Theory and Modern Applications

# Oscillation tests for first-order linear differential equations with non-monotone delays

## Abstract

We study the oscillation of a first-order linear delay differential equation. A new technique is developed and used to obtain new oscillatory criteria for differential equation with non-monotone delay. Some of these results can improve many previous works. An example is introduced to illustrate the effectiveness and applicability of our results.

## 1 Introduction

Consider the first-order linear delay differential equation

$$x'(t)+p(t)x\bigl(\tau (t)\bigr)=0,\quad t\geq t_{0},$$
(1)

where $$p, \tau \in C([t_{0},\infty ),[0,\infty ))$$, $$\tau (t)\leq t$$, such that $$\lim_{t \rightarrow \infty } \tau (t)=\infty$$.

By a solution of Eq.Â (1) we mean a continuous function $$x(t)$$ on $$[t_{*}, t_{0}]$$, $$t_{*}=\inf_{t \geq t_{0}}\tau (t)$$, continuously differentiable on $$[t_{0}, \infty )$$, which satisfies Eq.Â (1) for all $$t \in (t_{0}, \infty )$$. As is customary, any solution $$x(t)$$ of Eq.Â (1) is called oscillatory if it has arbitrarily large zeros; otherwise it is called non-oscillatory. Equation (1) is said to be oscillatory if all its solutions are oscillatory; otherwise it is called non-oscillatory.

Throughout this work, we assume that the function $$\delta (t)$$ is non-decreasing, continuous, and such that $$\tau (t) \leq \delta (t) \leq t$$ for all $$t \geq t_{1}$$ and some $$t_{1}\geq t_{0}$$, and $$\delta ^{n}(t)$$ stands for the n-fold composition of $$\delta (t)$$. Let

$$\psi (t)= \sup_{s \leq t} \tau (s),\quad t\geq t_{0},$$
(2)

and

$$c(v)=\frac{1-v -\sqrt{1-2v -{v}^{2}}}{2},\quad 0\leq v \leq \frac{1}{\mathrm{e}}.$$

Also, the notation $$\lambda (\xi )$$ refers to the smaller real root of the transcendental equation $$\lambda = {\mathrm{e}}^{\lambda \xi }$$. Finally, let

$$k^{*}=\liminf_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) \,ds.$$

The work of Myshkis [27] can be considered as the first systematic study for the oscillation character of the class of the delay differential equations. Recently, these equations have attracted the interest of several researchers, see [1â€“31]. A huge number of sufficient conditions for the oscillation of Eq.Â (1) have been obtained. For example, the criteria

\begin{aligned} & L:=\limsup_{t\rightarrow \infty } \int _{\tau (t)}^{t} p(u) \,du>1,\quad \text{where \tau (t) is non-decreasing,} \end{aligned}
(3)
\begin{aligned} & k:=\liminf_{t\rightarrow \infty } \int _{\tau (t)}^{t} p(u) \,du> \frac{1}{e}, \end{aligned}
(4)

were derived respectively in [26] and [23]. In fact, the threshold $$\frac{1}{e}$$ is of great importance for the oscillation problem of Eq.Â (1). Since, according to [23], if

$$\int _{\tau (t)}^{t} p(u) \,du\leq \frac{1}{e},$$

then there exists a non-oscillatory solution of Eq.Â (1). Indeed, the oscillation problem of Eq.Â (1) is completely solved when the coefficient and the delay functions are constants p and Ï„, respectively. In this case all solutions are oscillatory if and only if $$p \tau > \frac{1}{e}$$; but in the non-autonomous case, the situation is totally different. There is a gap between $$\frac{1}{e}$$ and 1, when the limit $$\lim_{t \rightarrow \infty } \int _{\tau (t)}^{t}p(u)\,du$$ does not exist. Many works have been done to fill this gap in the case of nondecreasing delays, $$L\leq 1$$ and $$0\leq k\leq \frac{1}{e}$$, see [22, 28] and the references therein. The assumption that the delay is nondecreasing plays a major role in these works. Koplatadze and Kvinikadze [24] showed that many oscillatory criteria can be generalized to equations with non-monotone delay, using a nondecreasing function $$\psi (t)$$ that is defined as in (2). Since then, several mathematicians have developed and introduced many techniques to study the oscillatory behaviour of these equations. In the following, we show some of these results:

Koplatadze and Kvinikadze [24] improved condition (3) and introduced the sufficient condition

$$\limsup_{t\rightarrow \infty } \int _{\psi (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\psi (s)}^{\psi (t)} p(u) \Phi _{n}(u) \,du} \,ds>1-c(k),$$
(5)

where

$$\Phi _{1}(t)=0,\qquad \Phi _{n}(t)={\mathrm{e}}^{\int _{\tau (t)}^{t} p(s) \Phi _{n-1}(s) \,ds},\quad n=2,3,\dots, \text{ for t \geq t_{0}.}$$

Braverman and Karpuz [4] improved (5) with $$n=2$$, and obtained

$$\limsup_{t\rightarrow \infty } \int _{{\psi }(t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\psi (t)} p(u) \,du} \,ds>1.$$
(6)

Stavroulakis [29] improved the preceding condition and established

$$\limsup_{t\rightarrow \infty } \int _{\psi (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\psi (t)} p(u) \,du} \,ds>1- \frac{1-k-\sqrt{1-2k-{k}^{2}}}{2}.$$
(7)

Infante et al. [21] improved (5) with $$n=3$$, and (6), and proved that Eq.Â (1) is oscillatory if

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} p(u) {\mathrm{e}}^{\int _{\tau (u)}^{u} p(v) \,dv} \,du} \,ds>1,$$
(8)

or

$$\limsup_{\epsilon \rightarrow 0^{+}} \biggl(\limsup_{t \rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ ( \lambda (k)-\epsilon )\int _{\tau (s)}^{\delta (t)} p(u) \,du} \,ds \biggr)>1.$$
(9)

El-Morshedy and Attia [17] showed that Eq.Â (1) is oscillatory, if for some $$n \in \mathbb{N}$$,

$$\limsup_{t\rightarrow \infty } \biggl( \int _{\delta (t)}^{t} B_{n}(s) \,ds +c \bigl(k^{*}\bigr) {\mathrm{e}}^{\int _{\delta (t)}^{t} \sum _{i=0}^{n-1} B_{i}(s) \,ds } \biggr)>1,$$
(10)

where

$$B_{0}(t)= p(t),\qquad B_{1}(t)=B_{0}(t) \int _{\tau (t)}^{t} B_{0}(s){ \mathrm{e}}^{\int _{\tau (s)}^{t}B_{0}(u)\,du} \,ds,$$

and

$$B_{n}(t)=B_{n-1}(t) \int _{\delta (t)}^{t} B_{n-1}(s){ \mathrm{e}}^{\int _{ \delta (s)}^{t}B_{n-1}(u)\,du} \,ds,\quad n=2,3,\dots.$$

In a series of papers, Chatzarakis et al. obtained many oscillatory results for Eq.Â (1), see [5â€“15]. For example, Chatzarakis [5] improved (5) with $$n=3$$, and (6), and obtained the oscillatory condition

$$\limsup_{t\rightarrow \infty } \int _{h(t)}^{t} p(s) {\mathrm{e}}^{\int _{ \tau (s)}^{h(t)} p(u) M_{n}(u) \,du} \,ds >1-c(k),$$
(11)

where

$$M_{n}(t)=p(t) \biggl[ 1+ \int _{\tau (t)}^{t} p(s){\mathrm{e}}^{\int _{ \tau (s)}^{\delta (t)} M_{n-1}(u) \,du} \,ds \biggr],\qquad M_{0}(t)=p(t).$$

Bereketoglu et al. [3] improved (11), and proved that Eq.Â (1) oscillates if there exists $$n\in \mathbb{N}$$ such that

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} P_{n}(u) \,du} \,ds > \textstyle\begin{cases} 1\quad \text{or} \\ 1-c(k^{*}), \end{cases}$$
(12)

where

\begin{aligned} &P_{0}(t)=p(t) \\ &P_{n}(t)=p(t) \biggl[ 1+ \int _{\delta (t)}^{t} p(s){\mathrm{e}}^{\int _{ \tau (s)}^{t} P_{n-1}(u)\,du} \,ds \biggr],\quad n=1,2,\dots. \end{aligned}

Very recently, Attia, El-Morshedy and Stavroulakis [2] improved (9) and (12), and introduced the following criterion:

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} p(u) R_{m,n}(u) \,du}\,ds > 1-c\bigl(k^{*}\bigr),$$
(13)

for some $$n,m\in \mathbb{N}$$, where

\begin{aligned} &R_{m,n}(t)=1+ \int _{\tau (t)}^{t} p(s){\mathrm{e}}^{\int _{\tau (s)}^{t} p(u) D_{m-1,n}(u) \,du } \,ds, \\ &D_{i,j}(t)={\mathrm{e}}^{\int _{\tau (t)}^{t} p(s) D_{i,j-1}(s)\,ds},\quad i=1, 2,\ldots,m-1, j=1,2, \ldots,n, \end{aligned}

and

\begin{aligned} &D_{0,0}(t)= \bigl(\lambda \bigl(k^{*}\bigr)- \epsilon \bigr) \biggl(1+ \bigl(\lambda \bigl(k^{*}\bigr)-\epsilon \bigr) \int _{\tau (t)}^{\delta (t)} p(s) \,ds \biggr),\quad \epsilon \in \bigl(0, \lambda \bigl(k^{*}\bigr)\bigr), \\ &D_{0,r}(t)={\mathrm{e}}^{\int _{\tau (t)}^{t} p(s) D_{0,r-1}(s)\,ds},\quad r=1, 2,\ldots,n, \\ &D_{i,0}(t)= R_{i,n}(t),\quad i=1,2,\ldots,m-1. \end{aligned}

## 2 Results

Let $$x(t)$$ be an eventually positive solution of Eq.Â (1). Then

$$x'(t)+p(t) x\bigl(\delta (t)\bigr)\leq 0,\quad t\geq t_{1}.$$
(14)

Therefore the following lemmas are applicable to $$x(t)$$.

### Lemma 2.1

([19, LemmaÂ 2.1.2])

Let $$0< k\leq \frac{1}{\mathrm{e}}$$. Then

$$\liminf_{t\rightarrow \infty }\frac{x(\delta (t))}{x(t)}\geq \lambda \bigl(k^{*}\bigr).$$
(15)

### Lemma 2.2

([31])

Let $$k\leq \frac{1}{\mathrm{e}}$$. Then

$$\liminf_{t\rightarrow \infty }\frac{x(t)}{x(\delta (t))}\geq c \bigl(k^{*}\bigr).$$
(16)

In the sequel, we define the sequences $$\{Q_{n}(t)\}_{n=0}^{\infty }$$ and $$\{\beta _{n}(t)\}_{n=1}^{\infty }$$ as follows:

\begin{aligned} &Q_{0}(t)= \textstyle\begin{cases} 1,& k^{*}=0, \\ \lambda (k^{*})-\epsilon,& k^{*}>0, \epsilon \in (0, \lambda (k^{*})), \end{cases}\displaystyle \\ &\beta _{1}(t)= \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{ \delta (t)} p(v) Q_{0}(v) \,dv} \,ds_{1},\qquad Q_{1}(t)= \frac{1}{1-\beta _{1}(t)}, \\ &\beta _{2}(t)= \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}+Q_{1}\bigl( \delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2}){ \mathrm{e}}^{\int _{\tau (s_{2})}^{\delta ^{2}(t)} p(v) Q_{1}(v) \,dv} \,ds_{2} \,ds_{1},\\ &Q_{2}(t)= \frac{1}{1- \beta _{2}(t)}, \end{aligned}

and

\begin{aligned} \beta _{n}(t) ={}& \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}+ Q_{{n-1}}\bigl( \delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2}) \,ds_{2} \,ds_{1}+\cdots \\ &{} +\prod_{i=2}^{n-1} \bigl(Q_{n-1} \bigl(\delta ^{i-1}(t)\bigr) \bigr) \int _{ \delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{\delta (t)} p(s_{2}) \dots \int _{\tau (s_{n-2})}^{\delta ^{n-2}(t)} p(s_{n-1}) \,ds_{n-1} \cdots ds_{1} \\ &{}+\prod_{i=2}^{n} \bigl(Q_{n-1} \bigl(\delta ^{i-1}(t)\bigr) \bigr) \\ &{}\times \int _{ \delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{\delta (t)} p(s_{2}) \dots \int _{\tau (s_{n-1})}^{\delta ^{n-1}(t)} p(s_{n}) { \mathrm{e}}^{ \int _{\tau (s_{n})}^{\delta ^{n}(t)} p(v) Q_{n-1}(v) \,dv} \,ds_{n} \cdots ds_{1}, \\ Q_{n}(t)={}&\frac{1}{1-\beta _{n}(t)},\quad n=3,4,\dots. \end{aligned}

The following lemma is essential in order to obtain the main results.

### Lemma 2.3

Let $$n \in \{0,1,2,\dots \}$$ and $$k\leq \frac{1}{\mathrm{e}}$$. Then $$\beta _{n}<1$$, and

$$\frac{x(\tau (t))}{x(t)}\geq Q_{n}(t)\quad \textit{for all sufficiently large }t,$$

where $$x(t)$$ is a positive solution of Eq.Â (1).

### Proof

Since $$x(t)$$ is a positive solution of Eq.Â (1), then $$x(t)$$ is eventually non-increasing for all sufficiently large t. Therefore

$$x'(t)+p(t) x\bigl(\delta (t)\bigr) \leq 0.$$

If $$k^{*}>0$$, then LemmaÂ 2.1 implies, for sufficiently small $$\epsilon >0$$, that

$$\frac{x(\tau (t))}{x(t)} \geq \frac{x(\delta (t))}{x(t)} \geq \lambda \bigl(k^{*} \bigr)-\epsilon.$$

This inequality and the non-increasing nature of $$x(t)$$ lead to

$$\frac{x(\delta (t))}{x(t)} \geq Q_{0}(t).$$
(17)

On the other hand, dividing Eq.Â (1) by $$x(t)$$, integrating from s to t, $$s \leq t$$, we get

$$x (s )=x(t) {\mathrm{e}}^{\int _{s}^{t} p(u) \frac{x (\tau (u) )}{x(u)} \,du}.$$
(18)

Integrating Eq.Â (1) from $$\delta (t)$$ to t, we obtain

$$x(t)-x\bigl(\delta (t)\bigr)+ \int _{\delta (t)}^{t} p(s_{1}) x\bigl(\tau (s_{1})\bigr) \,ds_{1}=0.$$
(19)

Since $$\tau (s_{1})\leq \delta (t)$$ for $$s_{1}\leq t$$, (18) and (19) give

$$x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{\delta (t)} p(u) \frac{x (\tau (u) )}{x(u)} \,du} \,ds_{1}=0.$$
(20)

This equation and (17) lead to

$$x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{\delta (t)} p(u) Q_{0}(u) \,du} \,ds_{1} \leq 0.$$

Consequently,

$$\frac{x(\tau (t))}{x(t)} \geq \frac{x(\delta (t))}{x(t)} \geq \frac{1}{1-\beta _{1}(t)} =Q_{1}(t).$$
(21)

Again, integrating Eq.Â (1) form $$\tau (s_{1})$$ to $$\delta (t)$$, $$s_{1} \leq t$$, we obtain

$$x\bigl(\tau (s_{1})\bigr)=x\bigl(\delta (t)\bigr)+ \int _{\tau (s_{1})}^{\delta (t)} p(s_{2}) x\bigl(\tau (s_{2})\bigr) \,ds_{2}.$$

Substituting into (19), we have

$$x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}+ \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{\delta (t)} p(s_{2}) x\bigl(\tau (s_{2})\bigr) \,ds_{2} \,ds_{1}=0.$$

From this and (18), we obtain

\begin{aligned} &x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}\\ &\quad{}+x\bigl( \delta ^{2}(t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2}) { \mathrm{e}}^{\int _{\tau (s_{2})}^{\delta ^{2}(t)} p(v) \frac{x (\tau (v) )}{x(v)} \,dv} \,ds_{2} \,ds_{1}=0. \end{aligned}

Therefore, it follows from (21) that

\begin{aligned} &x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}\\ &\quad{}+x\bigl( \delta (t)\bigr) Q_{1}\bigl(\delta (t) \bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{ \tau (s_{1})}^{\delta (t)} p(s_{2}) { \mathrm{e}}^{\int _{\tau (s_{2})}^{ \delta ^{2}(t)} p(v) Q_{1}(v) \,dv} \,ds_{2} \,ds_{1}\leq 0. \end{aligned}

Therefore

$$\frac{x(\delta (t))}{x(t)} \geq \frac{1}{1-\beta _{2}(t)} =Q_{2}(t).$$

By simple induction, we get

\begin{aligned} x\bigl(\delta (t)\bigr)={}&x(t)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \,ds_{1}+x\bigl( \delta ^{2}(t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2}) \,ds_{2} \,ds_{1}+\cdots \\ &{}+x\bigl(\delta ^{n-1}(t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2})\dots \int _{\tau (s_{n-2})}^{\delta ^{n-2}(t)} p(s_{n-1}) \,ds_{n-1} \cdots ds_{1} \\ &{}+x\bigl(\delta ^{n}(t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) \int _{\tau (s_{1})}^{ \delta (t)} p(s_{2})\dots \int _{\tau (s_{n-1})}^{\delta ^{n-1}(t)} p(s_{n}) { \mathrm{e}}^{\int _{\tau (s_{n})}^{\delta ^{n}(t)} p(v) \frac{x (\tau (v) )}{x(v)} \,dv} \,ds_{n} \cdots ds_{1}=0, \end{aligned}
(22)

for $$n=3,4,\dots$$. Since

$$x\bigl(\delta ^{i}(t)\bigr)=\frac{x(\delta ^{i}(t))}{x(\delta ^{i-1}(t))} \cdots \frac{x(\delta ^{2}(t))}{x(\delta (t))} x\bigl(\delta (t)\bigr),\quad i=3,4, \dots,n,$$

we get

$$x\bigl(\delta ^{i}(t)\bigr)= x\bigl(\delta (t)\bigr) \prod _{j=2}^{i} Q_{n-1}\bigl(\delta ^{j-1}(t)\bigr),\quad i=3,4,\dots,n.$$

Substituting into (22), we obtain

$$\frac{x(\delta (t))}{x(t)}\geq \frac{1}{1-\beta _{n}(t)}=Q_{n}(t),\quad n=3,4,\dots.$$

â€ƒâ–¡

### Theorem 2.1

Let $$n \in \{0,1,2,\dots \}$$. If $$\beta _{i}\geq 1$$, $$i=1,2,\dots,n$$, or

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} p(u) Q_{n}(u) \,du} \,ds > 1-c\bigl(k^{*}\bigr),$$
(23)

then Eq.Â (1) is oscillatory.

### Proof

Assume that Eq.Â (1) has a non-oscillatory solution $$x(t)$$. Without loss of generality, let $$x(t)$$ be an eventually positive solution. By using (20), we obtain

$$x(t)-x\bigl(\delta (t)\bigr)+x\bigl(\delta (t)\bigr) \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{\delta (t)} p(u) \frac{x (\tau (u) )}{x(u)} \,du} \,ds_{1}=0.$$

Using LemmaÂ 2.2, it follows that

$$\int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{ \delta (t)} p(u) Q_{n}(u) \,du} \,ds_{1} \leq 1- \frac{x(t)}{x(\delta (t)) }.$$

From this and LemmaÂ 2.2, we obtain

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (t)} p(u) Q_{n}(u) \,du} \,ds_{1}\leq 1-c\bigl(k^{*}\bigr).$$

### Theorem 2.2

Assume that $$n \in \{0,1,2,\dots \}$$ and $$\delta (t)$$ is a strictly increasing for $$t \geq t_{1}$$. If $$\beta _{i} \geq 1$$, $$i=1,2,\dots,n$$, or

$$\limsup_{t\rightarrow \infty } \biggl( \frac{\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}}+ \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{ \delta (t)} p(u) Q_{n}(u) \,du} \,ds_{1} \biggr)> 1,$$
(24)

then Eq.Â (1) is oscillatory.

### Proof

Assume that there exists a positive solution $$x(t)$$ of Eq.Â (1). From the proof of TheoremÂ 2.1, we see that

$$\frac{x(t)}{x(\delta (t))}+ \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (t)} p(u) Q_{n}(u) \,du} \,ds_{1}\leq 1.$$
(25)

Integrating Eq.Â (1) from t to $$\delta ^{-1}(t)$$, we have

$$x\bigl(\delta ^{-1}(t)\bigr)-x(t)+ \int _{t}^{\delta ^{-1}(t)} p(s_{1}) x\bigl(\tau (s_{1})\bigr) \,ds_{1}=0.$$
(26)

Since $$t \geq \tau (s_{1})$$ for $$\delta ^{-1}(t) \geq s_{1}$$, one has

$$x\bigl(\tau (s_{1})\bigr)= x(t)+ \int _{\tau (s_{1})}^{t} p(s_{2}) x\bigl(\tau (s_{2})\bigr) \,ds_{2}.$$

From this, (26) and the non-increasing nature of $$x(t)$$, we have

$$x\bigl(\delta ^{-1}(t)\bigr)-x(t)+x(t) \int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}+x\bigl( \delta (t)\bigr) \int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1} \leq 0,$$

$$\frac{x(t)}{x(\delta (t)} \geq \frac{\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}}.$$

By substituting into (25), we have

$$\frac{\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}}+ \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{ \delta (t)} p(u) Q_{n}(u) \,du} \,ds_{1} \leq 1.$$

Taking the upper limits of both sides as t goes to âˆž, we obtain a contradiction with (24).â€ƒâ–¡

### Theorem 2.3

Let $$n \in \{0,1,2,\dots \}$$. If $$\beta _{i}\geq 1$$, $$i=1,2,\dots,n$$, or

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} \frac{p(s_{1}){\mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du}}{1-\int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) {\mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du} \,ds_{2}} \,ds_{1} > 1-c\bigl(k^{*}\bigr).$$
(27)

then Eq.Â (1) is oscillatory.

### Proof

As before, let $$x(t)$$ be a positive solution of Eq.Â (1). Then

$$x(t)-x\bigl(\delta (t)\bigr)+ \int _{\delta (t)}^{t} p(s_{1}) x\bigl(\tau (s_{1})\bigr) \,ds_{1}=0.$$
(28)

By using (17), from the proof of TheoremÂ 2.3, we have

$$x(t)-x\bigl(\delta (t)\bigr)+ \int _{\delta (t)}^{t} p(s_{1}) x\bigl(\delta (s_{1})\bigr) { \mathrm{e}}^{\int _{\tau (s_{1})}^{\delta (s_{1})} p(u) \frac{x (\tau (u) )}{x(u)} \,du} \,ds_{1}=0.$$
(29)

Integrating Eq.Â (1) form $$\delta (s_{1})$$ to $$\delta (t)$$, $$s_{1} \leq t$$, we get

$$x\bigl(\delta (t)\bigr)-x\bigl(\delta (s_{1})\bigr)+ \int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) x(\tau (s_{2}) \,ds_{2}=0.$$
(30)

Since $$\tau (s_{2}) \leq \delta (s_{1})$$ for $$s_{2} \leq s_{1}$$, it follows from (17) and (30) that

$$x\bigl(\delta (t)\bigr)-x\bigl(\delta (s_{1})\bigr)+x\bigl(\delta (s_{1})\bigr) \int _{\delta (s_{1})}^{ \delta (t)} p(s_{2}) { \mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) \frac{x (\tau (u) )}{x(u)} \,du} \,ds_{2}=0,$$

that is,

$$x\bigl(\delta (s_{1})\bigr) = \frac{x(\delta (t))}{1-\int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) {\mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) \frac{x (\tau (u) )}{x(u)} \,du} \,ds_{2}}.$$

From this, (29) and LemmaÂ 2.3, we have

$$\int _{\delta (t)}^{t} \frac{p(s_{1}){\mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du}}{1-\int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) {\mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du} \,ds_{2}} \,ds_{1} \leq 1-\frac{x(t)}{x(\delta (t))}.$$

This, together with LemmaÂ 2.2, implies that

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} \frac{p(s_{1}){\mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du}}{1-\int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) {\mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du} \,ds_{2}} \,ds_{1} \leq 1-c\bigl(k^{*}\bigr).$$

The proof of the following result is the same as those of Theorems 2.1 and 2.2, and hence it will be omitted.

### Theorem 2.4

Let $$n \in \{0,1,2,\dots \}$$ and $$\delta (t)$$ be strictly increasing for $$t \geq t_{1}$$. If $$\beta _{i} \geq 1$$, $$i=1,2,\dots,n$$, or

\begin{aligned} &\limsup_{t\rightarrow \infty } \biggl( \frac{\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}}+ \int _{\delta (t)}^{t} \frac{p(s_{1}){\mathrm{e}}^{ \int _{\tau (s_{1})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du}}{1-\int _{\delta (s_{1})}^{\delta (t)} p(s_{2}) {\mathrm{e}}^{\int _{\tau (s_{2})}^{\delta (s_{1})} p(u) Q_{n}(u) \,du} \,ds_{2}} \,ds_{1} \biggr) \\ &\quad > 1. \end{aligned}
(31)

then Eq.Â (1) is oscillatory.

### Remark 2.1

• The criterion (23) improves conditions (5) with $$n=2$$, (6), (7), and (9) when $$k=0$$.

• LemmaÂ 2.3 can be used to improve and generalize the oscillation results of [30, LemmaÂ 2.1], [16, TheoremÂ 2.6] and [18, LemmaÂ 2.5].

### Example 2.1

Consider the first order delay differential equation

$$x'(t)+p(t)x\bigl(\tau (t)\bigr)=0,\quad t \geq 2,$$
(32)

where

$$\tau (t)=t-1-\zeta \cos ^{2} \biggl( \frac{\nu \pi (2t+1 )}{2} \biggr),\quad \nu =10,000, \zeta =0.0001,$$

and

$$p(t):= \textstyle\begin{cases} 0, &t \in [\xi _{i}, \mu _{i} ], \\ \gamma (t-\mu _{i} ), &t \in [\mu _{i}, \mu _{i}+1 ], \\ \gamma, &t \in [\mu _{i}+1, \mu _{i}+9 ], \\ \frac{\gamma (t-\xi _{i+1} )}{\mu _{i}+9-\xi _{i+1}}, & t \in [\mu _{i}+ 9, \xi _{i+1} ], \end{cases}$$

where $$i, \mu _{i}\in \mathbb{N}$$, $$\gamma =0.4195$$, $$\xi _{1} \geq 0$$, $$\mu _{i} > 1+\xi _{i}$$, and $$\xi _{i+1}>\mu _{i}+9$$ such that $$\lim_{i\rightarrow \infty } \xi _{i}=\infty$$. Since

$$0 \leq \liminf_{t\rightarrow \infty } \int _{\tau (t)}^{t} p(s) \,ds \leq \lim _{i\rightarrow \infty } \int _{\tau (\mu _{i})}^{\mu _{i}} p(s) \,ds= \lim_{i\rightarrow \infty } \int _{\mu _{i}-1}^{\mu _{i}} p(s) \,ds =0,$$

one has $$k=k^{*}=0$$, and it follows that conditions (4), (9) and (13) fail to apply. Let $$\delta (t)=t-1$$ and

$$I(t)= \frac{\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \int _{\tau (s_{1})}^{t} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{t}^{\delta ^{-1}(t)} p(s_{1}) \,ds_{1}}+ \int _{\delta (t)}^{t} p(s_{1}) { \mathrm{e}}^{\int _{\tau (s_{1})}^{ \delta (t)} p(u) Q_{2}(u) \,du} \,ds_{1}.$$

Since

$$I(\mu _{i}+8)\geq \frac{\int _{\mu _{i}+8}^{\mu _{i}+9} p(s_{1}) \int _{s_{1}-1}^{\mu _{i}+8} p(s_{2}) \,ds_{2} \,ds_{1}}{1-\int _{\mu _{i}+8}^{\mu _{i}+9} p(s_{1}) \,ds_{1}}+ \int _{\mu _{i}+7}^{\mu _{i}+8} p(s_{1}) { \mathrm{e}}^{\int _{s_{1}-1}^{ \mu _{i}+7} p(u) Q_{2}(u) \,du} \,ds_{1}.$$

Then

$$Q_{2}(u)=\frac{1}{1- \beta _{2}(u)},\quad \mu _{i}+6 \leq u \leq \mu _{i}+7,$$

and

$$\beta _{2}(u) \geq \int _{u-1}^{u} p(s_{1}) \,ds_{1}+Q_{1}(u-1) \int _{u-1}^{u} p(s_{1}) \int _{s_{1}-1}^{u-1} p(s_{2}){ \mathrm{e}}^{\int _{s_{2}-1}^{u-2} p(v) Q_{1}(v) \,dv} \,ds_{2} \,ds_{1},$$

where $$\mu _{i}+3 \leq v \leq \mu _{i}+5$$, also

$$Q_{1}(v)=\frac{1}{1-\beta _{1}(v)}$$

and

$$\beta _{1}(v) \geq \int _{v-1}^{v} p(s_{1}) { \mathrm{e}}^{\int _{s_{1}-1}^{v-1} p(r) Q_{0}(r) \,dr} \,ds_{1},\quad \mu _{i}+1 \leq r \leq \mu _{i}+4.$$

Then

$$\beta _{1}(v) \geq \int _{v-1}^{v} \gamma {\mathrm{e}}^{ \gamma (v-s_{1} ) } = {\mathrm{e}}^{ \gamma }-1 \quad\text{and}\quad Q_{1}(v) \geq \frac{1}{2-{\mathrm{e}}^{ \gamma }},$$

also

$$Q_{2}(u) \geq \frac{A}{A-{\mathrm{e}}^{\gamma A}+1}, \quad A= \frac{1}{2-{\mathrm{e}}^{ \gamma }}.$$

Therefore $$I(\mu _{i}+8)>1.0002$$. As a consequence, $$\limsup_{t\rightarrow \infty }I(t)>1$$, and hence TheoremÂ 2.2 implies that Eq.Â (32) is oscillatory. However, if we assume that $$\delta (t)=\psi (t)$$ (which is defined as in (2)), then

$$t-1-\zeta \leq \tau (t) \leq \delta (t) \leq t-1.$$

Consequently, $$\int _{\tau (t)}^{t} p(s) \,ds\leq (1+\zeta )\gamma$$. Then, $$\Phi _{8}(t)< 3.363136$$, and it follows that

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} p(u) \Phi _{8}(u) \,du}\,ds \leq \limsup_{t \rightarrow \infty } \int _{t-1-\zeta }^{t} \gamma {\mathrm{e}}^{\int _{s-1- \zeta }^{t-1} \gamma \Phi _{8}(u) \,du} \,ds< 1.$$

Therefore, none of conditions (5) with $$n=8$$ or (6)âˆ’(8) hold. Also, since

$$\limsup_{t\rightarrow \infty } \biggl( \int _{\delta (t)}^{t} B_{2}(s) \,ds +c \bigl(k^{*}\bigr) {\mathrm{e}}^{\int _{\delta (t)}^{t} \sum _{r=0}^{1} B_{r}(s) \,ds } \biggr) \leq \limsup _{t\rightarrow \infty } \int _{t-1-\zeta }^{t} B_{2}(s) \,ds < 0.18315< 1,$$

condition (10) with $$n=2$$ fails to apply. Finally,

$$\limsup_{t\rightarrow \infty } \int _{\delta (t)}^{t} p(s) {\mathrm{e}}^{ \int _{\tau (s)}^{\delta (t)} P_{3}(u) \,du} \,ds < \limsup_{t \rightarrow \infty } \int _{t-1-\zeta }^{t} \gamma {\mathrm{e}}^{1.2115\int _{s-1- \zeta }^{t-1} \gamma du} \,ds< 0.817< 1,$$

hence, condition (12) with $$n=3$$ is not satisfied.

## 3 Conclusion

In this work, we obtained new oscillatory criteria for Eq.Â (1), using improved lower bounds for the quantity $$\frac{x(\tau (u))}{x(t)}$$, where $$x(t)$$ is any positive solution of Eq.Â (1). Some of the obtained results improve many previous works. Finally, we introduced an example to demonstrate the simplicity and efficiency of some of our results, especially when $$k=0$$.

## Availability of data and materials

No datasets were generated during this work.

## References

1. Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Non-Oscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)

2. Attia, E.R., El-Morshedy, H.A., Stavroulakis, I.P.: Oscillation criteria for first order differential equations with non-monotone delays. Symmetry 12, 718 (2020)

3. Bereketoglu, H., Karakoc, F., Oztepe, G.S., Stavroulakis, I.P.: Oscillation of first order differential equations with several non-monotone retarded arguments. Georgian Math. J. 27, 341â€“350 (2020)

4. Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218, 3880â€“3887 (2011)

5. Chatzarakis, G.E.: On oscillation of differential equations with non-monotone deviating arguments. Mediterr. J. Math. 14, 17 (2017)

6. Chatzarakis, G.E.: An oscillation criterion in delay differential equations. Gen. Lett. Math. 5, 1â€“6 (2018)

7. Chatzarakis, G.E.: Oscillations of equations caused by several deviating arguments. Opusc. Math. 39, 321â€“353 (2019)

8. Chatzarakis, G.E.: Oscillation test for linear deviating differential equations. Appl. Math. Lett. 98, 352â€“358 (2019)

9. Chatzarakis, G.E.: Oscillation of deviating differential equations. Math. Bohem. 145, 435â€“448 (2020)

10. Chatzarakis, G.E., JadlovskÃ¡, I.: Improved iterative oscillation tests for first-order deviating differential equations. Opusc. Math. 38, 327â€“356 (2018)

11. Chatzarakis, G.E., JadlovskÃ¡, I.: Oscillations in deviating differential equations using an iterative method. Commun. Math. 27, 143â€“169 (2019)

12. Chatzarakis, G.E., JadlovskÃ¡, I.: Oscillations in differential equations caused by non-monotone arguments. Nonlinear Stud. 27, 589â€“607 (2020)

13. Chatzarakis, G.E., JadlovskÃ¡, I., Li, T.: Oscillations of differential equations with non-monotone deviating arguments. Adv. Differ. Equ. 2019, 20 (2019)

14. Chatzarakis, G.E., Li, T.: Oscillations of differential equations generated by several deviating arguments. Adv. Differ. Equ. 2017, 24 (2017)

15. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with non-monotone arguments. Complexity 2018, 18 (2018)

16. El-Morshedy, H.A.: On the distribution of zeros of solutions of first order delay differential equations. Nonlinear Anal. 74, 3353â€“3362 (2011)

17. El-Morshedy, H.A., Attia, E.R.: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett. 54, 54â€“59 (2016)

18. El-Morshedy, H.A., Attia, E.R.: On the distance between adjacent zeros of solutions of first order differential equations with distributed delays. Electron. J. Qual. Theory Differ. Equ. 2016, 8 (2016)

19. Erbe, L.H., Zhang, B.G.: Oscillation for first order linear differential equations with deviating arguments. Differ. Integral Equ. 1, 305â€“314 (1988)

20. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991)

21. Infante, G., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria for differential equations with several retarded arguments. Funkc. Ekvacioj 58, 347â€“364 (2015)

22. Kon, M., Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for delay equations. Proc. Am. Math. Soc. 128, 2989â€“2997 (2000)

23. Koplatadze, R.G., Chanturija, T.A.: On oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differ. Uravn. 18, 1463â€“1465 (1982) (in Russian)

24. Koplatadze, R.G., Kvinikadze, G.: On the oscillation of solutions of first order delay differential inequalities and equations. Georgian Math. J. 1, 675â€“685 (1994)

25. Ladas, G.: Sharp conditions for oscillations caused by delays. Appl. Anal. 9, 93â€“98 (1979)

26. Ladas, G., Lakshmikantham, V., Papadakis, L.S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. In: Delay and Functional Differential Equations and Their Applications. Academic Press, New York (1972)

27. Myshkis, A.D.: Linear homogeneous differential equations of first order with deviating arguments. Usp. Mat. Nauk 5, 160â€“162 (1950) (Russian)

28. Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for first-order delay equations. Bull. Lond. Math. Soc. 35, 239â€“246 (2003)

29. Stavroulakis, I.P.: Oscillation criteria for delay and difference equations with non-monotone arguments. Appl. Math. Comput. 226, 661â€“672 (2014)

30. Wu, H.W., Erbe, L., Peterson, A.C.: Upper bounds for the distances between consecutive zeros of solutions of first order delay differential equations. J. Math. Anal. Appl. 229, 562â€“575 (2015)

31. Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z.: Oscillations of differential equations with deviating arguments. Panam. Math. J. 2, 59â€“78 (1992)

## Acknowledgements

The author would like to express his deep thanks to Prof. Hassan. A. El-Morshedy for his help and suggestions . Also the author would like to express his gratitude to the anonymous referees for their help in improving the manuscript.

## Funding

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project 2020/01/16630.

## Author information

Authors

### Contributions

The author declares that this work was done by the author alone. Author read and approved the final manuscript.

## Ethics declarations

### Competing interests

The author declares that they have no competing interests.

### Abbreviations

$$\delta ^{n}(t)$$ stands for the n-fold composition of $$\delta (t)$$; $$\mathbb{N}$$ denotes the set of natural numbers.

## Rights and permissions

Reprints and permissions

Attia, E.R. Oscillation tests for first-order linear differential equations with non-monotone delays. Adv Differ Equ 2021, 41 (2021). https://doi.org/10.1186/s13662-020-03209-4