- Research
- Open access
- Published:
Existence and uniqueness of nontrivial solution for nonlinear fractional multi-point boundary value problem with a parameter
Advances in Difference Equations volume 2020, Article number: 51 (2020)
Abstract
In this paper, a class of fractional boundary value problems with a parameter are discussed. We give some sufficient conditions to guarantee that above problems have a unique solution and construct the corresponding iterative sequences for approximating the unique solution.
1 Introduction
In this paper, we consider the existence and uniqueness of the solution of the following fractional boundary value problem:
where \(b>0\), \({D}^{\alpha }_{0^{+}}\) and \({D}^{\beta }_{0^{+}}\) are the Riemann–Liouville fractional derivatives with \(n-1<\alpha \leq n\), \(n-2< \beta \leq n-1\), \(n\geq 2\) \((n\in \mathbb{N})\), \(\alpha -\beta -1>0\), \(0<\xi _{i},\eta _{i}<1\), \(i=1, 2, 3, \ldots , m-2\), \(m\geq 3\), \(\sum_{i=1}^{m-2} \xi _{i} \eta _{i}^{\alpha -\beta -1}<1\). \(f,g:(0,1)\times (-\infty ,+\infty )\times (-\infty ,+\infty )\to (- \infty ,+\infty )\) are continuous, and f, g may be singular at \(t=0,1\), λ is a parameter.
The problem (1.1) with \(\lambda =0\) has been investigated by many authors [1–8]. Li et al. [1] considered the following fractional three-point boundary value problem:
where \(1<\alpha \leq 2\), \(0\leq \beta \leq 1\), \(0\leq a\leq 1\) and \(\xi \in (0, 1)\). The authors firstly derived the corresponding Green’s function of the problem (1.2). Based on the above result, the problem (1.2) is reduced to an equivalent integral equation. By using the Banach contraction mapping principle and a nonlinear alternative of Leray–Schauder type, the authors obtained the existence and multiplicity theorems of positive solutions for the problem (1.2). Subsequently, Peng and Zhou [2] studied the existence of positive solutions for the problem (1.2), the main tools adopted in [2] are topological degree theory and bifurcation techniques. In fact, in [3], Kaufmann and Mboumi have considered the fractional two-point boundary value problem (1.2) when \(a=0\) and \(\beta =1\). Furthermore, Lv [4] considered the positive solutions of the following m-point boundary value problem:
where \(1<\alpha \leq 2\), \(0\leq \beta \leq 1\), \(\alpha -\beta -1 \geq 0\), \(0<\xi _{i},\eta _{i}<1\), \(i=1, 2, 3, \ldots , m-2\), \(m\geq 3\), and \(\sum_{i=1}^{m-2} \xi _{i} \eta _{i}^{\alpha - \beta -1}<1\). Lv studied the existence of minimal and maximal positive solutions for the problem (1.3). Moreover, Lv [5] used the fixed point theorem to study m-point fractional problem with the p-Laplacian operator.
In [9], Sang and Ren studied the following fractional boundary value problem:
where \(n\geq 3\), \(b>0\) is a constant, \(f,g:[0,1]\times (-\infty ,+ \infty )\times (-\infty ,+\infty )\longrightarrow (-\infty ,+\infty )\) are continuous functions. The problem (1.4) includes the well-known elastic beam equation and fractional problems considered in [10–16].
Very recently, Wang et al. [17] discussed the following higher-order three-point fractional problem:
where \(n\in \mathbb{N}\), \(n\geq 2\), \(0\leq b\leq 1\), and \(0<\xi <1\). \(f(t,u,v)\) may be singular at \(t=0, 1\) and \(v=0\), \(g(t,u)\) may be singular at \(t=0,1\). By the properties of the Green function and two fixed point theorems for sum-type operator, the authors derived sufficient conditions for the existence and uniqueness of positive solutions to the problem (1.5).
On the other hand, fractional boundary value problems with parameters have received considerable attention [18–27]. Tan, Tan and Zhou [18] considered the existence of positive solutions for fractional differential equations with a parameter as follows:
where \(n-1<\alpha \leq n\), \(n\geq 2\), \(f_{1}:[0, 1]\times [0,\infty ) \times [0,\infty ) \to [0,\infty )\), \(f_{2}:[0, 1]\times [0,\infty ) \to [0,\infty )\) are continuous, \(0<\xi _{1}<\xi _{2}<\cdots <\xi _{m-2}<1\), \(\sum_{i=1}^{m-2} \alpha _{i} \xi _{i}^{\alpha -\beta -1}<1\), and λ is a parameter. In [19, 20], the authors studied nonlinear boundary value problem with boundary conditions \(u(0)-\sum_{i=1}^{m} a_{i}u(t _{i})=\lambda _{1}\) and \(u(1)-\sum_{i=1}^{m} b_{i}u(t_{i})= \lambda _{2}\). In addition, Graef and Kong [21] considered the boundary value problem with fractional q-derivatives, and studied the existence of positive solutions according to different ranges of parameter. Moreover, Li et al. [22] considered infinite point boundary value problem for fractional differential equations with perturbed parameter. In [24], Lee and Park considered non-local problems with the boundary value condition \(u(1)-\int ^{1}_{0}g(s)u(s)\,ds=b\). In [25], Wang and Guo studied fractional differential equations with boundary condition \(x(1)=\int ^{1}_{0}k(s)g(x(s))\,ds+\mu \). Jia and Liu [26] discussed the effect of the mixed boundary condition \(m_{2}u(1)+n_{2}u'(1)=\int ^{1} _{0}g(s)u(s)\,ds+a\).
In this paper, we first consider the Green function of the m-point boundary value problem (1.1) with a parameter. Then we define a new set, which is not a subset of a cone. So we extend the results of the cone mapping established in [17, 18] to the non-cone cases. Finally, we will consider the singularity of f, g and provide some sufficient conditions to guarantee that the problem (1.1) has a unique solution and construct two iterative sequences of solutions.
The rest of this paper is structured as follows. In Sect. 2, we will give some definitions and related lemmas to prove the main result. In Sect. 3, the existence and uniqueness of the solution to the problem (1.1) is proved, and an example supporting conclusion is given.
2 Preliminaries and related lemmas
In this section, we will provide some necessary basic definitions and lemmas to prove our main theorem, which can be found in [28–32].
Throughout our article, we define its base space as a Banach space. Let E be a Banach space, and θ be the zero element of E. If there are (1) \(x\in P\), \(\lambda \geq 0\Rightarrow \lambda x\in P\) and (2) \(x\in P\), \(-x\in P\Rightarrow x=\theta \), then we call that a nonempty closed convex set \(P\subset E\) is a cone. Define an ordered relation in E: \(x\leq y\) if and only if \(y-x\in P\). If there exists a positive constant N such that, for all \(x,y\in E\), \(\theta \leq x \leq y \Rightarrow \|x\| \leq N\|y\| \), then P is called a normal cone. Given \(h>\theta \), we denote \(P_{h}\) by
Let \(e\in P\) with \(\theta \leq e\leq h\), denote
Definition 2.1
If \(B(x,y)\) is increasing in x, and decreasing in y, then \(B:P_{h,e}\times P_{h,e}\rightarrow E\) is a mixed monotone operator. i.e., for every \(u_{i},v_{i}\in P _{h,e}\) (\(i=1,2\)), with \(u_{1}\geq v_{1}\), \(u_{2}\leq v_{2}\), implies \(B(u_{1},u_{2})\geq B(v_{1},v_{2})\).
Definition 2.2
The Riemann–Liouville fractional derivative of order \(\alpha >0\) of a function \(h\in C[0, 1]\) is defined by
where \(n=[\alpha ]+1\). The Riemann-Liouville fractional integral of order \(\alpha >0\) is given by
Definition 2.3
([32])
Let \(\beta >-1\), \(\alpha >0\) and \(t>0\). Then
Lemma 2.1
([7])
Let \(u\in C[0,1]\cap L^{1}[0,1]\), \(\alpha >0\), then
where \(c_{i}\in \mathbb{R}\), \(i=1,2,\ldots ,n\)and \(n=[\alpha ]+1\).
Lemma 2.2
Let \(h(t)\in C(0,1)\cap L^{1}(0,1)\), then the following fractional boundary value problem:
has a unique solution
where \(\ n-1< \alpha \leq n\), \(n-2<\beta \leq n-1\), \(n\geq 2\), \(m\geq 3\),
in which
and
with
Proof
Using Lemma 2.1, we get
From condition \(u(0)=u'(0) =\cdots=u^{(n-2)}(0)=0\), we obtain \(c_{n}=c _{n-1}=\cdots =c_{2}=0\). Thus
By Definition 2.3, we deduce that
From the boundary value condition \({D}^{\beta }_{0^{+}} u(1)=\sum_{i=1}^{m-2} \xi _{i}{D}^{\beta }_{0^{+}}u(\eta _{i})+\lambda \), we have
which yields
Thus
Moreover, we have
It follows that
where
Therefore, the boundary value problem (2.1) has the unique solution
The proof is complete. □
Lemma 2.3
Let
and
Then the function \(G(t,s)\)defined in Lemma 2.2satisfies
where \(t,s\in [0,1]\).
Lemma 2.4
([9])
Let \(P\subset E\)be a normal cone, and let \(M, N: P_{h,e}\times P_{h,e}\longrightarrow E\)be two mixed monotone operators. Suppose that
- (L1)
for all \(t \in [0, 1]\)and \(x,y\in P_{h,e}\), there exists \(\psi (t)\in (t,1)\)such that
$$ M\bigl(tx+(t-1)e,t^{-1}y+\bigl(t^{-1}-1\bigr)e\bigr)\geq \psi (t)M(x,y)+ \bigl(\psi (t)-1 \bigr)e; $$ - (L2)
for all \(t \in [0, 1]\)and \(x,y\in P_{h,e}\),
$$ N\bigl(tx+(t-1)e,t^{-1}y+\bigl(t^{-1}-1\bigr)e\bigr)\geq tN(x,y)+(t-1)e; $$ - (L3)
\(M(h,h)\in P_{h,e}\)and \(N(h,h)\in P_{h,e}\);
- (L4)
for all \(x,y\in P_{h,e}\), there exists a constant \(\delta >0\)such that
$$ M(x,y)\geq \delta N(x,y)+(\delta -1)e. $$
Then the operator equation \(M(x,x)+N(x,x)+e=x\)has a unique solution \(x^{*}\)in \(P_{h,e}\), for any initial values \(x_{0}, y_{0}\in P_{h,e}\), we can get the following iterative sequences:
we have \(x_{n}\to x^{*}\)and \(y_{n}\to x^{*}\)inEas \(n\to \infty \).
3 Main result
In this section, we will consider the existence and uniqueness of the solution to the boundary value problem (1.1).
For convenience in the proof, we work in a Banach space \(E=C[0,1]\). Let \(P\subset E\) be defined by \(P=\{u\in E| u(t)\geq 0, t\in [0,1]\}\), it is clear that P is a normal cone. Let
Theorem 3.1
Assume that
-
(C1)
\(f,g:(0,1)\times [-e^{*},+\infty )\times [-e^{*},+\infty )\to (- \infty ,+\infty )\)are continuous andf, gmay be singular at \(t=0,1\), where \(e^{*}=\max \{e(t):t\in [0,1]\}\). For \(t\in [0,1]\), \(g(t,0,H)\geq 0\)with \(g(t,0,H)\not \equiv 0\)where \(H\geq \frac{b}{A\varGamma (\alpha )(\alpha -\beta )}\);
-
(C2)
for fixed \(t\in [0,1]\)and \(y\in [-e^{*},+\infty )\), \(f(t,x,y)\), \(g(t,x,y)\)are increasing in \(x\in [-e^{*},+\infty )\); for fixed \(t\in [0,1]\)and \(x\in [-e^{*},+\infty )\), \(f(t,x,y)\), \(g(t,x,y)\)are decreasing in \(y\in [-e^{*},+\infty )\);
-
(C3)
for \(\mu \in (0,1)\)and \(t\in [0,1]\), there exists \(\psi (\mu ) \in (\mu ,1)\)such that
- (a)
\(f (t,\mu x+(\mu -1)\rho ,\mu ^{-1} y+(\mu ^{-1}-1)\rho ) \geq \psi (\mu )f(t,x,y)\),
- (b)
\(g (t,\mu x+(\mu -1)\rho ,\mu ^{-1}y+(\mu ^{-1}-1)\rho ) \geq \mu g(t,x,y)\),
where \(x,y\in [-e^{*},+\infty )\), \(\rho \in [0,e^{*}]\);
- (a)
-
(C4)
for all \(t\in [0,1]\), \(x,y\in [-e^{*},+\infty )\), there exists \(\delta >0\)such that
$$ f(t,x,y)\geq \delta g(t,x,y)+ \frac{\delta ^{2}\varGamma (\alpha -\beta )}{C(s)A}; $$ -
(C5)
\(\int _{0}^{1}f(s,H,0)\,ds<\infty \)and \(\int _{0}^{1}g(s,H,0)\,ds<\infty \). Then, for every \(\lambda \in (0,\delta ]\), the problem (1.1) has a unique nontrivial solution \(u^{*}\)in \(P_{h,e}\), where \(h(t)=Ht^{ \alpha -1}\), for all \(t\in [0,1]\). We can construct two iterative sequences:
$$\begin{aligned}& \begin{aligned} \omega _{n}(t)={}& \int ^{1}_{0} G(t,s) \bigl(f \bigl(s,\omega _{n-1}(s),\tau _{n-1}(s) \bigr)+g \bigl(s,\omega _{n-1}(s),\tau _{n-1}(s) \bigr) \bigr)\,ds-e(t) \\ & {}+\frac{\varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )}, \quad n=1,2,\ldots, \end{aligned} \\& \begin{aligned} \tau _{n}(t)={}& \int ^{1}_{0} G(t,s) \bigl(f \bigl(s,\tau _{n-1}(s),\omega _{n-1}(s) \bigr)+g \bigl(s,\tau _{n-1}(s),\omega _{n-1}(s) \bigr) \bigr)\,ds-e(t) \\ & {} +\frac{\varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )}, \quad n=1,2,\ldots , \end{aligned} \end{aligned}$$for any initial values \(\omega _{0}, \tau _{0} \in P_{h,e}\), the sequences \(\{\omega _{n}(t)\}\), \(\{\tau _{n}(t)\}\)approximate \(u^{\ast }\), that is, \(\omega _{n}\rightarrow u^{*}\)and \(\tau _{n}\rightarrow u^{*}\)as \(n\rightarrow \infty \).
Proof
By Lemma 2.2, we obtain
For all \(t\in [0,1]\),
where \(H\geq \frac{b}{A(\alpha -\beta )\varGamma (\alpha )}\). Hence, \(0< e(t) \leq h(t)\) and \(P_{h, e}=\{u\in E| u+e\in P_{h}\}\). By Lemma 2.3, the solution to problem (1.1) has the following expression:
For every \(t\in [0,1]\), \(u,v\in P_{h,e}\), we define the following operators:
Clearly, \(u(t)\) is the solution to problem (1.1), if and only if \(u(t)\) is the fixed point of the operator \(M(u,v)(t)+N(u,v)(t)+e(t)\). Therefore, if it can be proved that the operators M, N satisfy all the conditions of the Lemma 2.4, then the conclusion of Theorem 3.1 holds.
- (1)
By (C3), for \(t\in [0,1]\), \(\mu \in (0, 1)\), \(x, y\in P_{h, e}\), and \(\rho \in [0, e^{*}]\), we have
$$\begin{aligned}& f \bigl(t,\mu ^{-1} x+\bigl(\mu ^{-1} -1\bigr)\rho ,\mu y+(\mu -1)\rho \bigr) \leq \psi (\mu )^{-1}f(t,x,y), \\& g \bigl(t,\mu ^{-1} x+\bigl(\mu ^{-1} -1\bigr)\rho ,\mu y+(\mu -1)\rho \bigr) \leq \mu ^{-1} g(t,x,y). \end{aligned}$$For all \(u,v\in P_{h,e}\), there exists \(0< m<1\) such that \(mh-e\leq u,v \leq \frac{1}{m}h-e\), where \(h(t)=Ht^{\alpha -1}\). From \(h(t)\geq e(t)\), we get \((m-1)e\leq mh-e\leq u,v\leq \frac{1}{m}h-e \leq \frac{1}{m}h+( \frac{1}{m}-1)e\). Thus
$$\begin{aligned}& \begin{aligned} f\bigl(t,u(t),v(t)\bigr)&\leq f\biggl(t, \frac{1}{m}h(t)+\biggl(\frac{1}{m}-1\biggr)e,(m-1)e\biggr)\leq \psi (m)^{-1}f\bigl(t,h(t),0\bigr) \\ &= \psi (m)^{-1}f\bigl(t,Ht^{\alpha -1},0\bigr)\leq \psi (m)^{-1}f(t,H,0), \end{aligned} \\& \begin{aligned} g\bigl(t,u(t),v(t)\bigr)&\leq g\biggl(t, \frac{1}{m}h(t)+\biggl(\frac{1}{m}-1\biggr)e,(m-1)e\biggr)\leq \frac{1}{m}g\bigl(t,h(t),0\bigr) \\ &= \frac{1}{m}g\bigl(t,Ht^{\alpha -1},0\bigr)\leq \frac{1}{m}g(t,H,0). \end{aligned} \end{aligned}$$In view of (C5), we get
$$\begin{aligned}& \begin{aligned} \int _{0}^{1}G(t,s)f\bigl(s,u(s),v(s)\bigr)\,ds& \leq \int _{0}^{1}G(t,s)\psi (m)^{-1}f(s,H,0)\,ds \\ & \leq \frac{Dt^{\alpha -1}\psi (m)^{-1}}{\varGamma (\alpha )} \int _{0} ^{1}f(s,H,0)\,ds< \infty , \end{aligned} \\& \begin{aligned} \int _{0}^{1}G(t,s)g\bigl(s,u(s),v(s)\bigr)\,ds& \leq \int _{0}^{1}G(t,s)\frac{1}{m}g(s,H,0)\,ds \\ & \leq \frac{Dt^{\alpha -1}}{m\varGamma (\alpha )} \int _{0}^{1}g(s,H,0)\,ds< \infty . \end{aligned} \end{aligned}$$Therefore
$$\begin{aligned}& M(u,v) (t)= \int ^{1}_{0} G(t,s)f \bigl(s,u(s),v(s) \bigr)\,ds-e(t)< \infty , \\& N(u,v) (t)= \int ^{1}_{0} G(t,s)g \bigl(s,u(s),v(s) \bigr)\,ds-e(t)+\frac{ \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )}< \infty , \end{aligned}$$that is, M, N are well-defined.
- (2)
From (C2), for every \(u_{i},v_{i}\in P_{h,e}\) (\(i=1,2\)) with \(u_{1}\geq u_{2}\), \(v_{1}\leq v_{2}\), we have
$$\begin{aligned}& \begin{aligned} M(u_{1},v_{1}) (t)&= \int ^{1}_{0} G(t,s)f \bigl(s,u_{1}(s),v_{1}(s) \bigr)\,ds-e(t) \\ &\geq \int ^{1}_{0} G(t,s)f \bigl(s,u_{2}(s),v_{2}(s) \bigr)\,ds-e(t)= M(u _{2},v_{2}) (t), \end{aligned} \\& \begin{aligned} N(u_{1},v_{1}) (t)&= \int ^{1}_{0} G(t,s)g \bigl(s,u_{1}(s),v_{1}(s) \bigr)\,ds-e(t)+\frac{ \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &\geq \int ^{1}_{0} G(t,s)g \bigl(s,u_{2}(s),v_{2}(s) \bigr)\,ds-e(t)+\frac{ \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &= N(u_{2},v_{2}) (t). \end{aligned} \end{aligned}$$Hence, M and N are two mixed monotone operators.
- (3)
By (C3), for \(\mu \in (0,1)\), \(t\in [0,1]\), there exists \(\psi ( \mu )\in (\mu ,1)\) such that
$$\begin{aligned}& M\bigl(\mu u+(\mu -1)e,\mu ^{-1} v+\bigl(\mu ^{-1}-1 \bigr)e\bigr) (t) \\& \quad = \int ^{1}_{0} G(t,s)f\bigl(s,\mu u(s)+(\mu -1)e,\mu ^{-1} v(s)+\bigl(\mu ^{-1}-1\bigr)e\bigr)\,ds-e(t) \\& \quad \geq \psi (\mu ) \int ^{1}_{0} G(t,s)f\bigl(s,u(s),v(s) \bigr)\,ds-e(t) \\& \quad = \psi (\mu ) \int ^{1}_{0} G(t,s)f\bigl(s,u(s),v(s) \bigr)\,ds-e(t)+\psi (\mu )e(t)- \psi (\mu )e(t) \\& \quad = \psi (\mu )M(u,v) (t)+\bigl(\psi (\mu )-1\bigr)e(t) \end{aligned}$$and
$$\begin{aligned}& N\bigl(\mu u+(\mu -1)e,\mu ^{-1} v+\bigl(\mu ^{-1}-1 \bigr)e\bigr) (t) \\& \quad = \int ^{1}_{0} G(t,s)g\bigl(s,\mu u(s)+(\mu -1)e,\mu ^{-1} v(s)+\bigl(\mu ^{-1}-1\bigr)e \bigr)\,ds\\& \qquad{}-e(t)+\frac{ \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\& \quad \geq \mu \int ^{1}_{0} G(t,s)g\bigl(s,u(s),v(s) \bigr)\,ds-e(t)+\frac{\mu \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )}+\mu e(t)-\mu e(t) \\& \quad = \mu N(u,v) (t)+(\mu -1)e(t). \end{aligned}$$ - (4)
For all \(t\in [0, 1]\), combining with (C1) and (C2), we have
$$\begin{aligned} M(h,h) (t)+e(t)&= \int ^{1}_{0} G(t,s)f\bigl(s,h(s),h(s)\bigr)\,ds \\ &= \int ^{1}_{0} G(t,s)f\bigl(s,Hs^{\alpha -1},Hs^{\alpha -1} \bigr)\,ds \\ &\leq \int ^{1}_{0} \frac{Dt^{\alpha -1}}{\varGamma (\alpha )}f(s,H,0)\,ds \\ &= \frac{D}{\varGamma (\alpha )} \int ^{1}_{0}f(s,H,0)\,ds\cdot t^{\alpha -1} \\ &= \frac{D}{H\varGamma (\alpha )} \int ^{1}_{0}f(s,H,0)\,ds \cdot h(t) \end{aligned}$$and
$$\begin{aligned} M(h,h) (t)+e(t)&= \int ^{1}_{0} G(t,s)f\bigl(s,h(s),h(s)\bigr)\,ds \\ &= \int ^{1}_{0} G(t,s)f\bigl(s,Hs^{\alpha -1},Hs^{\alpha -1} \bigr)\,ds \\ &\geq \int ^{1}_{0} \frac{C(s)t^{\alpha -1}}{\varGamma (\alpha )}f(s,0,H )\,ds \\ &= \frac{1}{H\varGamma (\alpha )} \int ^{1}_{0}C(s) f(s,0,H )\,ds \cdot h(t). \end{aligned}$$From (C1), (C2) and (C4), for \(s\in [0,1]\), we derive that
$$ f(s,H,0)\geq f(s,0,H)\geq \delta g(s,H,0)+\frac{\varGamma (\alpha - \beta )\delta ^{2}}{AC(s)}\geq 0. $$Thus
$$ \int ^{1}_{0}f(s,H,0)\,ds\geq \int ^{1}_{0}f(s,0,H)\,ds \geq \int ^{1}_{0} \biggl(\delta g(s,H,0)+ \frac{\varGamma (\alpha -\beta )\delta ^{2}}{AC(s)} \biggr)\,ds\geq 0. $$Let
$$\begin{aligned}& l_{1}=\frac{D}{H\varGamma (\alpha )} \int ^{1}_{0}f(s,H,0)\,ds , \\& l_{2}=\frac{1}{H\varGamma (\alpha )} \int ^{1}_{0}C(s) f(s,0,H )\,ds . \end{aligned}$$Therefore \(l_{2}h(t)\leq M(h,h)(t)+e(t)\leq l_{1}h(t)\), that is, \(M(h,h)\in P_{h,e}\). Similarly, we obtain
$$\begin{aligned} N(h,h) (t)+e(t)&= \int ^{1}_{0} G(t,s)g\bigl(s,h(s),h(s)\bigr)\,ds+ \frac{\varGamma (\alpha -\beta )t ^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &= \int ^{1}_{0} G(t,s)g\bigl(s,Hs^{\alpha -1},Hs^{\alpha -1} \bigr)\,ds+\frac{\varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &\leq \int ^{1}_{0} \frac{Dt^{\alpha -1}}{\varGamma (\alpha )}g(s,H,0)\,ds+ \frac{ \varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &= \biggl(\frac{D}{\varGamma (\alpha )} \int ^{1}_{0}g(s,H,0)\,ds+\frac{\varGamma (\alpha -\beta )\lambda }{A\varGamma (\alpha )} \biggr) t^{\alpha -1} \\ &= \biggl(\frac{D}{H\varGamma (\alpha )} \int ^{1}_{0}g(s,H,0)\,ds+\frac{\varGamma (\alpha -\beta )\lambda }{HA\varGamma (\alpha )} \biggr) h(t) \end{aligned}$$and
$$\begin{aligned} N(h,h) (t)+e(t)&= \int ^{1}_{0} G(t,s)g\bigl(s,h(s),h(s)\bigr)\,ds+ \frac{\varGamma (\alpha -\beta )t ^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &= \int ^{1}_{0} G(t,s)g\bigl(s,Hs^{\alpha -1},Hs^{\alpha -1} \bigr)\,ds+\frac{\varGamma (\alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )} \\ &\geq \int ^{1}_{0} \frac{C(s)t^{\alpha -1}}{\varGamma (\alpha )}g(s,0 , H)\,ds \\ &= \frac{1}{\varGamma (\alpha )} \int ^{1}_{0}C(s)g(s,0 , H)\,ds\cdot t^{\alpha -1} \\ &= \frac{1}{H\varGamma (\alpha )} \int ^{1}_{0}C(s)g(s,0 , H)\,ds\cdot h(t). \end{aligned}$$Let
$$\begin{aligned}& l_{3}=\frac{1}{H\varGamma (\alpha )} \int ^{1}_{0}C(s)g(s,0 , H)\,ds, \\& l_{4}=\frac{D}{H\varGamma (\alpha )} \int ^{1}_{0}g(s,H,0)\,ds+\frac{\varGamma (\alpha -\beta )\lambda }{HA\varGamma (\alpha )}. \end{aligned}$$Thus \(l_{3}h(t)\leq N(h,h)(t)+e(t)\leq l_{4}h(t)\), that is, \(N(h,h)\in P_{h,e}\).
- (5)
For all \(u, v\in P_{h,e}\), \(t\in [0, 1]\) and \(\lambda \in (0, \delta ]\), by (C4), we have
$$\begin{aligned} M(u,v) (t)&= \int ^{1}_{0} G(t,s)f \bigl(s,u(s),v(s) \bigr)\,ds-e(t) \\ &\geq \int ^{1}_{0} G(t,s) \biggl(\delta g \bigl(t,u(s),v(s)\bigr)+\frac{\delta ^{2} \varGamma (\alpha -\beta )}{C(s)A} \biggr)\,ds-e(t) \\ &= \delta \int ^{1}_{0} G(t,s) g\bigl(t,u(s),v(s) \bigr)\,ds+ \int ^{1}_{0} G(t,s)\frac{ \delta ^{2}\varGamma (\alpha -\beta )}{C(s)A}\,ds-e(t) \\ &\geq \delta \int ^{1}_{0} G(t,s) g\bigl(t,u(s),v(s) \bigr)\,ds+\delta \int ^{1}_{0} \frac{C(s)t ^{\alpha -1}}{\varGamma (\alpha )}\cdot \frac{\delta \varGamma (\alpha - \beta )}{C(s)A}\,ds-e(t) \\ &\geq \delta \int ^{1}_{0} G(t,s) g\bigl(t,u(s),v(s) \bigr)\,ds+\delta \frac{\varGamma ( \alpha -\beta )t^{\alpha -1}\lambda }{A\varGamma (\alpha )}-e(t)+\delta e(t)-\delta e(t) \\ &= \delta N(u,v) (t)+(\delta -1)e(t). \end{aligned}$$Thus \(M(u,v)(t)\geq \delta N(u,v)(t)+(\delta -1)e(t)\). Consequently, all the conditions of Lemma 2.4 are satisfied, and the conclusion of Theorem 3.1 holds.
 □
Next, we will use an example to illustrate our main result.
Example 3.1
Consider the following boundary value problem:
where \(\lambda \in (0,\frac{1}{2}]\) is a positive parameter. Then the problem (3.1) has a unique solution.
Proof
The problem (3.1) can be viewed as the problem (1.1) when \(n=2\), \(\alpha =\frac{3}{2}\), \(\beta =\frac{1}{4}\), \(b=10\), \(\eta _{1}=\frac{1}{4}\), \(\eta _{2}=\frac{1}{2}\), \(\eta _{3}=\frac{3}{4}\), \(\xi _{1}=\xi _{2}=\xi _{3}=\frac{1}{10}\). Then we have
and
A direct calculation yields
and
Thus
Let
It is easy to check that \(f,g:(0,1)\times [-\frac{6}{25\varGamma ( \frac{3}{2})},+\infty )\times [-\frac{6}{25\varGamma (\frac{3}{2})},+ \infty )\to (-\infty ,+\infty )\) are continuous, \(f(t,u,v)\), \(g(t,u,v)\) are increasing in u and decreasing in v, and f, g are singular at \(t=1\). For \(t\in [0,1]\), \(g(t,0,H) =\frac{1}{\sqrt{1-t^{2}}}+ (\frac{6}{25\varGamma (\frac{3}{2})}+1 ) ^{\frac{1}{3}}+ (H+\frac{6}{25\varGamma (\frac{3}{2})}+1 ) ^{-1}>0\). Thus, (C1) and (C2) are satisfied.
For \(\mu \in (0,1)\), \(u,v\in P_{h,e}\), \(\rho \in [0,\frac{6}{25\varGamma (\frac{3}{2})}]\), there exists \(\psi (\mu )\in (\mu ,1)\) such that
where \(\psi (\mu )=\mu ^{\frac{1}{2}}\). Moreover, we deduce that
Thus, (C3) is satisfied. Furthermore, for \(u,v\in P_{h,e}\), letting \(\delta =\frac{1}{2}\), we have
Therefore, (C4) holds. In addition, we get
similarly,
Thus, (C5) is satisfied. Therefore, the application of Theorem 3.1 ensures that the problem (3.1) has a unique solution \(u^{*}\) for \(\lambda \in (0,\frac{1}{2}]\), and we can construct the following iterative sequences:
for any initial values \(\omega _{0}, \tau _{0} \in P_{h,e}\), we have \(\omega _{n}\rightarrow u^{*}\) and \(\tau _{n}\rightarrow u^{*}\) as \(n\rightarrow \infty \). □
Remark 3.1
For problem (3.1), we can take some negative values in nonlinear term \(f+g-10\). However, the authors of [18] required that the nonlinear term is non-negative. Therefore, Theorem 3.1 in [18] cannot be applied to dealing with the problem (3.1).
4 Conclusions
In this paper, we establish the existence and uniqueness theorem of the solution for fractional m-point boundary value problem. Our tool is mixed monotone fixed point theorem involving non-cone mapping. Furthermore, two iterative sequences to approximate the unique solution are also given.
References
Li, C., Luo, X., Zhou, Y.: Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations. Comput. Math. Appl. 59, 1363–1375 (2010)
Peng, L., Zhou, Y.: Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations. Appl. Math. Comput. 257, 458–466 (2015)
Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2008, 3 (2008)
Lv, Z.W.: Positive solutions of m-point boundary value problems for fractional differential equations. Adv. Differ. Equ. 2011, 571804 (2011)
Lv, Z.W.: Existence results for m-point boundary value problems of nonlinear fractional differential equations with p-Laplacian operator. Adv. Differ. Equ. 2014, 69 (2014)
Afshari, H., Marasi, H., Aydi, H.: Existence and uniqueness of positive solutions for boundary value problems of fractional differential equations. Filomat 31(9), 2675–2682 (2017)
Bai, Z., Lv, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495–505 (2005)
Liang, S., Zhang, J.: Existence and uniqueness of strictly nondecreasing and positive solution for a fractional three-point boundary value problem. Comput. Math. Appl. 62, 1333–1340 (2011)
Sang, Y.B., Ren, Y.: Nonlinear sum operator equations and applications to elastic beam equation and fractional differential equation. Bound. Value Probl. 2019, 49 (2019)
Graef, J.R., Yang, B.: Positive solutions of a nonlinear fourth order boundary value problem. Commun. Appl. Nonlinear Anal. 14, 61–73 (2007)
Goodrich, C.S.: Existence of a positive solution to a class of fractional differential equations. Appl. Math. Lett. 23, 1050–1055 (2010)
Cabrera, I.J., López, B., Sadarangani, K.: Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator. J. Comput. Appl. Math. 327, 306–313 (2018)
Zhai, C., Anderson, D.R.: A sum operator equation and applications to nonlinear elastic beam equations and Lane–Emden–Fowler equations. J. Math. Anal. Appl. 375, 388–400 (2011)
Jleli, M., Samet, B.: Existence of positive solutions to an arbitrary order fractional differential equation via a mixed monotone operator method. Nonlinear Anal., Model. Control 20, 367–376 (2015)
Liu, L.S., Zhang, X.Q., Jiang, J., Wu, Y.H.: The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems. J. Nonlinear Sci. Appl. 9, 2943–2958 (2016)
Xu, J.F., Wei, Z.L., Dong, W.: Uniqueness of positive solutions for a class of fractional boundary value problems. Appl. Math. Lett. 25, 590–593 (2012)
Wang, H., Zhang, L.L., Wang, X.Q.: New unique existence criteria for higher-order nonlinear singular fractional differential equations. Nonlinear Anal., Model. Control 24, 95–120 (2019)
Tan, J.J., Tan, C., Zhou, X.L.: Positive solutions to n-order fractional differential equation with parameter. J. Funct. Spaces 2018, Article ID 183 (2018)
Kong, L., Kong, Q.: Second-order boundary value problems with nonhomogeneous boundary conditions. I. Math. Nachr. 278, 173–193 (2005)
Kong, L., Kong, Q.: Second-order boundary value problems with nonhomogeneous boundary conditions. II. J. Math. Anal. Appl. 330, 1393–1411 (2007)
Graef, J.R., Kong, L.J.: Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218, 9682–9689 (2012)
Li, X.C., Liu, X.P., Jia, M., Zhang, L.C.: The positive solutions of infinite-point boundary value problem of fractional differential equations on the infinite interval. Adv. Differ. Equ. 2017, 126 (2017)
Su, X.F., Jia, M., Li, M.M.: The existence and nonexistence of positive solutions for fractional differential equations with nonhomogeneous boundary conditions. Adv. Differ. Equ. 2016, 30 (2016)
Lee, E.K., Park, Y.: Existence of positive solutions to nonlocal boundary value problems with boundary parameter. East Asian Math. J. 32, 621–633 (2016)
Wang, W.X., Guo, X.T.: Eigenvalue problem for fractional differential equations with nonlinear integral and disturbance parameter in boundary conditions. Bound. Value Probl. 2016, 42 (2016)
Jia, M., Liu, X.P.: The existence of positive solutions for fractional differential equations with integral and disturbance parameter in boundary conditions. Abstr. Appl. Anal. 2014, Article ID 131548 (2014)
Liu, X.Q., Liu, L.S., Wu, Y.H.: Existence of positive solutions for a singular non-linear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound. Value Probl. 2018, 24 (2018)
Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
Guo, D.: Partial Order Methods in Nonlinear Analysis. Shandong Science and Technology Press, Jinan (2000) (in Chinese)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993)
Kilbas, A., Srivastava, H., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)
Acknowledgements
Not applicable.
Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
Funding
This project is supported by the Programs for the Cultivation of Young Scientific Research Personnel of Higher Education Institutions in Shanxi Province, Innovative Research Projects for Postgraduate Students of School of Science in North University of China and the Fund for Shanxi ‘1331KIRT’.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Sang, Y., He, L. Existence and uniqueness of nontrivial solution for nonlinear fractional multi-point boundary value problem with a parameter. Adv Differ Equ 2020, 51 (2020). https://doi.org/10.1186/s13662-020-2518-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-020-2518-1