This section analyzes the local stability of (3.1) around each obtained critical point. The Jacobian matrix of the tumor-free critical point \(\Lambda _{1} = ( \overline{N}_{1},0, \overline{I}_{1}, \overline{E}_{1} )\) is given as
$$ J ( \Lambda _{1} ) = \begin{pmatrix} a_{11} & a_{12} & 0 &a_{14}\\ 0 & a_{22} & 0 &0\\ 0 & a_{32} & a_{33} &a_{34}\\ 0 & 0 & 0&a_{44} \end{pmatrix}, $$
(4.1)
where
$$\begin{aligned}& a_{11} = r_{1} K_{1} -2 \mu _{1} \overline{N}_{1} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}},\qquad a_{12} =- \beta _{1} r_{1} \overline{N}_{1},\qquad a_{14} =- ( 1-k ) \phi _{1} \overline{N}_{1}, \\& a_{22} = r_{2} K_{2} d-\delta - \beta _{2} r_{2} \overline{I}_{1} + \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \overline{N}_{1},\qquad a_{32} =- \beta _{3} \overline{I}_{1}, \\& a_{33} =- \frac{ ( ( 1-k )^{2} \phi _{2} \varepsilon -\beta _{4} ( K_{3} - \mu _{3} ) )}{\beta _{4}},\qquad a_{34} =- ( 1-k ) \phi _{2} \overline{I}_{1},\qquad a_{44} =- \beta _{4}. \end{aligned}$$
On the other hand, the characteristic equation of \(\Lambda _{1}\) is given by
$$ ( a_{11} -\lambda ) ( a_{22} -\lambda ) ( a_{33} -\lambda ) ( a_{44} -\lambda ) =0. $$
(4.2)
Theorem 4.1
Let \(\Lambda _{1}\) be the tumor-free critical point of system (3.1) and assume that \(\phi _{1} < \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}\) and \(\phi _{2} > \frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\) hold. Then \(\Lambda _{1}\) is stable local asymptotic if and only if
$$ \overline{N}_{1} < \frac{ ( \delta - r_{2} K_{2} d ) \beta _{4}}{ ( 1-k )^{2} \phi _{1} \varepsilon }, $$
(4.3)
where \(r_{2} < \frac{\delta }{K_{2} d}\).
Proof
From (4.2), it follows that
-
(i)
\(\lambda _{1} = r_{1} K_{1} -2 \mu _{1} \overline{N}_{1} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} <0\) since \(\phi _{1} < \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}\),
-
(ii)
\(\lambda _{2} = r_{2} K_{2} d-\delta - \beta _{2} r_{2} \overline{I}_{1} + \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \overline{N}_{1} <0\Rightarrow \overline{N}_{1} < \frac{ ( \delta - r_{2} K_{2} d ) \beta _{4}}{ ( 1-k )^{2} \phi _{1} \varepsilon }\), where \(r_{2} < \frac{\delta }{K_{2} d}\),
-
(iii)
\(\lambda _{3} =- \frac{ ( ( 1-k )^{2} \phi _{2} \varepsilon -\beta _{4} ( K_{3} - \mu _{3} ) )}{\beta _{4}} <0\), since \(\phi _{2} > \frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\),
-
(iv)
\(\lambda _{4} =- \beta _{4} <0\).
□
Remark 4.1
In Theorem 4.1. it is seen that any increase in the ketogenic rate affects the growth of the tumor population. It is assumed here that the invasion of the tumor cells into the normal cells is small. Thus, the tumor cell population can be eliminated from the breast tissues, since \(\Lambda _{1}\) depends on the immune response and the estrogen level.
The Jacobian matrix of the dead critical point \(\Lambda _{2} = ( 0, 0, \frac{\rho \gamma \beta _{4}}{ ( 1-k )^{2} \phi _{2} \varepsilon - \beta _{4} ( K_{3} -\delta )}, \frac{ ( 1-k ) \varepsilon }{\beta _{4}} )\) is given as
$$ J ( \Lambda _{2} ) = \begin{pmatrix} a_{11} & 0 & 0 &0 \\ 0 & a_{22} & 0 &0 \\ 0 & a_{32} & a_{33}&a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}, $$
(4.4)
where
$$\begin{aligned}& a_{11} = r_{1} K_{1} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}}, \qquad a_{22} = r_{2} K_{2} d-\delta - \beta _{2} r_{2} \overline{I}_{2},\qquad a_{32} =- \beta _{3} \overline{I}_{2}, \\& a_{33} =- \frac{ ( ( 1-k )^{2} \phi _{2} \varepsilon -\beta _{4} ( K_{3} - \mu _{3} ) )}{\beta _{4}},\qquad a_{34} =- ( 1-k ) \phi _{2} \overline{I}_{2},\qquad a_{44} =- \beta _{4}. \end{aligned}$$
Theorem 4.2
Assume that \(\phi _{1} > \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}\) and \(\phi _{2} > \frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\) holds. The dead critical point \(\Lambda _{2}\) of system (3.1) is stable local asymptotic if and only if
$$ \overline{I}_{2} > \frac{ ( r_{2} K_{2} d-\delta ) \beta _{4}}{ ( 1-k )^{2} \phi _{1} \varepsilon }, $$
(4.5)
where \(r_{2} > \frac{\delta }{K_{2} d}\).
Proof
From (4.4), we obtain the following:
-
(i)
\(\lambda _{1} = r_{1} K_{1} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} <0\) if \(\phi _{1} > \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}\),
-
(ii)
\(\lambda _{2} = r_{2} K_{2} d-\delta - \beta _{2} r_{2} \overline{I}_{2} <0\Rightarrow \overline{I}_{2} > \frac{ ( r_{2} K_{2} d-\delta ) \beta _{4}}{ ( 1-k )^{2} \phi _{1} \varepsilon }\), where \(r_{2} > \frac{\delta }{K_{2} d}\),
-
(iii)
\(\lambda _{3} =- \frac{ ( ( 1-k )^{2} \phi _{2} \varepsilon -\beta _{4} ( K_{3} - \mu _{3} ) )}{\beta _{4}} <0\), since \(\phi _{2} > \frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\),
-
(iv)
\(\lambda _{4} =- \beta _{4} <0\).
□
Remark 4.2
In Theorem 4.2. it is shown that applying a low ketogenic diet increases the growth of the tumor population. In this scenario, the damage of DNA causes a malignant class in the breast tissues. The competition between the tumor cells and the immune system is intense, and the effect of the anti-cancer drug tamoxifen decreases the tumor population. However, the increase of the estrogen level also affected the healthy cell population to extinct as well.
Now, we consider the Jacobian matrix of dead critical point 2; \(\Lambda _{3} = ( 0, \overline{T}_{3}, \overline{I}_{3}, \frac{ ( 1-k ) \varepsilon }{\beta _{4}} )\), now we have
$$ J ( \Lambda _{1} ) = \begin{pmatrix} a_{11} & 0 & 0 &0\\ a_{21} & a_{22} & a_{23} &0\\ 0 & a_{32} & a_{33} &a_{34} \\ 0 & 0 & 0 & a_{44} \end{pmatrix}, $$
(4.6)
where
$$\begin{aligned}& a_{11} = r_{1} K_{1} - \beta _{1} r_{1} \overline{T}_{3} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}},\qquad a_{21} = \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \overline{T}_{3}, \\& a_{22} = ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3} - \beta _{2} r_{2} \overline{I}_{3}, \qquad a_{23} =- \beta _{2} r_{2} \overline{I}_{3}, \qquad a_{32} =- \beta _{3} \overline{I}_{3}, \\& a_{33} = ( K_{3} - \mu _{3} - \beta _{3} \overline{T}_{3} ) - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}},\qquad a_{34} =- ( 1-k ) \phi _{2} \overline{I}_{3}, \qquad a_{44} =- \beta _{4}. \end{aligned}$$
The characteristic equation of the dead critical point 2 is given by
$$ ( a_{11} -\lambda ) ( a_{44} -\lambda ) \bigl\{ ( a_{22} -\lambda ) ( a_{33} -\lambda ) - a_{23} a_{32} \bigr\} = 0. $$
(4.7)
Thus, the local stability for \(\Lambda _{3} = ( 0, \overline{T}_{3}, \overline{I}_{3}, \overline{E}_{3} )\) is obtained in Theorem 4.3 as follows.
Theorem 4.3
Let \(\Lambda _{3}\) be the critical point of system (3.1) and assume that \(\phi _{1} > \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}} \). Then the following statements are true:
(i) Let \(r_{2} > \frac{\delta }{K_{2} d}\) and \(R_{0} <1\). If
$$\begin{aligned}& \overline{T}_{3} \in \biggl( \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}}, \frac{K_{2} d r_{2} -\delta }{2 r_{2} \mu _{2}} \biggr), \\& \overline{I}_{3} \in \biggl( \frac{ \{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon ) \} - ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4} \overline{T}_{3}}{\beta _{4} \beta _{2} r_{2}}, \\& \hphantom{\overline{I}_{3} \in\ } \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}} \biggr) \end{aligned}$$
and
$$ \overline{E}_{4} \in \biggl( \frac{2 r_{2} \mu _{2} ( K_{3} - \mu _{3} ) - ( K_{2} d r_{2} -\delta ) \beta _{3}}{2 r_{2} \mu _{2} ( 1-k ) \phi _{2}}, \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}} \biggr) $$
then both roots are real or complex conjugates with negative real parts and \(\vert \arg ( \lambda _{i} ) \vert > \frac{\alpha \pi }{2}\) (\(i=1, 2, 3, 4 \)) is equivalent to the Routh-Hurwitz criteria. This implies that \(\Lambda _{3}\) is locally asymptotically stable.
(ii) Let \(r_{2} > \frac{\delta }{K_{2} d}\) and \(R_{0} <1\). If
$$ \overline{T}_{3} \in \biggl( 0, \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}} \biggr), \qquad \overline{I}_{3} \in \biggl( \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}}, \infty \biggr) $$
and
$$ \overline{E}_{4} \in \biggl( \frac{2 r_{2} \mu _{2} ( K_{3} - \mu _{3} ) - ( K_{2} d r_{2} -\delta ) \beta _{3}}{2 r_{2} \mu _{2} ( 1-k ) \phi _{2}}, \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}} \biggr), $$
then both roots are complex conjugate with positive real parts and
$$\begin{aligned}& \biggl\vert \tan ^{-1} \biggl( - \biggl(4 \bigl( ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3} - \beta _{2} r_{2} \overline{I}_{3} \bigr)\\& \qquad {}\times \biggl( ( K_{3} - \mu _{3} - \beta _{3} \overline{T}_{3} ) - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} \biggr)( 1- R_{0} ) \\& \qquad {}- \biggl( ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3} - \beta _{2} r_{2} \overline{I}_{3} + ( K_{3} - \mu _{3} - \beta _{3} \overline{T}_{3} ) - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} \biggr)^{2} \biggr)^{\frac{1}{2}} \\& \qquad {}\times \biggl({ \biggl( ( K_{2} d r_{2} - \delta ) -2 r_{2} \mu _{2} \overline{T}_{3} - \beta _{2} r_{2} \overline{I}_{3} + ( K_{3} - \mu _{3} - \beta _{3} \overline{T}_{3} ) - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} \biggr)} \biggr)^{-1} \biggr) \biggr\vert \\& \quad > \frac{\alpha \pi }{2}. \end{aligned}$$
This implies that \(\Lambda _{3}\) is locally asymptotically stable.
Proof
From (4.7), we obtain
$$ \lambda _{1} = r_{1} K_{1} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} < 0\quad \text{if } \phi _{1} > \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}} $$
(4.8)
and \(\lambda _{4} =- \beta _{4} <0 \). In this case, we need to consider only the characteristic equation
$$ \lambda ^{2} - ( a_{22} + a_{33} ) \lambda + a_{22} a_{33} - a_{23} a_{32} =0. $$
(4.9)
Equation (4.9) shows the basic reproductive number, which is
$$ R_{0} = \frac{a_{23} a_{32}}{a_{22} a_{33}} $$
(4.10)
for the characteristic equation
$$ \lambda ^{2} - ( a_{22} + a_{33} ) \lambda + a_{22} a_{33} \biggl( 1- \frac{a_{23} a_{32}}{a_{22} a_{33}} \biggr) =0, $$
which implies
$$ \lambda ^{2} - \sum_{i=2}^{3} a_{ii} \lambda + \prod_{i=2}^{3} a_{ii} ( 1- R_{0} ) =0. $$
(4.11)
(i) Let us consider the case where \(\Delta = ( a_{22} + a_{33} )^{2} -4 a_{22} a_{33} ( 1- R_{0} ) >0\). For \(R_{0} <1\) and \(r_{2} > \frac{\delta }{K_{2} d}\), we have
$$ \begin{gathered} \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}} < \overline{T}_{3} < \frac{K_{2} d r_{2} -\delta }{2 r_{2} \mu _{2}} \quad \text{and} \\ \overline{I}_{3} < \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}}, \end{gathered} $$
(4.12)
which implies that \(\Delta >0\). Moreover, computations show that
$$\begin{aligned}& a_{22} + a_{33} < 0 \\& \quad \Rightarrow \quad \frac{ \{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon ) \} - ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4} \overline{T}_{3}}{\beta _{4} \beta _{2} r_{2}} < \overline{I}_{3}, \end{aligned}$$
(4.13)
where
$$ \overline{T}_{3} < \frac{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon )}{ ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4}} $$
(4.14)
and
$$ \overline{E}_{4} < \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}}. $$
(4.15)
Considering (4.12)–(4.14), we obtain
$$\begin{aligned}& \frac{ \{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon ) \} - ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4} \overline{T}_{3}}{\beta _{4} \beta _{2} r_{2}} \\& \quad < \overline{I}_{3} < \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}} \end{aligned}$$
(4.16)
and
$$\begin{aligned}& \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}} \\& \quad < \overline{T}_{3} < \frac{K_{2} d r_{2} -\delta }{2 r_{2} \mu _{2}} < \frac{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon )}{ ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4}}, \end{aligned}$$
(4.17)
where
$$ \overline{E}_{4} > \frac{2 r_{2} \mu _{2} ( K_{3} - \mu _{3} ) - ( K_{2} d r_{2} -\delta ) \beta _{3}}{2 r_{2} \mu _{2} ( 1-k ) \phi _{2}}. $$
(4.18)
From (4.15) and (4.18), we get
$$ \frac{2 r_{2} \mu _{2} ( K_{3} - \mu _{3} ) - ( K_{2} d r_{2} -\delta ) \beta _{3}}{2 r_{2} \mu _{2} ( 1-k ) \phi _{2}} < \overline{E}_{4} < \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}} \quad \text{for } r_{2} > \frac{\delta }{K_{2} d}. $$
(4.19)
(ii) Let us consider the case of complex roots with positive real parts. First of all, if
$$ a_{22} + a_{33} >0 $$
(4.20)
then we obtain positive real parts. Thus, for the inequality
$$\begin{aligned}& a_{22} + a_{33} >0 \\& \quad \Rightarrow \quad \frac{ \{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon ) \} - ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4} \overline{T}_{3}}{\beta _{4} \beta _{2} r_{2}} > \overline{I}_{3}, \end{aligned}$$
(4.21)
where
$$ \overline{T}_{3} < \frac{ ( K_{2} d r_{2} + K_{3} ) \beta _{4} - ( ( \mu _{3} +\delta ) \beta _{4} + ( 1-k )^{2} \phi _{2} \varepsilon )}{ ( 2 r_{2} \mu _{2} + \beta _{3} ) \beta _{4}} $$
(4.22)
and
$$ \overline{E}_{4} < \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}}, $$
(4.23)
we end up with (4.20).
Considering the condition \(\Delta = ( a_{22} + a_{33} )^{2} -4 a_{22} a_{33} ( 1- R_{0} ) <0\), we have
$$ R_{0} < \frac{4 a_{22} a_{33} - ( a_{22} + a_{33} )^{2}}{4 a_{22} a_{33}} < 1. $$
(4.24)
Moreover, computations reveal that \(4 a_{22} a_{33} > ( a_{22} + a_{33} )^{2}\), if
$$ \overline{T}_{3} < \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}} $$
(4.25)
and
$$ \overline{I}_{3} > \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}}, $$
(4.26)
where
$$ \overline{T}_{3} < \frac{K_{2} d r_{2} -\delta }{2 r_{2} \mu _{2}}. $$
(4.27)
From (4.22), (4.25), and (4.27), we get
$$ \overline{T}_{3} < \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}},\qquad \overline{I}_{3} > \frac{ ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{3}}{\beta _{2} r_{2}} $$
(4.28)
and
$$ \frac{2 r_{2} \mu _{2} ( K_{3} - \mu _{3} ) - ( K_{2} d r_{2} -\delta ) \beta _{3}}{2 r_{2} \mu _{2} ( 1-k ) \phi _{2}} < \overline{E}_{4} < \frac{ ( K_{2} d r_{2} + K_{3} - ( \mu _{3} +\delta ) )}{ ( 1-k ) \phi _{2}} \quad \text{for } r_{2} > \frac{\delta }{K_{2} d}. $$
(4.29)
□
Remark 4.3
It is shown in Theorem 4.3 that the reproduction number has a dominant role to play in the dynamical system’s stability. In this scenario, we assumed a weak immune response with low ketogenic support. It is seen that without the control parameters, the immune system is not strong enough to defend the tissues and the human body from the invasion of the malignant population.
Let us consider the Jacobian matrix of the co-existing critical point: \(\Lambda _{4} = ( \overline{N}_{4}, \overline{T}_{4}, \overline{I}_{4}, \overline{E}_{4} )\), which has the form
$$ J ( \Lambda _{4} ) = \begin{pmatrix} a_{11} & a_{12} & 0 &a_{14}\\ a_{21} & a_{22} & a_{23} &a_{24}\\ 0 & a_{32} & a_{33} &a_{34}\\ 0 & 0 & 0 & a_{44} \end{pmatrix}, $$
(4.30)
where
$$\begin{aligned}& a_{11} = r_{1} K_{1} -2 r_{1} \mu _{1} \overline{N}_{4} - r_{1} \beta _{1} \overline{T}_{4} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}},\qquad a_{12} =- \beta _{1} r_{1} \overline{N}_{4}, \\& a_{14} =- ( 1-k ) \phi _{1} \overline{N}_{4},\qquad a_{21} = \frac{ ( 1-k )^{2} \phi _{1} \varepsilon \overline{T}_{4}}{\beta _{4}},\\& a_{22} = ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{4} - \beta _{2} r_{2} \overline{I}_{4} + \frac{ ( 1-k )^{2} \phi _{1} \varepsilon \overline{N}_{4}}{\beta _{4}}, \\& a_{23} =- \beta _{2} r_{2} \overline{T}_{4},\qquad a_{24} = ( 1-k ) \phi _{1} \overline{N}_{4} \overline{T}_{4},\qquad a_{32} =- \beta _{3} \overline{I}_{4},\\& a_{33} = ( K_{3} - \mu _{3} - \beta _{3} \overline{T}_{4} ) - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}},\\& a_{34} =- ( 1-k ) \phi _{2} \overline{I}_{4},\qquad a_{44} =- \beta _{4}. \end{aligned}$$
The characteristic equation of (4.30) around \(\Lambda _{4}\) is given by
$$ ( a_{11} -\lambda ) \bigl\{ \lambda ^{2} - ( a_{22} + a_{33} ) \lambda + a_{22} a_{33} ( 1- R_{0} ) \bigr\} - ( a_{33} - \lambda ) a_{12} a_{21} =0 $$
(4.31)
and
$$ \lambda _{4} =- \beta _{4} < 0, $$
(4.32)
while (4.31) is a cubic equation of the form
$$\begin{aligned}& \lambda ^{3} + ( - a_{11} - a_{22} - a_{33} ) \lambda ^{2} + \bigl( a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) \bigr) \lambda \\& \quad {}+ \bigl( a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ) \bigr) =0. \end{aligned}$$
(4.33)
Theorem 4.4
Let \(\Lambda _{4}\) be the equilibrium point of system (3.1) and assume that \(R_{0} <1\), \(\phi _{1} < \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}\) and \(\frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}} < \phi _{2} < \frac{ ( K_{3} - \mu _{3} ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\). Then the following statements are true:
-
(i)
Let \(r_{1} > \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{2 \beta _{4} \mu _{1}}\) and \(r_{2} > \frac{\delta }{K_{2} d} \). If
$$ \overline{T}_{4} > \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}}\quad \textit{and}\quad \overline{I}_{4} > \frac{K_{2} d r_{2} -\delta }{\beta _{2} r_{2}}, $$
where \(\beta _{3} > \frac{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) ( ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon )}{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }\) then all the roots of (4.33) are real. This implies that \(\Lambda _{4}\) is locally asymptotically stable.
-
(ii)
Let \(r_{1} \geq \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{2 \beta _{4} \mu _{1}}\) and \(r_{2} > \frac{\delta }{K_{2} d} \). If
$$\begin{aligned}& \overline{N}_{4} \in \biggl( \frac{ ( r_{1} K_{1} - r_{1} \beta _{1} \overline{T}_{4} ) \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4} r_{1} ( 2 \mu _{1} + \beta _{1} )}, \infty \biggr), \\& \overline{T}_{4} \in \biggl[ \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}} , \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{r_{1} \beta _{1} \beta _{4}} \biggr),\\& \overline{I}_{4} \in \biggl[ \frac{K_{2} d r_{2} -\delta }{\beta _{2} r_{2}} , \infty \biggr) \end{aligned}$$
and
$$ \biggl( \frac{ ( 1-k ) \phi _{1} \overline{E}_{4} +2 r_{2} \mu _{2}}{ ( 1-k ) \phi _{1} \overline{E}_{4}} \biggr) > \frac{\overline{N}_{4}}{\overline{T}_{4}}, $$
where \(\beta _{3} = \frac{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) ( ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon )}{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon } \), then there is one real root and one complex root with its complex conjugate, which implies that \(\Lambda _{4}\) is locally asymptotically stable.
Proof
(i) If the discriminant of (4.33) is positive, then the Routh-Hurwitz conditions are necessary and sufficient conditions for locally asymptotically stability of \(\Lambda _{4} \). Thus, we first consider the conditions for a positive discriminant of the cubic polynomial (4.33):
If
$$\begin{aligned}& a_{11} + a_{22} + a_{33} < 0, \end{aligned}$$
(4.34)
$$\begin{aligned}& a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ) >0, \end{aligned}$$
(4.35)
$$\begin{aligned}& a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) >0 \end{aligned}$$
(4.36)
and
$$\begin{aligned}& ( - a_{11} - a_{22} - a_{33} ) \bigl( a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) \bigr) \\& \quad > a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ), \end{aligned}$$
(4.37)
then the discriminant of (4.33) is positive.
Because of (4.34), we have
$$\begin{aligned}& \biggl( \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} -2 r_{1} \mu _{1} \biggr) \overline{N}_{4} + \biggl( r_{1} K_{1} - ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \overline{T}_{4} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \biggr) \\& \quad {}+ ( K_{2} d r_{2} -\delta - \beta _{2} r_{2} \overline{I}_{4} ) + \biggl( K_{3} - \mu _{3} - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} - \beta _{3} \overline{T}_{4} \biggr) < 0, \end{aligned}$$
where we obtain
$$\begin{aligned}& \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} -2 r_{1} \mu _{1} < 0\quad \Rightarrow\quad r_{1} > \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{2 \beta _{4} \mu _{1}}, \end{aligned}$$
(4.38)
$$\begin{aligned}& r_{1} K_{1} - ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \overline{T}_{4} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} < 0 \\& \quad \Rightarrow\quad \overline{T}_{4} > \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}}\quad \text{for } \phi _{1} < \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}, \end{aligned}$$
(4.39)
$$\begin{aligned}& K_{2} d r_{2} -\delta - \beta _{2} r_{2} \overline{I}_{4} < 0\quad \Rightarrow\quad \overline{I}_{4} > \frac{K_{2} d r_{2} -\delta }{\beta _{2} r_{2}}\quad \text{for } r_{2} > \frac{\delta }{K_{2} d} \end{aligned}$$
(4.40)
and
$$\begin{aligned}& K_{3} - \mu _{3} - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} - \beta _{3} \overline{T}_{4} < 0 \\& \quad \Rightarrow\quad \overline{T}_{4} > \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}}\quad \text{for } \phi _{2} < \frac{ ( K_{3} - \mu _{3} ) \beta _{4}}{\varepsilon ( 1-k )^{2}}. \end{aligned}$$
(4.41)
Since \(\Lambda _{4}\) is a positive critical point for \(\phi _{2} > \frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\), we see from (4.41) that \(\mu _{3} <\delta \). Considering both (4.39) and (4.41), we have
$$ \overline{T}_{4} > \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}} > \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}}, $$
(4.42)
where \(\beta _{3} > \frac{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) ( ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon )}{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon } \).
On the other side, it is evident that (4.35) holds, since \(a_{33} <0\). Moreover, considering (4.36) and (4.37), we obtain the result that it is satisfied with the conditions in (4.38)–(4.42). This completes the proof of (i).
(ii) If the discriminant of (4.33) is negative, then there is only one real root and one complex root with its complex conjugate. Let us assume that
$$\begin{aligned} P ( \lambda ) =& ( \lambda +a ) ( \lambda -b-i\omega ) ( \lambda -b+i\omega ) \\ =&\lambda ^{3} + ( - a_{11} - a_{22} - a_{33} ) \lambda ^{2} + \bigl( a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) \bigr) \lambda \\ &{}+ \bigl( a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ) \bigr) =0. \end{aligned}$$
(4.43)
Then
$$\begin{aligned}& a-2b=- a_{11} - a_{22} - a_{33}, \\& b^{2} + \omega ^{2} -2ab= a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) \end{aligned}$$
and
$$ a \bigl( b^{2} + \omega ^{2} \bigr) = a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ). $$
By the result in [36], since \(a-2b>0\) and \(b \geq 0\),
$$ a_{11} + a_{22} + a_{33} \leq 0, $$
(4.44)
which holds for
$$\begin{aligned}& \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} -2 r_{1} \mu _{1} \leq 0 \quad \Rightarrow\quad r_{1} \geq \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{2 \beta _{4} \mu _{1}}, \end{aligned}$$
(4.45)
$$\begin{aligned}& r_{1} K_{1} - ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \overline{T}_{4} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \leq 0 \\& \quad \Rightarrow\quad \overline{T}_{4} \geq \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}}\quad \text{for } \phi _{1} < \frac{K_{1} r_{1} \beta _{4}}{\varepsilon ( 1-k )^{2}}, \end{aligned}$$
(4.46)
$$\begin{aligned}& K_{2} d r_{2} -\delta - \beta _{2} r_{2} \overline{I}_{4} \leq 0\quad \Rightarrow\quad \overline{I}_{4} \geq \frac{K_{2} d r_{2} -\delta }{\beta _{2} r_{2}}\quad \text{for } r_{2} > \frac{\delta }{K_{2} d} \end{aligned}$$
(4.47)
and
$$ K_{3} - \mu _{3} - \frac{ ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4}} - \beta _{3} \overline{T}_{4} \leq 0\quad \Rightarrow\quad \overline{T}_{4} \geq \frac{ ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon }{\beta _{4} \beta _{3}} $$
(4.48)
for \(\frac{ ( K_{3} -\delta ) \beta _{4}}{\varepsilon ( 1-k )^{2}} < \phi _{2} < \frac{ ( K_{3} - \mu _{3} ) \beta _{4}}{\varepsilon ( 1-k )^{2}}\) where \(\mu _{3} <\delta \). Considering both (4.46) and (4.48), we have
$$ \overline{T}_{4} \geq \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) \beta _{4}}, $$
(4.49)
where \(\beta _{3} = \frac{ ( r_{1} \beta _{1} +2 r_{2} \mu _{2} ) ( ( K_{3} - \mu _{3} ) \beta _{4} - ( 1-k )^{2} \phi _{2} \varepsilon )}{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon } \).
On the other side, from [36] we have
$$ b^{2} + \omega ^{2} -2ab \geq 0\quad \Rightarrow\quad b^{2} + \omega ^{2} \geq 2ab\quad \Rightarrow\quad b^{2} \sec ^{2} \theta \geq 2ab \geq 4 b^{2}, $$
(4.50)
which implies that \(\vert \arg ( \lambda ) \vert =\theta \geq \frac{\pi }{3}\) and from \(\vert \arg ( \lambda ) \vert > \frac{\alpha \pi }{2}\), we have \(\alpha < \frac{2}{3} \). Thus,
$$ a_{11} a_{22} + a_{11} a_{33} - a_{12} a_{21} + a_{23} a_{32} ( 1- R_{0} ) \geq 0, $$
(4.51)
which holds for the conditions in (4.45)–(4.49).
At last, we consider
$$ a_{33} a_{12} a_{21} - a_{11} a_{22} a_{33} ( 1- R_{0} ) >0, $$
which implies
$$\begin{aligned}& \beta _{1} r_{1} \overline{N}_{4} \overline{T}_{4} \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \\& \quad >- \biggl( r_{1} K_{1} -2 r_{1} \mu _{1} \overline{N}_{4} - r_{1} \beta _{1} \overline{T}_{4} - \frac{ ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4}} \biggr) \\& \qquad {}\times\biggl( ( K_{2} d r_{2} -\delta ) -2 r_{2} \mu _{2} \overline{T}_{4} - \beta _{2} r_{2} \overline{I}_{4} + \frac{ ( 1-k )^{2} \phi _{1} \varepsilon \overline{N}_{4}}{\beta _{4}} \biggr) ( 1- R_{0} ) \end{aligned}$$
(4.52)
we have
$$ \overline{N}_{4} > \frac{ ( r_{1} K_{1} - r_{1} \beta _{1} \overline{T}_{4} ) \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{\beta _{4} r_{1} ( 2 \mu _{1} + \beta _{1} )}, $$
(4.53)
where
$$ \overline{T}_{4} < \frac{r_{1} K_{1} \beta _{4} - ( 1-k )^{2} \phi _{1} \varepsilon }{r_{1} \beta _{1} \beta _{4}} $$
(4.54)
and
$$ \biggl( \frac{ ( 1-k ) \phi _{1} \overline{E}_{4} +2 r_{2} \mu _{2}}{ ( 1-k ) \phi _{1} \overline{E}_{4}} \biggr) > \frac{\overline{N}_{4}}{\overline{T}_{4}}. $$
(4.55)
□
Remark 4.4
In Theorem 4.4, it is shown that, if the source rate of estrogen is low, then the interaction between the normal cells and tumor cells continues. At the same time, the growth of both populations has an inverse relation. According to the ketogenic assistance and supplements of an immune booster, a robust immune response is expected in this competition.
Example 4.1
In this example, the theoretical results are demonstrated by using numerical simulations. For this purpose, we wrote code and ran it using the MATLAB version 2019. The initial values of (3.1) are \(N ( 0 ) =200\), \(T ( 0 ) =50\), \(I ( 0 ) =50\), \(E ( 0 ) =2\).
Figure 1 shows the limited competition between cancer and normal cell populations. After the cancer cells appear, some immune booster supplements support the normal cells in the interaction. The red graph is the cancer cell population \(T ( t )\), while the blue graph shows the normal cell population \(N ( t ) \). It is seen that after a specific time, the tumor population becomes so strong that the immune system needs additional support from the control parameters. Therefore, to stabilize only the immune system is not sufficient for interaction against the malignant tumor.
In Figs. 2 and 3, we notice that introducing a ketogenic diet reduces the cancer cells. In this case, applying for the ketogenic program during the mixed-immunotherapy shows an effect on the per capita growth of the cancer cells and stabilizes the treatment to support the normal cells.
However, it is also known that increasing the rate of the ketogenic diet leads to keto-acidosis. Keto-acidosis is a composition of ketosis and acidosis. Ketosis is a substance known as ketone bodies, and acidosis is the acid of the blood, causing frequent polyuria, poor appetite, and loss of consciousness. Therefore, a rate at \(d=0.3\) is reasonable, and the interaction can be supported by anti-cancer drugs such as tamoxifen. The tumor cell is given in red, while the normal cells are denoted in blue.