- Research
- Open access
- Published:
On fractional \((p,q)\)-calculus
Advances in Difference Equations volume 2020, Article number: 35 (2020)
Abstract
In this paper, the new concepts of \((p,q)\)-difference operators are introduced. The properties of fractional \((p,q)\)-calculus in the sense of a \((p,q)\)-difference operator are introduced and developed.
1 Introduction
The q-difference operator was first studied by Jackson [1] and was considered by many researchers (see more information in [2–5]. There are recent works related to q-calculus as seen in [6–8]. The knowledge of q-calculus and difference equations can be applied to physical problems such as molecular problems [9], elementary particle physics, and chemical physics [10–13]. Then, the q-field theory was presented in 1995 [14]. In 1996, the q-Coulomb problem and q-hydrogen atom were investigated by [15–18]. Moreover, Yang–Mills theories and Yang–Mills equation were presented as seen in [19–21]. The theory of quantum group was applied to vibration and rotation molecules with q-algebra and q-Heisenberg algebra technique [22–24]. In 1988, Siegel [25] presented the string theory involving q-calculus.
In the last three decades, applications of q-calculus have been studied and investigated intensively. Inspired and motivated by these applications, many researchers have developed the theory of quantum calculus based on two-parameter \((p, q)\)-integer which is used efficiently in many fields such as difference equations, Lie group, hypergeometric series, physical sciences, and so on. The \((p,q)\)-calculus was first studied in quantum algebras by Chakrabarti and Jagannathan [26]. For some results on the study of \((p,q)\)-calculus, we refer to [27–38]. For example, Sadjang [30] investigated the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas; the boundary value problems for \((p,q)\)-difference equations were initiated in [35, 36]; and we see the concept of \((p,q)\)-Beta and \((p,q)\)-gamma functions in [37, 38]. We can see the applications of \((p,q)\)-calculus in [39–44]. For example, Mursaleen et al. [39–41] investigated some approximation results by using the \((p,q)\)-analogue of Bernstein–Stancu operators, Bleimann–Butzer–Hahn operators, and Lorentz polynomials on a compact disk. Convergence of iterates of \((p,q)\)-Bernstein operator and convergence of Lupaş \((p,q)\)-Bernstein operator are found in [42, 43]. Recently, Nasiruzzaman et al. [44] studied some Opial-type integral inequalities via \((p,q)\)-calculus.
The study of fractional calculus in discrete settings was initiated in [45–47]. Agarwal [45] and Al-Salam [46] introduced fractional q-difference calculus, while Díaz and Osler [47] studied fractional difference calculus. Recently, Brikshavana and Sitthiwirattham [48] introduced fractional Hahn difference calculus. In addition, Patanarapeelert and Sitthiwirattham [49] discussed fractional symmetric Hahn difference calculus. Although many interesting results related to discrete analogues of some topics of continuous fractional calculus have been studied, the theory of discrete fractional calculus remains much less developed than that of continuous fractional calculus.
In particular, the fractional \((p,q)\)-difference equations have not been studied. The gap mentioned above is the motivation for this research. The aim of this paper is to introduce new concepts of \((p,q)\)-integral, and some fundamental properties are studied in the first part of this note. Then, we consider the fractional \((p,q)\)-difference operators of the Riemann–Liouville and Caputo types. A study of this fractional \((p,q)\)-calculus is expected to be of great importance in the development of the \((p,q)\)-function theory, which plays an important role in analysis and applications.
2 Preliminary definitions and properties
In this section, we provide basic definitions, notations, and lemmas that will be used in this study. Letting \(0< q< p\leq 1\), we define
The \((p,q)\)-forward jump operator and the \((p,q)\)-backward jump operator are defined as follows:
The q-analogue of the power function \({(a-b)}_{q}^{\underline{n}}\) with \(n\in \mathbb{N}_{0}:=\{0,1,2,\ldots\}\) is given by
The \((p,q)\)-analogue of the power function \((a-b)_{p,q}^{ \underline{n}}\) with \(n\in \mathbb{N}_{0}\) is given by
If \(\alpha \in \mathbb{R}\), we have a general form:
Since
where \({n \choose k}=\frac{\varGamma (n+1)}{\varGamma (k+1)\varGamma (n-k+1)}\), and
we obtain
Note that \(a_{q}^{\underline{\alpha}} ={a}_{p,q}^{\underline{\alpha}} = a^{\alpha}\) and \((0)_{q}^{\underline{\alpha}}={(0)}_{p,q}^{\underline{\alpha}}=0\) for \(\alpha >0\).
Lemma 2.1
For \(\alpha,\beta,\gamma,\lambda \in {\mathbb{R}}\)and \(I_{p,q} ^{T}:= \lbrace \frac{q^{k}}{p^{k+1}}T:k\in \mathbb{N}_{0} \rbrace \cup \lbrace 0 \rbrace \),
- (a)
\((\gamma \beta -\gamma \lambda )_{p,q}^{\underline{ \alpha }}=\gamma ^{\alpha }(\beta -\lambda )_{p,q}^{\underline{\alpha }}\),
- (b)
\((\beta -\gamma )_{p,q}^{\underline{\alpha +\gamma}}=\frac{1}{p ^{\alpha \gamma }}(\beta -\gamma )_{p,q}^{\underline{\alpha}}(p^{ \alpha }\beta -q^{\alpha }\lambda )_{p,q}^{\underline{\gamma}}\),
- (c)
\((t-s)_{p,q}^{\underline{\alpha}}=0, \alpha \notin {\mathbb{N}}_{0}, t\geq s \), and \(t,s \in I_{p,q}^{T} \).
Proof
For \(\alpha,\beta,\gamma,\lambda \in {\mathbb{R}}\) and \(0< q< p\leq 1\), we have
and
So, (a) and (b) hold.
Letting \(t,s \in I_{p,q}^{T}\), there exist \(m,n \in \mathbb{N}_{0}\) such that \(t=\frac{q^{m}}{p^{m+1}}T, s=\frac{q^{n}}{p^{n+1}}T\), where \(t\geq s, m\leq n\), and
Hence, (c) holds. □
Lemma 2.2
For \(m,n\in {\mathbb{N}}_{0}\), \(\alpha \in \mathbb{R}\), and \(0< q< p\leq 1\),
- (a)
\({ (t-\sigma _{p,q}^{n}(t) )}_{p,q}^{\underline{ \alpha }}=t^{\alpha } ( 1- ( \frac{q}{p} ) ^{n} ) _{p,q}^{\underline{\alpha}}\),
- (b)
\({ (\sigma _{p,q}^{m}(t)-\sigma _{p,q}^{n}(t) )} _{p,q}^{\underline{\alpha}}= ( \frac{q}{p} ) ^{m\alpha }t ^{\alpha } ( 1- ( \frac{q}{p} ) ^{n-m} )_{p,q} ^{\underline{\alpha }}\).
Proof
For \(m,n\in {\mathbb{N}}_{0}\) and \(\alpha \in \mathbb{R}\), we have
and
So, (a) and (b) hold. □
The \((p,q)\)-gamma and \((p,q)\)-beta functions are defined by
respectively.
Definition 2.1
For \(0< q< p\leq 1\) and \(f:[0,T]\rightarrow {\mathbb{R}}\), we define the \((p,q)\)-difference of f as
where \(D_{p,q}f(0)=f'(0)\), provided that f is differentiable at 0. We say that f is \((p,q)\)-differentiable on \(I_{p,q}^{T}\) if \(D_{p,q}f(t)\) exists for all \(t \in I_{p,q}^{T}\).
Lemma 2.3
([30])
Let \(f,g\)be \((p,q)\)-differentiable on \(I_{p,q}^{T}\). The properties of \((p,q)\)-difference operator are as follows:
- (a)
\(D_{p,q}[f(t)+g(t)]=D_{p,q}f(t)+D_{p,q}g(t)\),
- (b)
\(D_{p,q}[\alpha f(t)]=\alpha D_{p,q}f(t) \)for \(\alpha \in {\mathbb{R}}\),
- (c)
\(D_{p,q}[f(t)g(t)]=f(pt)D_{p,q}g(t)+g(qt)D_{p,q}f(t)=g(pt)D _{p,q}f(t)+f(qt)D_{p,q}g(t)\),
- (d)
\(D_{p,q} [ \frac{f(t)}{g(t)} ] =\frac{g(qt)D _{p,q}f(t)-f(qt)D_{p,q}g(t)}{g(pt)g(qt)} =\frac{g(pt)D_{p,q}f(t)-f(pt)D _{p,q}g(t)}{g(pt)g(qt)} \)for \(g(pt)g(qt)\neq 0\).
Lemma 2.4
Let \(t\in I_{p,q}^{T}, 0< q< p\leq 1, \alpha \geq 1\), and \({a \in \mathbb{R}}\). Then
- (a)
\(D_{p,q}(t-a)_{p,q}^{\underline{\alpha }}=[\alpha ]_{p,q} ( pt-a ) _{p,q}^{\underline{\alpha -1}}\),
- (b)
\(D_{p,q}(a-t)_{p,q}^{\underline{\alpha }}=-[\alpha ]_{p,q} ( a-qt ) _{p,q}^{\underline{\alpha -1}}\).
Proof
Since \(D_{p,q}f (\frac{t}{q} ) =\frac{f (\frac{p}{q}t )-f(t)}{ (p-q )\frac{t}{q}}\), we have
So, (a) holds. Proceeding similarly as above, we obtain
Hence, (b) holds. □
Definition 2.2
Let I be any closed interval of \(\mathbb{R}\) containing \(a,b\), and 0. Assuming that \(f:I\rightarrow \mathbb{R}\) is a given function, we define \((p,q)\)-integral of f from a to b by
where
provided that the series converges at \(x=a\) and \(x=b\). f is called \((p,q)\)-integrable on \([a,b]\). We say that f is \((p,q)\)-integrable on I if it is \((p,q)\)-integrable on \([a,b]\) for all \(a,b\in I\).
Next, we define an operator \({{\mathcal{I}}}_{p,q}^{N} \) as
The following are the properties of \((p,q)\)-difference and \((p,q)\)-integral operators:
Lemma 2.5
([30])
Let \(0< q< p\leq 1\), \(a,b \in I_{p,q}^{T}\), and \(f,g\)be \((p,q)\)-integrable on \(I_{p,q}^{T}\). Then the following formulas hold:
- (a)
\(\int _{a}^{a} f(t)\,d_{p,q}t=0\),
- (b)
\(\int _{a}^{b} \alpha f(t)\,d_{p,q}t=\alpha \int _{a}^{b} f(t)\,d _{p,q}t, \alpha \in {\mathbb{R}}\),
- (c)
\(\int _{a}^{b} f(t)\,d_{p,q}t=-\int _{b}^{a} f(t)\,d_{p,q}t\),
- (d)
\(\int _{a}^{b} f(t)\,d_{p,q}t=\int _{c}^{b} f(t)\,d_{p,q}t+ \int _{a}^{c} f(t)\,d_{p,q}t, c\in I_{p,q}^{T}, a< c< b\),
- (e)
\(\int _{a}^{b} [ f(t)+g(t) ] \,d_{p,q}t=\int _{a}^{b} f(t)\,d_{p,q}t+\int _{a}^{b} g(t)\,d_{p,q}t\),
- (f)
\(\int _{a}^{b} [ f(pt)D_{p,q}g(t) ] \,d _{p,q}t= [ f(t)g(t) ] _{a}^{b}-\int _{a}^{b} [g(qt)D_{p,q}f(t) ] \,d_{p,q}t\).
We next introduce the fundamental theorem and Leibniz formula of \((p,q)\)-calculus.
Lemma 2.6
([30] Fundamental theorem of \((p,q)\)-calculus)
Let \(f:I\rightarrow \mathbb{R}\)be continuous at 0. Define
ThenFis continuous at 0. Furthermore, \(D_{p,q}F(x)\)exists for every \(x\in I\)where
Conversely,
Lemma 2.7
(Leibniz formula of \((p,q)\)-calculus)
Let \(f:I_{p,q}^{T} \times I_{p,q}^{T}\rightarrow \mathbb{R}\). Then
where \({_{t}}D_{p,q}\)is \((p,q)\)-difference with respect tot.
Proof
For \(t\in I_{p,q}^{T}\), we have
The proof is completed. □
The following lemmas are provided as tools for simplifying our calculations.
Lemma 2.8
Let \(\alpha,\beta >0, 0< q< p\leq 1\). Then
Proof
From the definition of \((p,q)\)-analogue of the power function, \((p,q)\)-beta function, and Definition 3.1, we obtain
By Lemma 2.4(b), we have \(\int _{0}^{s} ( s- qx ) _{p,q}^{\underline{\beta -1}} \,d_{p,q}x= [- \frac{1}{[\beta ]_{p,q}} ( s- x )_{p,q}^{\underline{ \beta }} ]_{x=0}^{s}= \frac{s^{\beta }}{[\beta ]_{p,q}}\). Hence, we find that
The proof is completed. □
Lemma 2.9
Let \(0< q< p\leq 1\)and \(f:I_{p,q}^{T}\rightarrow \mathbb{R}\)be continuous at 0. Then
Proof
Using the definitions of \((p,q)\)-integral, we find that
The proof is completed. □
Next, we introduce the multiple \((p,q)\)-integration as follows.
Theorem 2.1
For \(f:I_{p,q}^{T}\rightarrow \mathbb{R}\)and \(n\in \mathbb{N}\), the multiple \((p,q)\)-integration is given by
Proof
We prove by using mathematical induction.
If \(n=1\), then \(\mathcal{I}_{p,q} f(x)=\int _{0}^{x} f({\tau })\,d_{p,q} \tau \).
If \(n=2\), by Lemma 2.9 we have
Next, we suppose that Theorem 2.1 holds for \(n=k\). For the case \(n=k+1\), we have
On the other hand, we have
To show that (2.2) is equal to (2.3), we consider
We see that (2.1) holds when \(n=k+1\). □
3 Fractional \((p,q)\)-integral
In this section, we introduce fractional \((p,q)\)-integral.
Definition 3.1
For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-integral is defined by
and \(({\mathcal{I}}^{0}_{p,q} f)(t) = f(t)\).
By Lemma 2.2(a), we have
Next, we introduce the properties of fractional \((p,q)\)-integral.
Theorem 3.1
For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\), \(\alpha >0, 0< q< p\leq 1\),
Proof
Using Lemma 2.4(b) and Lemma 2.5(f), we obtain
The proof is completed. □
Theorem 3.2
For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),\(\alpha,\beta >0, 0< q< p \leq 1\), and \(a\in I_{p,q}^{T}\),
Proof
For \(n \in {\mathbb{N}}_{0}\),
By using Lemma 2.1(c), it implies that \((\sigma ^{n} _{p,q}(a)-\sigma ^{n+k+1}_{p,q}(a) )_{p,q}^{\underline{\alpha -1}}=0\). Thus,
Finally, by Definition 3.1, we find that
The proof is completed. □
Lemma 3.1
([50])
For \(\mu,\alpha,\beta \in \mathbb{R}^{+}\),
Theorem 3.3
For \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),\(\alpha,\beta >0\), and \(0< q< p\leq 1\),
Proof
For \(t\in I_{p,q}^{T}\),
Since \({\varGamma }_{p,q}(\alpha +\beta )= \frac{ ( p-q ) _{p,q}^{\underline{\alpha +\beta -1}}}{ ( p-q )^{\alpha + \beta -1}} =\frac{ ( 1-\frac{q}{p} )_{p,q}^{\underline{ \alpha +\beta -1}}}{ ( 1-\frac{q}{p} )^{\alpha +\beta -1}}\) and by Lemma 3.1, we obtain
Hence,
Similarly, we find that \({{\mathcal{I}}}_{p,q}^{\beta }{{\mathcal{I}}} _{p,q}^{\alpha }f(t)={{\mathcal{I}}}_{p,q}^{\alpha +\beta } f(t)\). □
4 Fractional \((p,q)\)-difference operator of Riemann–Liouville type
Next, we present the fractional \((p,q)\)-difference operator of Riemann–Liouville.
Definition 4.1
For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-difference operator of Riemann–Liouville type of order α is defined by
and \(D^{0}_{p,q}f(t) = f(t)\), where \(N-1<\alpha < N, N\in {\mathbb{N}}\).
In the following theorem, we introduce the properties of fractional \((p,q)\)-difference operator of Riemann–Liouville type.
Theorem 4.1
For \(\alpha >0, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),
Proof
For some \(N-1<\alpha < N, N\in {\mathbb{N}}\),
The proof is completed. □
Theorem 4.2
For \(\alpha \in (0,1), 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),
Proof
Let \(C(t)=\mathcal{I}_{p,q}^{\alpha }D_{p,q}^{\alpha }f(t) -f(t)\). Taking \(D_{p,q}^{\alpha }\) to the both sides of the above expression and using Theorem 4.1, we have
On the other hand,
Using the above form, according to Definitions 3.1 and 4.1, we have
Hence, \(C(t)=Ct^{\alpha -1}\). □
Theorem 4.3
Letting \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\), we get
for some \(C_{i}\in {\mathbb{R}},i=1,2,\ldots,N\).
Proof
Using Theorems 3.1 and 4.2, we obtain
Using Theorem 4.2, we obtain
The proof is completed. □
Corollary 4.1
Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\),
5 Fractional \((p,q)\)-difference operator of Caputo type
Now, we introduce fractional \((p,q)\)-difference operator of Caputo type.
Definition 5.1
For \(\alpha >0, 0< q< p\leq 1\), and f defined on \(I^{T}_{p,q}\), the fractional \((p,q)\)-difference operator of Caputo type of order α is defined by
and \({^{C}}D^{0}_{p,q}f(t) = f(t)\), where \(N-1<\alpha < N, N\in {\mathbb{N}}\).
Theorem 5.1
Letting \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\)leads to
Proof
For \(t \in I_{q,\omega }^{T}\), by Definition 5.1, we have
□
The following theorem presents the properties of fractional Hahn difference operator of Caputo type.
Theorem 5.2
Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then
Proof
For some \(N-1<\alpha < N,N\in {\mathbb{N}}\), by Definition 5.1 and Theorem 4.3, we have
From (3.2), we have
It implies that
The proof is completed. □
Theorem 5.3
Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then
Proof
From Definition 5.1, Theorem 4.3, and Corollary 4.1, we have
The proof is completed. □
Corollary 5.1
Let \(\alpha \in (N-1,N), N\in {\mathbb{N}}, 0< q< p\leq 1\), and \(f:I_{p,q}^{T}\rightarrow {\mathbb{R}}\). Then
for some \(C_{i}\in {\mathbb{R}},i=1,2,\ldots,N\).
6 Conclusions
In this paper, we introduced fractional \((p,q)\)-integral, Riemann–Liouville, and Caputo fractional \((p,q)\)-difference operators. Many properties of these fractional \((p,q)\)-operators were proved. This work would be a starting point of many other works. For example, in the future we may define the Laplace transform for fractional \((p,q)\)-calculus, find the fractional \((p,q)\)-convolution product, and compute its fractional \((p,q)\)-Laplace transform. In addition, we could solve many fractional \((p,q)\)-difference equations by using this transform.
References
Jackson, F.H.: On q-difference equations. Am. J. Math. 32, 305–314 (1910)
Carmichael, R.D.: The general theory of linear q-difference equations. Am. J. Math. 34, 147–168 (1912)
Mason, T.E.: On properties of the solutions of linear q-difference equations with entire function coefficients. Am. J. Math. 37, 439–444 (1915)
Adams, C.R.: On the linear ordinary q-difference equation. Ann. Math. 30, 195–205 (1929)
Trjitzinsky, W.J.: Analytic theory of linear q-difference equations. Acta Math. 62(1), 167–226 (1933)
Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
Ernst, T.: A new notation for q-calculus and a new q-Taylor formula, U.U.D.M. Report 1999:25, ISSN 1101-3591, Department of Mathematics, Uppsala University (1999)
Floreanini, R., Vinet, L.: q-gamma and q-beta functions in quantum algebra representation theory. J. Comput. Appl. Math. 68, 57–68 (1996)
Finkelstein, R.J.: Symmetry group of the hydrogen atom. J. Math. Phys. 8(3), 443–449 (1967)
Gavrilik, A.M.: q-Serre relations in \(U_{q}(u_{n})\) and q-deformed meson mass sum rules. J. Phys. A, Math. Gen. 27(3), 91–94 (1994)
Finkelstein, R.J.: q-gauge theory. Int. J. Mod. Phys. A 11(4), 733–746 (1996)
Kaniadakis, G., Lavagno, A., Quarati, P.: Kinetic model for q-deformed bosons and fermions. Phys. Lett. A 227(3–4), 227–231 (1997)
Ilinski, K.N., Kalinin, G.V., Stepanenko, A.S.: q-functional field theory for particles with exotic statistics. Phys. Lett. A 232(6), 399–408 (1997)
Finkelstein, R.J.: q-field theory. Lett. Math. Phys. 34(2), 169–176 (1995)
Chan, F.L., Finkelstein, R.J.: q-deformation of the Coulomb problem. J. Math. Phys. 35(7), 3273–3284 (1994)
Cadavid, A.C., Finkelstein, R.J.: The q-Coulomb problem in configuration space. J. Math. Phys. 37(8), 3675–3683 (1996)
Finkelstein, R.J.: The q-Coulomb problem. J. Math. Phys. 37(6), 2628–2636 (1996)
Feigenbaum, J., Freund, P.G.: A q-deformation of the Coulomb problem. J. Math. Phys. 37(4), 1602–1616 (1996)
Cheng, H.: Canonical Quantization of Yang–Mills Theories, Perspectives in Mathematical Physics. International Press, Somerville (1996)
Finkelstein, R.J.: q-gravity. Lett. Math. Phys. 38(1), 53–62 (1996)
Kamata, M., Nakamula, A.: One-parameter family of selfdual solutions in classical Yang–Mills theory. Phys. Lett. B 463(2–4), 257–262 (1999)
Negadi, T., Kibler, M.: A q-deformed Aufbau Prinzip. J. Phys. A, Math. Gen. 25(4), 157–160 (1992)
Marinova, L.P., Raychev, P.P., Maruani, J.: Molecular backbending in AgH and its description in terms of q-algebras. Mol. Phys. 82(6), 1115–1129 (1994)
Monteiro, M.R., Rodrigues, L.M.C.S., Wulck, S.: Quantum algebraic nature of the photon spectrum in 4He. Phys. Rev. Lett. 76(7), 1098–1100 (1996)
Siegel, W.: Introduction to String Field Theory. Advanced Series in Mathematical Physics, vol. 8. World Scientific, Teaneck (1988)
Chakrabarti, R., Jagannathan, R.: A \((p,q)\)-oscillator realization of two-parameter quantum algebras. J. Phys. A, Math. Gen. 24(24), 5683–5701 (1991)
Jagannathan, R., Rao, K.S.: Two-parameter quantum algebras, twin-basic number, and associated generalized hypergeometric series. Differ. Equ. Appl. 2006, 27 (2006)
Sahai, V., Yadav, S.: Representations of two parameter quantum algebras and \((p,q)\)-special functions. J. Math. Anal. Appl. 335(1), 268–279 (2007)
Burban, I.: Two-parameter deformation of the oscillator algebra and \((p,q)\)-analog of two-dimensional conformal field theory. J. Nonlinear Math. Phys. 2(3–4), 384–391 (1995)
Sadjang, P.N.: On the fundamental theorem of \((p,q)\)-calculus and some \((p,q)\)-Taylor formulas. Results Math. 73, 39 (2018)
Hounkonnou, M.N., Kyemba, J.D.: \(R(p,q)\)-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)
Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015)
Araci, S., Duran, U.G., Acikgoz, M., Srivastava, H.M.: A certain \((p,q)\)-derivative operator and associated divided differences. J. Inequal. Appl. 2016, 301 (2016)
Duran, U.: Post quantum calculus [Master Thesis], University of Gaziantep (2016)
Kamsrisuk, N., Promsakon, C., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for \((p,q)\)-difference equations. Differ. Equ. Appl. 10(2), 183–195 (2018)
Promsakon, C., Kamsrisuk, N., Ntouyas, S.K., Tariboon, J.: On the second-order quantum \((p,q)\)-difference equations with separated boundary conditions. Adv. Math. Phys. 2018, Article ID 9089865 (2018)
Milovanovic, G.V., Gupta, V., Malik, N.: \((p,q)\)-Beta functions and applications in approximation. Bol. Soc. Mat. Mexicana 24, 219–237 (2018)
Cheng, W.T., Zhang, W.H., Cai, Q.B.: \((p,q)\)-gamma operators which preserve \(x^{2}\). J. Inequal. Appl. 2019, 108 (2019)
Mursaleen, M., Ansari, K.J., Khan, A.: Some approximation results by \((p,q)\)-analogue of Bernstein–Stancu operators. Appl. Math. Comput. 264, 392–402 (2015). [Corrigendum: Appl. Math. Comput.269, 744–746 (2015)]
Mursaleen, M., Nasiruzzaman, M., Khan, A., Ansari, K.J.: Some approximation results on Bleimann–Butzer–Hahn operators defined by \((p,q)\)-integers. Filomat 30(3), 639–648 (2016)
Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 10(8), 1725–1740 (2016)
Rahman, S., Mursaleen, M., Alkhaldi, A.H.: Convergence of iterates of q-Bernstein and \((p,q)\)-Bernstein operators and the Kelisky–Rivlin type theorem. Filomat 32(12), 4351–4364 (2018)
Jebreen, H.B., Mursaleen, M., Ahasan, M.: On the convergence of Lupaş \((p,q)\)-Bernstein operators via contraction principle. J. Inequal. Appl. 2019, 34 (2019)
Nasiruzzaman, M., Mukheimer, A., Mursaleen, M.: Some Opial-type integral inequalities via \((p,q)\)-calculus. J. Inequal. Appl. 2019, 295 (2019)
Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philol. Soc. 66, 365–370 (1969)
Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15, 135–140 (1966)
Díaz, J.B., Osler, T.J.: Differences of fractional order. Math. Compet. 28, 185–202 (1974)
Brikshavana, T., Sitthiwirattham, T.: On fractional Hahn calculus. Adv. Differ. Equ. 2017, 354 (2017)
Patanarapeelert, N., Sitthiwirattham, T.: On fractional symmetric Hahn calculus. Mathematics 7, 873 (2019)
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1(1), 311–323 (2007)
Availability of data and materials
Not applicable.
Funding
This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no. KMUTNB-61-KNOW-026.
Author information
Authors and Affiliations
Contributions
The authors declare that they carried out all the work in this manuscript and read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Soontharanon, J., Sitthiwirattham, T. On fractional \((p,q)\)-calculus. Adv Differ Equ 2020, 35 (2020). https://doi.org/10.1186/s13662-020-2512-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-2512-7