 Research
 Open Access
 Published:
Mathematical model of SIR epidemic system (COVID19) with fractional derivative: stability and numerical analysis
Advances in Difference Equations volumeĀ 2021, ArticleĀ number:Ā 2 (2021)
Abstract
In this paper, we study and analyze the susceptibleinfectiousremoved (SIR) dynamics considering the effect of health system. We consider a general incidence rate function and the recovery rate as functions of the number of hospital beds. We prove the existence, uniqueness, and boundedness of the model. We investigate all possible steadystate solutions of the model and their stability. The analysis shows that the free steady state is locally stable when the basic reproduction numberĀ \(R_{0}\) is less than unity and unstable when \(R_{0} > 1\). The analysis shows that the phenomenon of backward bifurcation occurs when \(R_{0}<1\). Then we investigate the model using the concept of fractional differential operator. Finally, we perform numerical simulations to illustrate the theoretical analysis and study the effect of the parameters on the model for various fractional orders.
1 Introduction
The spread of Covid19 diseases is a very complex phenomenon carried out by many researchers. Many mathematical models were proposed including complex and simple mathematical models to understand the disease behavior. Faal et al. [1] proposed a model for the spread of the COVID19 disease taking into account the superspreader, hospitalized, and fatality class. The authors analyzed the local stability of the steadystate solution and the model sensitivity. Mandal et al. [2] introduced a mathematical model taking into account a quarantine class and governmental intervention measures. In this study, the authors consider the basic reproduction number as an important parameter in analyzing the dynamics of the model. Recently, significant works were carried out to study the behavior of COVID19 by means of mathematical models. Lin et al. [3] proposed SEIR models for the COVID19 using data from China considering the impact of social isolation policies including governmental actions. The model successfully captures the course of the COVID19 outbreak, whereas Wells et al. [4] and Gostic et al. [5] consider the impact of travel restrictions and border control on the global spread of the COVID19.
The SIR model is commonly used for disease modeling, in particular, for the COVID19 analysis [6ā8]. The dynamic behavior of SIR model, including the stability, bifurcation, and chaos, has been studied over many decades [9ā12]. In most studies the authors assume that the recovery rate is a constant. However, in reality the recovery rate depends on time of recovering process such as the health system, including the number of hospital beds and medicines.
In recent years, many researchers have studied the systems of differential equations with fractional operators [13ā15]. The epidemic models involving a fractional operator were also investigated by many authors because they deeply show biological and physical perspectives of the diseases [16, 17].
Rao et al. [18] studied an SIRS epidemic model assuming different death rates for each subclass, and the fraction of newborn children is represented by the parameter p. In this paper, we propose and analyze the extended SIRS epidemic model presented in [18] with the concept of fractional differential operator. In fact, we propose and study a model including three nonlinear differential equations with general incidence rate function and nonlinear recovery rate depending on the health system. The main focus of this study is analyzing the basic properties of model and demonstrating the stability properties of the model.
The rest of the paper is arranged as follows. We propose a dynamical model in Sect.Ā 2. Then we formulate and establish the existence, uniqueness, positivity, and boundedness of solutions in Sect.Ā 3. The steadystate solutions of the model and their stability are studied in Sects.Ā 4 and 5, whereas numerical simulations of the steadystate solution brunches has is presented in Sect.Ā 6. Section (7) contains a detailed dynamic behavior of the model with fractional derivative. We finish this study with conclusion in Sect.Ā 8.
2 The dimensional model
In this section, we extend the model suggested in [18] to include a nonlinear incidence rate and recovery rate. The recovery rate is a function of both the hospital bedpopulation ratio \(b_{1} > 0\) and the infected I. Thus the recovery rate Ī± is given by [19]
where the parameter \(\alpha _{1}\) and \(\alpha _{0}\) are the maximum and minimum per capita recovery rates, respectively. The nonlinear incidence rate is generalized by the function
Thus the system of differential equations is given by
where the total population is split into three parts: \(S(t)\) is the susceptible population, \(I(t)\) is the infected population, and \(R(t)\) is the recovered population, so that \(N = S + I+ R\). The details and interpretation of the model can be found in [18]. We assume that all parameters are positive.
3 Basic properties of model
3.1 Positivity of solution
In this section, we prove that under nonnegative conditions, the model solutions are positive.
Theorem 1
Let \(S_{0}, I_{0}, R_{0} \geq 0\). The solution of (3)ā(5) with \((S(0), I(0),R(0)) = (S_{0}, I_{0}, R_{0})\) is nonnegative, that is, \(S(t), I(t), R(t) \geq 0\) for \(t > 0\).
Proof
Let \(x(t) = (S(t), I(t), R(t))\) be the solution of system under initial conditions \(x_{0} = (S(0), I(0), R(0)) = (S_{0}, I_{0}, R_{0})\geq 0\).
By the continuity of solution, for all of \(S(t), I(t), R(t)\) that have positive initial values at \(t = 0\), we have the existence of an interval \((0, t_{0})\) such that \(S(t), I(t), R(t) \geq 0\) for \(0 < t < t_{0}\). We will prove that \(t_{0} = \infty \).
If \(S(t_{1}) = 0\) for \(t_{1}\geq 0\) and other solutions stay positive at \(t = t_{1}\), then
This ensures that at any time the solution reaches the axis, its derivative increases, and the function \(S(t)\) does not cross to negative part. We can show by similar analysis that
So \(x(t)\) never crosses the axes \(S = 0, I = 0, R = 0\) when it touches them. Thus, for any positive initial conditions, all equation solutions are positive.āā”
Theorem 1
Let (\(S(t), I(t), R(t)\)) be the solution of system (3)ā(5) with initial conditions \((S_{0}, I_{0}, R_{0})\), and let \(\mu = \min (\mu _{1}, \mu _{2}, \mu _{3} )\). The compact set
is positively invariant and attracts all solutions in \(\mathbb{R}^{3}_{+}\).
Proof
Let \(W(t) = S (t)+ I (t) + R (t)\). Then from the system (3)ā(5) we have
This implies that
Solving (10), we obtain
where \(W(0)\) is the initial condition. Thus \(0< W(t)<\frac{b}{\mu } \) as t reaches infinity, and hence ĪØ is a positively invariant and attractive set.āā”
3.2 Basic reproduction number
We use the nextgeneration matrix method [24] to calculate the reproduction number \(R_{0}\) of model (3)ā(5):
4 Equilibria
In this section, we consider the number of equilibrium solutions of model (3)ā(5). It is clear that the model has a diseasefree equilibrium given by
The nonfree steady state of model (3)ā(5) can be obtained by setting the right sides to zero. From equations (3)ā(5) we have
Substituting equations ((14) and (15)) into equation (3), we obtain
where \(c_{0}\), \(c_{1}\), \(c_{2}\), and \(c_{3}\) are defined by
If \(R_{0}=1\), then \(c_{0}=0\), so equation (16) reduces to the equation
where \(I= 0\) is the diseasefree equilibrium. By equation (16) the coefficient \(c_{0} > 0\) when \(R_{0} > 1\) and \(c_{0} < 0\) when \(R_{0} < 1\). Thus the number of possible positive real roots depends on the values of \(c_{3}\), \(c_{2}\), and \(c_{1} \). The possible roots analyzed by the Descartes rule of signs are shown in TableĀ 1.
Theorem 2

1.
has a one equilibrium if the basic reproduction number is greater than 1 and Cases 1, 5, and 7 are satisfied;

2.
can have more than one equilibrium if the basic reproduction number is greater than 1 and Case 3 is satisfied;

3.
can have two or more equilibria if the basic reproduction number is less than 1 and Cases 2, 4, and 6 are satisfied.
The existence of multiple steady state suggests the possibility of backward bifurcation where the phenomenon of three branches of steadystate equilibrium occurs at the same point.
5 Stability
In this section, we focus on analysis of the stability of the equilibrium of equations (3)ā(5). We study the stabilities of two types of the disease equilibrium, that is, \(E_{0}\) and \(E_{1}\).
5.1 Local stability of the diseasefree equilibrium
In this section, we study the stability of the free equilibrium \(E_{0}\). The Jacobian matrix of system (3)ā(5) at \(E_{0}\) is
where
The eigenvalues of matrix (19) are given by
A simple calculation shows that \(J_{22}=R_{0}1\). So, we have the following result.
Lemma 1
The free steadystate solution \(E_{0}\) is locally asymptotically stable if \(R_{0} < 1\) and is unstable if \(R_{0} > 1\).
5.2 Stability of equilibria \(E_{1}\)
In this section, we show that the nonfree steadystate solution \(E_{1}\) of system (3)ā(5) is stable under specific condition. The Jacobian of the system can be written as
where
From equation (4) we get the following relations:
By simple analysis we get that the characteristics equation of \(J (E_{1})\) is
where
We further use the RoughāHurtwiz criterion to show the stability of the steady state \(E_{1}\). We have
By the RouthāHurwitz theorem \(E_{1}\) is locally asymptotically stable when \(B_{1} > 0\), \(B_{3} > 0\), and \(B_{1} B_{2}B_{3} > 0\). Theses conditions are satisfied when the following condition holds:
Thus we have following results.
Lemma 2
The steadystate solution \(E_{1}\) of model (3)ā(5) is locally asymptotically if
Theorem 3
The backward bifurcation occurs if \(b_{1}< b_{\mathit{cr}}\), and no backward bifurcation otherwise.
Proof
We show the conditions for the existence of backward bifurcation for system (3)ā(5) using the center manifold approach.
First, making a transformation of variables, we have \(x_{1} = S, x_{2} = I, x_{3} = R\). Then model (3)ā(5) can be written in the form \(\frac{\mathit{dX}}{\mathit{dt}} = F(X) \), where \(F = ( f_{1}, f_{2}, f_{3})\). Hence
Now let \(\beta _{1}=\beta _{1}^{*}\) be the bifurcation parameter. When \(R_{0}=1\), we have the following relation:
and the model equation has one zero eigenvalue, and the other eigenvalues are negative. The behavior of the system near \(\beta _{1}=\beta _{1}^{*}\) can be studied by applied the center manifold theory. The Jacobian matrix at free steady state \(E_{0}\) is
The right eigenvectors can be obtained as \(W = (w_{1}, w_{2}, w_{3})^{T}\), where \((w_{1}, w_{2}, w_{3})^{T}=({ \frac{\alpha _{1} \mu _{3}+\mu _{2}[\gamma _{1}+\mu _{3}]}{\alpha _{1} \mu _{1}}}, {\frac{\mu _{3}+\gamma _{1}}{\alpha _{1}}}, 1 ) \). The left eigenvectors can be obtained as \(V = (v_{1}, v_{2},v_{3}) = (0, 1, 0)\). The existence of backward bifurcation depends on the coefficients a and b in [25, TheoremĀ 4.1]. The nonzero partial derivatives of system (30)ā(32) at diseasefree equilibrium \(E_{0}\) are
The coefficient a is obtained as
The bifurcation parameter b at \(E_{0} \) is given by
and can be obtained as
Clearly, b is always positive. According to [25, TheoremĀ 4.1], the backward bifurcation phenomenon exists when the coefficient a is positive. Thus the condition for backward bifurcation is given by
āā”
The existence of the backward bifurcation at \(R_{0} = 1\) requires condition (44) to be satisfied. When the number of hospital beds \(b_{1}\) is below the critical point \(b_{1,\text{cr}}\), the number of hospital beds open to the public is below demand, and as a result, some patients fail to access to healthcare. In this situation, there remains a high infection leading to a backward bifurcation.
6 Numerical simulations
In this section, we carry out some numerical calculations to support our theoretical results. The values of parameters used for numerical simulations are indicated in TableĀ 2. We study the branch of steady state with respect to the model parameters. FigureĀ 1 shows the curves of the infected population I for different values of \(b_{1}\), donated by the number of hospital beds and a specific value of general incidence rate (\(a_{1}=a_{2}=a_{3}=1\)). It shows that there is a forward bifurcation at \(R_{0} = 1\).
If we decrease the value of \(b_{1}\) from 2 to 1.6, then the backward bifurcation does not occur. These values are higher than the critical value of \(b_{1,\text{cr}}=1.64\). If we decrease the value of \(b_{1}\) to 0.1, less than the critical value \(b_{1,\text{cr}}=1.64\), then we can observe from Fig.Ā 1(a) that the backward bifurcation occurs. Note that in Fig.Ā 1(a) the above line of the curve is a stable state and the below line of the curve is an unstable state. This result indicates that in managing an infectious disease the number of hospital beds plays a significant role. FigureĀ 2 shows the effect of the value of \(b_{1}\) on the curve when the backward bifurcation occurs. We observe that as the value of \(b_{1}\) decreases, the area of the curve increases.
FigureĀ 2 shows the infected population size I as a function of reproduction number \(R_{0}\) when the parameter \(b_{1}\) is varied for the case \(R_{0}<1\). It illustrates that as the value of \(b_{1}\) increases, the infected population size I decreases. It also shows the existence of a backward bifurcation, and the area of backward bifurcation curve decreases as the value \(b_{1}\) increases.
7 The model with fractional derivative
We consider the model with the CaputoāFabrizio fractional derivatives
Here we have \(0<\alpha _{3}<1 \) and
We present the existence of positive solution of the system,
Then
We can similarly show that
Thus for all \(t \in [ 0,t]\), we have that \(S(t),I(t)\), and \(R(t)\) are positive.
7.1 Existence and uniqueness
Here we present the condition under which the system of equations has a unique solution. To achieve this, we have
We will show that, for all \(i=1,2,3\),

(1)
\( f_{i}( x_{i}, t)^{2} \leq k_{i} (x_{i}^{2}+1)\) and

(2)
\( f_{i}( x_{i}, t)f_{i}(x_{i}',t)^{2} \leq k_{i} (x_{i}x_{i}'^{2})\):
where
Therefore, under the condition
the system admits a unique solution.
7.2 Numerical solution
In this section, we present the numerical solution of the equations. We use the numerical scheme of Atangan and Toufiq [26]. To use their scheme, we have
The next step is converting the above to
Following their scheme, we have
FigureĀ 3 shows numerical simulations for different values of fractional order. We observe a slight change in the behavior of curves as the values of fractional order increase.
8 Conclusion
In this paper, we considered the SIR model with general incidence rate function and nonlinear recovery rate to model the spread of disease. The nonlinear recovery rate depends on the influence of health system.
We proved the existence, uniqueness, and boundedness of the model solution. We studied all possible steadystate solutions of the model and details of stability and also derived the reproductive number. The analysis shows that the free steady state is locally stable when the reproductive number is less than unity and unstable otherwise. The model shows the phenomenon of backward bifurcation when \(R_{0}<0\) and the parameter \(b_{1}\) is less than the critical value given by
When the parameter \(b_{1}\) is sufficiently greater that the critical value \(b_{1,\text{cr}}\), the disease infection decreases because the number of hospital beds increases. Therefore, to treat the disease in a community, the hospital resources must be improved.
Finally, we applied the theory of fractional derivatives to the model for different values of fractional orders. We used the numerical technique of Atangan and Toufiq, which is very accurate for solving fractional differential equations.
Availability of data and materials
Not applicable.
References
NdaĆÆrow, F., Area, I., Nieto, J.J., Torres, D.F.M.: Mathematical modeling of COVID19 transmission dynamics with a case study of Wuhan. Chaos Solitons Fractals 135, 109846 (2020)
Mandal, M., Jana, S., Nandi, S.K., Khatua, A., Adak, S., Kar, T.K.: A model based study on the dynamics of COVID19: prediction and control. Chaos Solitons Fractals 136, 109889 (2020)
Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S.S., Wang, M.H., Cai, Y., Wang, W., Yang, L., He, D.: A conceptual model for the coronavirus disease 2019 (COVID19) outbreak in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis. 93, 211ā216 (2020)
Wells, C.R., Sah, P., Moghadas, S.M., Pandey, A., Shoukat, A., Wang, Y., Wang, Z., Meyers, L.A., Singer, B.H., Galvani, A.P.: Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc. Natl. Acad. Sci. USA 117, 7504ā7509 (2020)
Gostic, K., Gomez, A.C.R., Mummah, R.O., Kucharski, A.J., LloydSmith, J.O.: Estimated effectiveness of symptom and risk screening to prevent the spread of COVID19. eLife 9, e55570 (2020)
Chen, Y.C., Lu, P.E., Chang, C.S., Liu, T.H.: A timedependent SIR model for Covid19 with undetectable infected persons (2020). arXiv:2003.00122
Anand, N., Sabarinath, A., Geetha, S., et al.: Predicting the spread of COVID19 using SIR model augmented to incorporate quarantine and testing. Trans Indian Natl. Acad. Eng. 5, 141ā148 (2020)
Nguemdjo, U., Meno, F., Dongfack, A., Ventelou, B.: Simulating the progression of the COVID19 disease in Cameroon using SIR models. PLoS ONE 15, 8 (2020)
Greenhalgh, D., Khan, Q., Lewis, F.: Hopf bifurcation in two SIRS density dependent epidemic models. Math. Comput. Model. 39, 11 (2004)
Tang, Y., Huang, Y., Ruan, S., Zhang, W.: Coexistence of limit cycles and homoclinic loops in a SIRS model with a nonlinear incidence rate. SIAM J. Appl. Math. 69, 2 (2008)
Yakui, X., Tiantian, L.: Stability and Hopf bifurcation for a delayed SIR epidemic model with logistic growth. Abstr. Appl. Anal. 2013, Article ID 916130 (2013)
Tailei, Z., Junli, L., Zhidong, T.: Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure. Nonlinear Anal., Real World Appl. 11, 293ā306 (2010)
Sonal, J.: Numerical analysis for the fractional diffusion and fractional Buckmasterās equation by two step AdamāBashforth method. Eur. Phys. J. Plus 133, 19 (2018)
Abdon, A., Sonal, J.: A new numerical approximation of the fractal ordinary differential equation. Eur. Phys. J. Plus 133, 37 (2018)
Sania, Q., Mokhi, C., Asif Ali, S.: Analysis of series RL and RC circuits with timeinvariant source using truncated M, atangana beta and conformable derivatives. J. Ocean Eng. Sci. (2020)
Zizhen, Z., Sonal, J.: Mathematical model of Ebola and Covid 19 with fractional differential operators: nonMarkovian process and class for virus pathogen in the environment. Chaos Solitons Fractals 140, 110175 (2020)
Ernestine, A., Abdon, A.: Facemasks simple but powerful weapons to protect against COVID19 spread: can they have sides effects?. Results Phys. 19, 103425 (2020)
Rao, F., Mandal, P.S., Kang, Y.: Complicated endemics of an SIRS model with a generalized incidence under preventive vaccination and treatment controls. Appl. Math. Model. 67, 38ā61 (2019)
Shan, C., Zhu, H.: Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Equ. 257, 1662ā1688 (2014)
Cai, Y., Kang, Y., Banerjee, M., Wang, W.: A stochastic SIRS epidemic model with infectious force under intervention strategies. J. Differ. Equ. 259, 7463ā7502 (2015)
Lahrouz, A., Omari, L., Kiouach, D., BelmaĆ¢ti, A.: Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination. Appl. Math. Comput. 218, 6519ā6525 (2012)
Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419ā429 (2007)
Abdelrazec, A., Belair, J., Shan, C., Zhu, H.: Modeling the spread and control of Dengue with limited public health resources. Math. Biosci. 271, 136ā145 (2016)
Driessche, P., Watmough, J.: Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29ā48 (2002)
CastilloChavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361ā404 (2004)
Mekkaoui, T., Abdon, A.: New numerical approximation of fractional derivative with nonlocal and nonsingular kernel: application to chaotic models. Eur. Phys. J. Plus 132, 444 (2017)
Acknowledgements
The author would like to thank the anonymous referees for their valuable suggestions, which have greatly helped in improving the presentation of this paper.
Funding
No funding available.
Author information
Authors and Affiliations
Contributions
The author worked in the derivation of the mathematical results and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleās Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleās Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Alqahtani, R.T. Mathematical model of SIR epidemic system (COVID19) with fractional derivative: stability and numerical analysis. Adv Differ Equ 2021, 2 (2021). https://doi.org/10.1186/s1366202003192w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366202003192w
Keywords
 SIR model
 Stability
 Nonlinear recovery rate
 Hospital bed
 Backward bifurcation
 Fractional model