- Research
- Open access
- Published:
On a two-dimensional fractional thermoelastic system with nonlocal constraints describing a fractional Kirchhoff plate
Advances in Difference Equations volume 2021, Article number: 24 (2021)
Abstract
We show herein the existence and uniqueness of solutions for coupled fractional order partial differential equations modeling a thermoelastic fractional Kirchhoff plate model associated with initial, Dirichlet, and nonlocal boundary conditions involving fractional Caputo derivative. Some efficient results of existence and uniqueness are obtained by employing the energy inequality method.
1 Introduction
The systems of differential equations of time fractional order have been studied by many authors, and several results have been obtained. These types of systems have been successfully used in modeling many problems in different processes and systems such as physical and biological ones. Fractional calculus (fractional derivatives) can be used to describe viscoelastic materials much better than using ordinary derivatives, since for the ordinary derivatives the solution of the system predicts an instantaneous response, but when using the fractional derivatives, the solution of the system predicts a retarded response that depends on the history of the applied causes (see [1]), see also [2–5]. Many generalizations of thermoelasticity coupled theory were investigated (see [6]), they model heat conduction in solids as a wave propagation phenomenon. In this regard, the reader can see also [7–13], where the authors studied other models of fractional order thermoelasticity. Some new and recent results on fractional Caputo and Riemann–Liouville operators and their applications can be found in [14–19]. The reader also could refer to some recent thermoelasticity problems investigated by [20–22]. It is important to mention that fractional nonlocal problems are much harder to deal with, and this is because of the nonlocal nature of the fractional derivative and the nonlocal nature of the boundary condition (boundary integral condition). It seems that the functional analysis method we apply in this paper is very efficient to solve some nonlocal fractional initial boundary value problems for single and systems of some different classes of partial differential equations. We can find only a few papers that use the previous method in the literature, and we can cite, for example, [23–28].
Motivated by the above papers, in this work we deal with the existence and uniqueness of solutions for a fractional order initial boundary value problem for a two-dimensional coupled linear thermoelastic system of fourth order with nonlocal conditions defined by problem (2.1)–(2.4), which models a thermoelastic fractional Kirchhoff plate. If in our fractional thermoelasticity model (2.1) we let α to approach 1, we obtain some classes of classical thermoelastic models which all describe vibrations of some thin thermoelastic plate, and these vibrations are described by the Kirchhoff plate. See for example the model studied in [29]: In the domain \(Q=\Omega \times (0,T)\), with Ω a bounded, open, connected set in \(\mathbb{R} ^{2}\), with boundary \(\partial Q=\partial \Omega \times (0,T)\), the authors consider the following nonhomogeneous controlled system associated with some initial and boundary conditions:
where η, β, and C, were positive constants. The authors considered the null controllability problem for system (1.1), which describes thermoelastic plates. The reader could also see [30], where the authors studied the uniform stability of an integer order thermoelastic plate, with some prescribed initial and boundary conditions taken from [31], which reads as follows:
where α, β, η are positive constants and γ is a nonnegative constant. For other nonfractional models, the reader could refer to [32–34] and the references therein.
This paper is structured as follows. After a short introduction in section one, in section two, the problem to investigate is reformulated and some function spaces are introduced. In section three, the main result of uniqueness of the solution of the posed problem is given. In section four, we establish the proof of the main result concerning the solvability of the posed problem.
2 Problem setting
Let \(\Omega =(0,a)\times (0,b)\) be a bounded open subset of \(\mathbb{R}^{2}\) with sufficiently smooth boundary, and let \(T>0\) be the terminal time. We consider on \((0,T)\times \Omega \) the following inhomogeneous fractional thermoelastic system with the control functions \(f\in L^{2}(0,T;L^{2}(\Omega ))\) (external force), and \(g\in L^{2}(0,T;L^{2}(\Omega ))\) (external thermal influence), which reads as follows:
along with the initial conditions
boundary Dirichlet conditions on the displacement \(\mathcal{M}\)
and boundary integral conditions on the displacement \(\mathcal{M}\) and on the thermal damping θ
where \(\ell _{1}\), \(\ell _{2}\), \(\ell _{3}\) designate the trace operators and \(\partial _{t}^{\alpha +1} \mathcal{M}\) is the time fractional Caputo derivative of order \(1+\alpha \) with \(\alpha \in (0,1)\) for the function \(\mathcal{M}\) [14], and it is given by the formula
and β, δ, γ, d, and η are strictly positive constants. In the elastic differential equation in (2.1), the term \(\partial _{t}^{\alpha +1}(\Delta \mathcal{M})\) accounts for rotational inertia for \(\gamma >0\), where γ is proportional to the thickness of the plate, the constant d stands for the thermoelastic coupling parameter, the parameters δ and η are thermal coefficients, and β is considered as the heat capacity. The given model (2.1)–(2.4) mathematically describes a fractional Kirchhoff plate, the displacement of which is represented by the function \(\mathcal{M}\) subjected to a thermal damping as quantified by θ. The boundary integral conditions may be interpreted as the average and weighted average of the displacement and the thermal damping. We mention here that some of the hinged conditions are replaced by nonlocal conditions (2.4), this may be due to the fact that some of the data cannot be measured on the boundary.
For establishing the existence and uniqueness of solution of problems (2.1)–(2.4), we reformulate them in an operator form, which allows us to obtain some energy estimates needed for our proofs. The solution of problems (2.1)–(2.4) can be regarded as the solution of the operator equation
where \(\mathcal{A}:\mathcal{E}\longrightarrow \mathcal{F}\) is an unbounded operator with domain \(\mathcal{D(A)}\) consisting of all functions \(( \mathcal{M},\theta )\) belonging to \(L^{2}(Q^{T})\times L^{2}(Q^{T})\) for which \(\mathcal{M}_{xxxx}\), \(\mathcal{M}_{yyyy}\), \(\partial _{t}^{\alpha }\mathcal{M}_{t}\), \(\mathcal{M}_{xxtt}\), \(\mathcal{M}_{yytt}\), \(\mathcal{M}_{xxt}\), \(\mathcal{M}_{yyt}\), \(\mathcal{M}_{t}\), \(\theta _{xx}\), \(\theta _{yy}\), \(\partial _{t}^{\alpha }\theta \) are in \(L^{2}(Q^{T})\), and satisfying conditions (2.3)–(2.4). Let \(\mathcal{E}\) be a Banach space of functions \(U=( \mathcal{M}, \theta )\in (L^{2}(Q^{T}))^{2}\) endowed with the finite norm
and let \(\mathcal{F}\) be a Hilbert space constituting of the elements \(W= (\{f, \mathcal{M}_{0}, \mathcal{M}_{1}\},\{g,\theta _{0}\} )\) equipped with the norm
We introduce here the following function spaces: Let \(H^{1}(\Omega )\) be the usual Sobolev space with the inner product
where \(L^{2}(\Omega )\) is the space of square integrable functions. And let \(C(0,T;B_{2}^{N}(\Omega ))\), \(C(0,T; B_{2}^{1,x}(\Omega ))\), \(C(0,T;B_{2}^{1,y}(\Omega ))\), \(C(0,T;B_{2}^{1,x,y}(\Omega ))\) be the set of continuous mappings from the interval \([0,T]\) into the Hilbert spaces \(B_{2}^{N}(\Omega ))\), \(B_{2}^{1,x}(\Omega )\), \(B_{2}^{1,y}(\Omega )\), \(B_{2}^{1,x,y}(\Omega )\), respectively, having the inner products
with \(B_{2}^{N}(\Omega ))\) (see [35]) being the set of function Z such that \(\Im _{\theta }^{N}Z=\frac{1}{(N-1)!}\int _{0}^{\theta }( \theta -\nu )^{N-1}\times Z(\nu , t)\,d\nu \in L^{2}(\Omega )\) for \(N\in \mathbb{N} ^{\ast }\) and \(Z\in L^{2}(\Omega )\) for \(N=0\).
The following crucial lemmas are needed to be used in different proofs of our results.
Lemma 2.1
([23])
For any absolutely continuous function \(L(t)\) on the interval \([0,T]\), the following inequality holds:
Lemma 2.2
([36])
Let \(\mathcal{N}(s)\) be nonnegative and absolutely continuous on \([0,T]\) and for almost all \(s\in {}[ 0,T]\) satisfy the inequality
where the functions \(A_{1}(s)\) and \(B_{1}(s)\) are summable and nonnegative on \([0,T]\). Then
Lemma 2.3
([23])
Let a nonnegative absolutely continuous function \(Q(t)\) satisfy the inequality
for almost all \(t\in {}[ 0,T]\), where \(b_{1}\) is a positive constant and \(b_{2}(t)\) is an integrable nonnegative function on \([0,T]\). Then
where
are the Mittag-Leffler functions and
is the Riemann–Liouville integral of order \(0<\alpha <1\) of the function h [37].
3 The energy inequality (uniqueness of solution)
Theorem 3.1
For any function \(U=( \mathcal{M},\theta )\) belonging to \(\mathcal{D(A)}\), there exists a positive constant \(\mathcal{D}^{ \ast }\), independent of \(\mathcal{M}\) and θ, such that the following a priori estimate holds:
where
with
and
Proof
Taking the scalar product in \(L^{2}(\Omega )\) of partial differential (2.1) equations and the operators \(M_{1} ( \mathcal{M} ) =\Im _{xy}^{2} \mathcal{M}_{t}\) and \(M_{2} ( \theta ) =\Im _{xy}^{2}\theta \), respectively, where
then we have
We separately consider the inner products in (3.2). Integrating by parts and taking into account boundary and initial conditions (2.2)–(2.4), we obtain
Substitution of equations (3.3)–(3.16) into (3.2) yields
By using Lemma 2.1, Cauchy ϵ inequality \(\alpha \beta \leq \frac{\varepsilon }{2}\alpha ^{2}+\frac{1}{2\varepsilon }\beta ^{2}\), and a Poincare type inequality [38], we obtain
If in (3.18) we let \(\epsilon _{1}=1\), \(\epsilon _{2}=\frac{ab}{4\delta }\), it follows that
We now discard the last three terms of the left-hand side (3.19) and get the inequality
where
Now replacing t by Ï„ and integrating with respect to Ï„ from zero to t, we obtain
where
Now, by dropping the last six terms from the left-hand side of (3.22) and applying Lemma 2.3 with
we have
where
By virtue of the inequality
it follows from inequalities (3.22), (3.25), and (3.27) that
where
If we discard the first four terms on the left-hand side of (3.28) and then pass to the supremum with respect to t from 0 to T, the a priori bound (3.1) follows. □
4 Solvability of the posed problem
As we only know that the range of the operator \(\mathcal{A}: \mathcal{E}\rightarrow \mathcal{F}\), \(R(\mathcal{A})\) is a subset of \(\mathcal{F}\), we extend \(\mathcal{A}\) in such a way that \(\Vert U\Vert _{ \mathcal{E}}\leq C\Vert \overline{\mathcal{A}\text{ }}U\Vert _{ \mathcal{F}} \) for all \(U\in D(\overline{\mathcal{A}\text{ }})\) and \(R(\overline{\mathcal{A} })= \mathcal{F}\). For this purpose, we prove the following.
Theorem 4.1
The unbounded operator \(\mathcal{A}: \mathcal{E}\rightarrow \mathcal{F}\) admits a closure \(\overline{\mathcal{A}} \) with the domain of definition \(D(\overline{\mathcal{A}})\).
Proof
The proof is analogous to [39]. □
Theorem 4.2
For any \((f,g)\in (L^{2}(Q^{T}))^{2}\) and any \(( \mathcal{M}_{0}, \mathcal{M}_{1},\theta _{0} ) \in H_{0}^{1}( \Omega )\times (L^{2}(Q^{T}))^{2}\), there exists a unique strong solution \(U=(\mathcal{M},\theta )=(\overline{\mathcal{A}})^{-1}(W)=( \overline{\mathcal{A}^{-1}})(W)\) of problem (2.1)–(2.4).
Proof
To prove that problem (2.1)–(2.4) has a unique strong solution for all \(W=(\{f, \mathcal{M}_{0}, \mathcal{M}_{1}\},\{g,\theta _{0}\})\in \mathcal{F}\), it suffices to prove that the range of the operator \(\mathcal{A}\) is dense in \(\mathcal{F}\). We first prove it in the case when \(\mathcal{D}(\mathcal{A})=\mathcal{D}_{0}(\mathcal{A})=\{U\in \mathcal{D(A)}:\ell _{1} \mathcal{M}=\ell _{2} \mathcal{M}=\ell _{3}\theta =0\}\). For this purpose we need to prove the following result. □
Theorem 4.3
If for some function \(G=(G_{1},G_{2})\) belongs to \((L^{2}(\Omega ))^{2}\) and for any \(U=( \mathcal{M},\theta )\in \mathcal{D}_{0}(\mathcal{A})\) we have
then \(G=(G_{1},G_{2})=(0,0)\) almost everywhere in \(Q^{T}\).
Assume that the proof of Theorem 4.3 is achieved. We suppose that, for some element \(G=(G_{1},G_{2})=(\{f,\sigma _{1},\sigma _{2}\},\{g,\sigma _{3}\}) \in R(\mathcal{A})^{\perp }\) and for all \(U\in \mathcal{D(A)}\),
we must prove that \(G=0\). Taking \(U\in \mathcal{D}_{0}\mathcal{(A)}\) in (4.2), we get
Hence, by virtue of Theorem 4.3, it follows from (4.3) that \(f=g=0\). Thus (4.2) takes the form
By the fact that the ranges of the trace operators \(\ell _{1}\), \(\ell _{2}\), and \(\ell _{3}\) are, respectively, dense in the spaces \(H_{0}^{1}(\Omega )\), \(L^{2}(\Omega )\), \(L^{2}(\Omega )\), we conclude from (4.4) that \(\sigma _{1}=\sigma _{2}=\sigma _{3}=0\). Consequently, \(G=(G_{1},G_{2})=(0,0) \), that is, \(R(\mathcal{A})^{\perp }=\{0\}\), thus \(\overline{R(\mathcal{A})}= \mathcal{F}\).
To complete the proof of Theorem 4.2, we prove Theorem 4.3.
Proof of Theorem 4.3
Equation (4.1) implies
Let \(\mathcal{Z}(x,t)\) be a function satisfying the initial, boundary, and integral conditions such that \(\mathcal{Z}\), \(\mathcal{Z}_{x}\), \(\mathcal{Z}_{y}\), \(\Im _{t} \mathcal{Z}\), \(\Im _{t} \mathcal{Z}_{x}\), \(\Im _{t}\) \(\mathcal{Z}_{y}\), \(\partial _{t}^{\alpha +1} \mathcal{Z}\in L^{2}(Q^{T})\). We set \(\mathcal{M}=\Im _{x}^{2}\Im _{y}^{2}\Im _{t}^{2} \mathcal{Z}\), \(\theta =\Im _{x}^{4}\Im _{y}^{4}\Im _{t}^{2} \mathcal{Z}\), and define \(G_{1}=\Im _{t} \mathcal{Z}\), \(G_{2}=\Im _{t}^{2} \mathcal{Z}\). Clearly, \(G_{1}\) and \(G_{2}\) belong to \(L^{2}(Q^{T})\). Relations (4.1) and (4.2) imply that
We separately consider the terms in (4.6). Integrating by parts and taking into account that \(\mathcal{Z}\) satisfies boundary and initial conditions (2.2)–(2.4), we obtain
Substitution of equations (4.7)–(4.20) into (4.6) yields
By using Lemma 2.1, Cauchy ϵ inequality, and Poincare type inequality, we obtain
We now take \(\epsilon _{1}=\epsilon _{2}=\epsilon _{3}=\epsilon _{4}=1\), drop the last five terms of the left-hand side of (4.22), replace t by Ï„, and integrate both sides with respect to Ï„ from 0 to t, then we get
where
Since (see (4.23))
then if we set
then, according to Lemma 2.2 (Gronwall–Bellman), we obtain
Now, by omitting the last term on the left-hand side of (4.23) and by using inequality (4.27), we obtain
Lemma 2.3 can be applied by taking
It follows from (4.29) that
where
and
It follows from (4.30) that \(G_{1}=\Im _{t} \mathcal{Z}=0\), \(G_{2}=\Im _{t}^{2} \mathcal{Z}=0\) a.e. in \(Q^{T}\). This achieves the proof of Theorem 4.2. □
5 Conclusion
The existence and uniqueness of solutions for a fractional order initial boundary value problem for a two-dimensional coupled linear thermoelastic system of fourth order with nonlocal conditions which models a thermoelastic fractional Kirchhoff plate are established. The method of energy inequalities is successfully applied for obtaining a priori estimates for the solution from which the uniqueness of the solution follows. Then, from Hilbert space theory, a density argument is employed to establish the solvability of the given problem. It is found that the application of the functional analysis method to systems of fractional order is very efficient in spite of the difficulties of choosing the appropriate multipliers and functions space solutions as well as the different hard computations.
Availability of data and materials
Not applicable.
References
Jou, D., Casas-Vázquez, J., Lebon, G.: Extended irreversible thermodynamics. Rep. Prog. Phys. 51, 1105–1179 (1988)
Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91, 134–147 (1971)
Caputo, M., Mainardi, F.: Linear model of dissipation in anelastic solids. Riv. Nuovo Cimento 1, 161–198 (1971)
Caputo, M.: Vibrations on an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soc. Am. 56, 897–904 (1974)
Sherief, H., El-Sayed, A.M.A., Abd El-Latief, A.M.: Fractional order theory of thermoelasticity. Int. J. Solids Struct. 47, 269–275 (2010)
Hetnarski, R.B., Ignaczak, J.: Generalized thermoelasticity. J. Therm. Stresses 22, 4–5 (1999)
Povstenko, Y.Z.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009)
Povstenko, Y.Z.: Fractional heat conduction and associated thermal stress. J. Therm. Stresses 28, 83–102 (2005)
Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34, 97–114 (2011)
Sherief, H., El-Sayed, A.M.A.: Abd el-latief A.M.: fractional order theory of thermoelasticity. Int. J. Solids Struct. 47, 269–275 (2010)
Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B, Condens. Matter 405, 4188–4194 (2010)
Jumarie, G.: Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comput. Math. Appl. 59, 1142–1164 (2010)
Hamza, F., Abdou, M., Abd El-Latief, A.M.: Generalized fractional thermoelasticity associated with two relaxation times. J. Therm. Stresses 37(9), 1080–1098 (2014)
Agarwal, P., Berdyshev, A., Erkinjon, K.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017)
Adel El-Sayed, A., Agarwal, P.: Numerical solution of multiterm variable-order fractional differential equations via shifted Legendre polynomials. Math. Methods Appl. Sci. 42(11), 3978–3991 (2019)
Agarwal, P., Nieto, J.J., Luo, M.J.: Extended Riemann-Liouville type fractional derivative operator with applications. Open Math. 15, 1667–1681 (2017)
Agarwal, P., Berdyshev, A., Erkinjon, K.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71, 1235–1257 (2017)
Agarwal, P., Deniz, S., Jain, S., Alderremy, A.A., Shaban, A.: A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques. Phys. A, Stat. Mech. Appl. 542, 122769 (2020)
Baltaeva, U., Agarwal, P.: Boundary value problems for the third order loaded equation with noncharacteristic type-change boundaries. Math. Methods Appl. Sci. 41(9), 3307–3315 (2018)
Marin, M., Baleanu, D.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies. Bound. Value Probl. 2016, 111 (2016)
Marin, M., Baleanu, D., Vlase, S.: Effect of microtemperatures for micropolar thermoelastic bodies. Struct. Eng. Mech. 61(3), 381–387 (2017)
Rahimi, Z., Sumelka, W., Rash, S.A.: Study and control of thermoelastic damping of in-plane vibration of the functionally graded nano-plate. J. Vib. Control 25(23–24), 2850–2862 (2019)
Alikhanov, A.A.A.: Priori estimates for solutions of boundary value problems for fractional order equations. Differ. Equ. 46, 660–666 (2010)
Mesloub, S.: Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type. Math. Methods Appl. Sci. 39, 1558–1567 (2016)
Mesloub, S., Aldosari, F.: Even higher order fractional initial boundary value problem with nonlocal constraints of purely integral type. Symmetry 11, 305 (2019)
Akilandeeswari, A., Balachandran, K., Annapoorani, N.: Solvability of hyperbolic fractional partial differential equations. J. Appl. Anal. Comput. 7(4), 1570–1585 (2017)
Mesloub, S., Bachar, I.: On a nonlocal 1-d initial value problem for a singular fractional-order parabolic equation with Bessel operator. Adv. Differ. Equ. 2019(1), 254 (2019)
Kasmi, L., Guerfi, A., Mesloub, S.: Existence of solution for 2-D time-fractional differential equations with a boundary integral condition. Adv. Differ. Equ. 2019, 511 (2019)
Avalos, G., Lasiecka, I.: The null controllability of thermoelastic plates and singularity of the associated minimal energy function. J. Math. Anal. Appl. 294, 34–61 (2004)
Avalos, G., Lasiecka, I.: Exponential stability of a thermoelastic system without mechanical dissipation. Rend. Istit. Mat. Univ. Trieste Suppl. XXVIII, 1–28 (1997)
Lagnese, J.: Boundary stabilization of thin plates. Siam Stud. Appl. Math. Vol. 10 (1989)
Lasiecka, I., Thomas, I.S.: Blowup estimates for observability of a thermoelastic system. Asymptot. Anal. 50, 93–120 (2006)
Kumar, N.T., Sukavanam, N.: Exact controllability of a semilinear thermoelastic system with control solely in thermal equation. Numer. Funct. Anal. Optim. 29(9–10), 1171–1179 (2008)
Hansen, S., Zhang, B.: Boundary control of thermoelastic beam. J. Math. Anal. Appl. 210, 182–205 (1997)
Bouziani, A.: Mixed problem with integral conditions for a certain parabolic equation. J. Appl. Math. Stoch. Anal. 9(3), 323–330 (1996)
Ladyzhenskaya, O.A.: The Boundary Value Problems of Mathematical Physics. Springer, New York (1985)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Mesloub, S.: A nonlinear nonlocal mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 316, 189–209 (2006)
Mesloub, S., Bouziani, A.: On a class of singular hyperbolic equations with a weighted integral condition. Int. J. Math. Math. Sci. 22(3), 511–519 (1999)
Acknowledgements
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this research group No (RG-117).
Funding
The Deanship of Scientific Research at King Saud University.
Author information
Authors and Affiliations
Contributions
The authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mesloub, S., Aldosari, F. On a two-dimensional fractional thermoelastic system with nonlocal constraints describing a fractional Kirchhoff plate. Adv Differ Equ 2021, 24 (2021). https://doi.org/10.1186/s13662-020-03188-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-03188-6