scholar

Xinmiao, R., Liu, Y., Huidi, C., Meng, F.: Effect of delay in diagnosis on transmission of COVID-19. Math. Biosci. Eng. **17**, 2725 (2020)

Article
MathSciNet
Google Scholar

Fang, Y., Nie, Y., Penny, M.: Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: a data-driven analysis. J. Med. Virol. **92**, 645–659 (2020). https://doi.org/10.1002/jmv.25750

Article
Google Scholar

Adeniyi, M.O., Matthew, I.E., Iluno, C., Ogunsanya, A.S., Akinyemi, J.A., Oke, S.I., Matadi, M.B.: Dynamic model of COVID-19 disease with exploratory data analysis. Sci. Afr. **9**, e00477 (2020)

Google Scholar

Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.: Data-based analysis, modelling and forecasting of the COVID-19 outbreak. PLoS ONE **15**, 1–21 (2020). https://doi.org/10.1371/journal.pone.0230405

Article
Google Scholar

Oke, S.I., Ojo, M.M., Adeniyi, M.O., Matadi, M.B.: Mathematical modeling of malaria disease with control strategy. Commun. Math. Biol. Neurosci. **2020**, Article ID 43 (2020)

Google Scholar

Okedoye, A.M., Salawu, S.O., Oke, S.I., Oladejo, N.K.: Mathematical analysis of affinity hemodialysis on T-cell depletion. Sci. Afr. **2020**, e00427 (2020)

Google Scholar

Gbadamosi, B., Ojo, M.M., Oke, S.I., Matadi, M.B.: Qualitative analysis of a Dengue fever model. Math. Comput. Appl. **23**(3), Article ID 33 (2018)

MathSciNet
Google Scholar

Kumar, D., Seadawy, A.R., Joardar, A.K.: Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology. Chin. J. Phys. **56**(1), 75–85 (2018)

Article
Google Scholar

Baleanu, D., Wu, G.C., Zeng, S.D.: Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations. Chaos Solitons Fractals **102**, 99–105 (2017)

Article
MathSciNet
MATH
Google Scholar

Nasrolahpour, H.: A note on fractional electrodynamics. Commun. Nonlinear Sci. Numer. Simul. **18**, 2589–2593 (2013)

Article
MathSciNet
MATH
Google Scholar

Hilfer, R., Anton, L.: Fractional master equations and fractal time random walks. Phys. Rev. E **51**, R848–R851 (1995)

Article
Google Scholar

Zhang, Y., Pu, Y.F., Hu, J.R., Zhou, J.L.: A class of fractional-order variational image in-painting models. Appl. Math. Inf. Sci. **6**(2), 299–306 (2012)

MathSciNet
Google Scholar

Pu, Y.F.: Fractional differential analysis for texture of digital image. J. Algorithms Comput. Technol. **1**(3), 357–380 (2007)

Article
MathSciNet
Google Scholar

Baleanu, D., Guvenc, Z.B., Machado, J.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Berlin (2010)

Book
MATH
Google Scholar

Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

Book
MATH
Google Scholar

Tarasov, V.E., Tarasova, V.V.: Time-dependent fractional dynamics with memory in quantum and economic physics. Ann. Phys. **383**, 579–599 (2017)

Article
MathSciNet
MATH
Google Scholar

Sun, H.G., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.Q.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. **64**, 213–231 (2018)

Article
MATH
Google Scholar

He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. **178**(3–4), 257–262 (1999)

Article
MathSciNet
MATH
Google Scholar

He, J.H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. **135**, 73–79 (2003)

MathSciNet
MATH
Google Scholar

Yildirim, A.: An algorithm for solving the fractional nonlinear Schrödinger equation by means of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. **10**(4), 445–450 (2009)

Article
MathSciNet
Google Scholar

Kexue, L., Jigen, P.: Laplace transform and fractional differential equations. Appl. Math. Lett. **24**(12), 2019–2023 (2011)

Article
MathSciNet
MATH
Google Scholar

Akinyemi, L., Iyiola, O.S., Akpan, U.: Iterative methods for solving fourth- and sixth order time-fractional Cahn-Hillard equation. Math. Methods Appl. Sci. **43**(7), 4050–4074 (2020). https://doi.org/10.1002/mma.6173

Article
MATH
Google Scholar

Zurigat, M., Momani, S., Odibat, Z., Alawneh, A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. **34**(1), 24–35 (2010)

Article
MathSciNet
MATH
Google Scholar

Akinyemi, L.: Q-homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg–de Vries and Sawada–Kotera equations. Comput. Appl. Math. **38**(4), 1–22 (2019)

Article
MathSciNet
MATH
Google Scholar

El-Tawil, M.A., Huseen, S.N.: The Q-homotopy analysis method (QHAM). Int. J. Appl. Math. Mech. **8**(15), 51–75 (2012)

Google Scholar

Iyiola, O.S.: On the solutions of non-linear time-fractional gas dynamic equations: an analytical approach. Int. J. Pure Appl. Math. **98**(4), 491–502 (2015)

Article
Google Scholar

Ray, S.S., Bera, R.K.: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl. Math. Comput. **167**(1), 561–571 (2005)

MathSciNet
MATH
Google Scholar

Arikoglu, A., Ozkol, I.: Solution of fractional differential equations by using differential transform method. Chaos Solitons Fractals **34**(5), 1473–1481 (2007)

Article
MathSciNet
MATH
Google Scholar

Senol, M., Dolapci, I.T.: On the perturbation–iteration algorithm for fractional differential equations. J. King Saud Univ., Sci. **28**(1), 69–74 (2016)

Article
Google Scholar

Akinyemi, L., Iyiola, O.S.: Exact and approximate solutions of time-fractional models arising from physics via Shehu transform. Math. Methods Appl. Sci. **43**(12), 7442–7464 (2020). https://doi.org/10.1002/mma.6484

Article
MathSciNet
MATH
Google Scholar

Arqub, O.A.: Series solution of fuzzy differential equations under strongly generalized differentiability. J. Adv. Res. Appl. Math. **5**(1), 31–52 (2013)

Article
MathSciNet
Google Scholar

Arqub, O.A., El-Ajou, A., Bataineh, A.S., Hashim, I.: A representation of the exact solution of generalized Lane-Emden equations using a new analytical method. Abstr. Appl. Anal. **2013**, 1 (2013)

Article
MathSciNet
MATH
Google Scholar

Senol, M.: Analytical and approximate solutions of (2 + 1)-dimensional time-fractional Burgers-Kadomtsev-Petviashvili equation. Commun. Theor. Phys. **72**(5), 1–11 (2020)

Article
MathSciNet
Google Scholar

Senol, M., Iyiola, O.S., Daei Kasmaei, H., Akinyemi, L.: Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent-Miodek system with energy-dependent Schrödinger potential. Adv. Differ. Equ. **2019**, 462 (2019)

Article
Google Scholar

Atilgan, E., Senol, M., Kurt, A., Tasbozan, O.: New wave solutions of time-fractional coupled Boussinesq–Whitham–Broer–Kaup equation as a model of water waves. China Ocean Eng. **33**(4), 477–483 (2019)

Article
Google Scholar

Kumar, A., Kumar, S., Singh, M.: Residual power series method for fractional Sharma-Tasso-Olever equation. Commun. Numer. Anal. **2016**(1), 1–10 (2016)

Article
MathSciNet
Google Scholar

Alquran, M.: Analytical solutions of fractional foam drainage equation by residual power series method. Math. Sci. **8**(4), 153–160 (2014)

Article
MathSciNet
MATH
Google Scholar

Ahmad, R.S.: An analytical solution of the fractional Navier-Stokes equation by residual power series method. Zarqa University, Doctoral dissertation 10-90 (2015)

Senol, M., Ayşe, A.T.A.: Approximate solution of time-fractional KdV equations by residual power series method. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi **20**(1), 430–439 (2018)

Google Scholar

Akinyemi, L.: A fractional analysis of Noyes–Field model for the nonlinear Belousov–Zhabotinsky reaction. Comput. Appl. Math. **39**, 1–34 (2020). https://doi.org/10.1007/s40314-020-01212-9

Article
MathSciNet
MATH
Google Scholar

Akinyemi, L., Huseen, S.N.: A powerful approach to study the new modified coupled Korteweg–de Vries system. Math. Comput. Simul. **177**, 556–567 (2020). https://doi.org/10.1016/j.matcom.2020.05.021

Article
MathSciNet
Google Scholar

Akinyemi, L., Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. **2020**(169), 1 (2020). https://doi.org/10.1186/s13662-020-0262

Article
MathSciNet
Google Scholar

Kumar, D., Singh, J., Baleanu, D.: A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves. Math. Methods Appl. Sci. **40**(15), 5642–5653 (2017)

Article
MathSciNet
MATH
Google Scholar

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

Book
MATH
Google Scholar

Odibat, Z.M., Shawagfeh, N.T.: Generalized Taylor’s formula. Appl. Math. Comput. **186**, 286–293 (2007)

MathSciNet
MATH
Google Scholar

Centers for Disease Control. Coronavirus Disease. COVID-19 Pandemic Planning Scenarios. Retrieved **27** (2020) https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html

Tang, B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y., Wu, J.: An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect. Dis. Model. **5**, 248–255 (2020)

Google Scholar

Xinmiao, R., Liu, Y., Huidi, C., Meng, F.: Effect of delay in diagnosis on transmission of COVID-19. Math. Biosci. Eng. **17**, 2725 (2020)

Article
MathSciNet
Google Scholar

Liu, T., Hu, J.X., Kang, M., Lin, L., Zhong, H., Xiao, J., et al: Transmission dynamics of 2019 novel coronavirus (2019-nCoV), bioRxiv (2020)

Lin, W.: Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. **332**, 709–726 (2007)

Article
MathSciNet
MATH
Google Scholar

Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton Univ. Press, Princeton (2008)

Book
MATH
Google Scholar

Diekmann, O., Heesterbeek, J.A.P., Britton, T.: Mathematical Tools for Understanding Infectious Disease Dynamics, Kindle edn. Princeton University Press, Princeton (2012)

Book
MATH
Google Scholar

Driessche, P.V., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. **180**, 29–48 (2002)

Article
MathSciNet
MATH
Google Scholar

Heesterbeek, J.A.P.: A brief history of *R*0 and a recipe for its calculation. Acta Biotheor. **50**, 189–204 (2002)

Article
Google Scholar

Suryanto, A., Darti, I., Panigoro, H.S., Kilicman, A.: A fractional-order predator-prey model with ratio-dependent functional response and linear harvesting. Math. **7**, 1100 (2019). https://doi.org/10.3390/math7111100

Article
Google Scholar

Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. **254**, 178–196 (2008)

Article
MathSciNet
MATH
Google Scholar

Nkamba, L.N., Manga, T.T., Agouanet, F., Mann Manyombe, M.L.: Mathematical model to assess vaccination and effective contact rate impact in the spread of tuberculosis. J. Biol. Dyn. **13**(1), 26–42 (2019). https://doi.org/10.1080/17513758.2018.1563218

Article
MathSciNet
MATH
Google Scholar

Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. **2**, 229–243 (1994)

Article
MATH
Google Scholar

Gumel, A.B., Lubuma, J.M.-S., Sharomi, O., Terefe, Y.A.: Mathematics of a sex-structured model for syphilis transmission dynamics. Math. Methods Appl. Sci. **41**(18), 8488–8513 (2018)

Article
MathSciNet
MATH
Google Scholar

Nakul, C., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. **70**, 1272–1296 (2008)

Article
MathSciNet
MATH
Google Scholar

Okosun, K.O., Rachid, O., Marcus, N.: Optimal control strategies and cost-effectiveness analysis of a malaria model. Biosystems **111**, 83–101 (2013)

Article
Google Scholar

Sanche, S., Lin, Y., Xu, C., et al.: High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. **26**(7), 1470–1477 (2020). https://doi.org/10.3201/eid2607.200282

Article
Google Scholar

Diethelm, K., Freed, A.D.: The FracPECE subroutine for the numerical solution of differential equations of fractional order. In: Heinzel, S., Plesser, T. (eds.) Forschung und Wissenschaftliches Rechnen 1998, pp. 57–71. Gessellschaft fur Wissenschaftliche Datenverarbeitung, Gottingen (1999)

Google Scholar

Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. **29**, 3–22 (2002)

Article
MathSciNet
MATH
Google Scholar

Garrappa, R.: On linear stability of predictor-corrector algorithms for fractional differential equations. Int. J. Comput. Math. **87**(10), 2281–2290 (2010)

Article
MathSciNet
MATH
Google Scholar

Garrappa, R.: Predictor-corrector PECE method for fractional differential equations, 2020. (https://www.mathworks.com/matlabcentral/fileexchange/32918-predictor-corrector-pece-method-for-fractional-differential-equations), MATLAB Central File Exchange. Retrieved May 14, 2020

Stutt, R.O.J.H., Retkute, R., Bradley, M., Gilligan, C.A., Colvin, J.: A modelling framework to assess the likely effectiveness of facemasks in combination with “lock-down” in managing the COVID-19 pandemic. Proc. R. Soc. A **476**, 20200376 (2020). https://doi.org/10.1098/rspa.2020.0376

Article
MathSciNet
Google Scholar

Centers for Disease Control and Prevention (CDC), Coronavirus Disease 2019 (COVID-19), assessed on June 19, 2020. https://www.cdc.gov/coronavirus/2019-ncov/if-you-are-sick/steps-when-sick.html