- Research
- Open access
- Published:
A new class of nonlinear Gronwall–Bellman delay integral inequalities with power and its applications
Advances in Difference Equations volume 2021, Article number: 243 (2021)
Abstract
In this paper, we establish some new delay Gronwall–Bellman integral inequalities with power, which can be used as a convenient tool to study the qualitative properties of solutions to differential and integral equations. We also give some examples to illustrate the application of our results to obtain the estimation for the solution of the integral and differential equations.
1 Introduction
The field of differential equations has developed a perfect structure. Since the 20th century, inequality theory has been an active research field, a series of basic theories of inequalities have been also established [1–4]. Since for most differential equations it is difficult to find the exact form of expression, people turn to studying the qualitative nature of the solutions of differential equations, for example, the existence, uniqueness, asymptotic property, boundedness and vibration of solutions of differential equations and difference equations; inequalities have become important tools to study the qualitative properties of differential equations. In recent decades, related studies on integral inequalities have produced many results (see [5–26] and the references therein). In 1919, Gronwall [1] established the following important integral inequality for a continuous function u:
In 1943, Bellman [2] obtained the estimation of the unknown function u for some constant \(c \geq 0\),
In 1975, Pachpatte [3] studied the following integral inequality:
where u, f, and g are real-valued nonnegative continuous functions defined on \(I = [0, \infty )\), and \(a(t)\) is a positive, monotonic, nondecreasing continuous function defined on I.
In 1999, Owaidy et al. [5] discussed the following inequality:
where u, f and g are real-valued nonnegative continuous functions defined on \(I=[0,\infty )\).
In recent years, the time-delay dynamic equation has attracted much interest, Lipovan et al. [6] assume \(u, f, g \in C([t_{0},T),R_{+})\), and \(\alpha \in C^{1}([t_{0},T),(t_{0},T))\) are nondecreasing with \(\alpha (t)\leq t\) on \([t_{0},T)\), and \(w\in C(R_{+},R_{+})\) are nondecreasing with \(w(u)>0\) for \(u>0\), then they studied the following retarded integral inequality in 2000:
In 2005, Agarwal et al. [7] discussed the following n-term delay integral inequality:
where u is a continuous and nonnegative function on \([t_{0},t_{1})\).
In 2011, Abdeldaim et al. [8] studied the following Gronwall–Bellman type inequality with power:
where u, f and h are nonnegative real-valued continuous functions defined on \([0,\infty )\), and \(u_{0}\) and p are positive constants.
In 2019, Li et al. [9] made the following improvement on the basis of the above inequality:
where \(u, a, f \in C(R_{+}, R_{+})\), \(a(t) \geq 1\), and α is a continuous, differentiable and increasing function on \([t_{0},\infty )\) with \(\alpha (t) \leq t\), \(\alpha (t_{0}) = t_{0}\).
In this paper, inspired by the above work, we mainly establish the following nonlinear Gronwall–Bellman inequalities:
The structure of this paper is as follows: In Sect. 2, we illustrates some basic lemmas, which will be used in later sections. In Sect. 3, we give some new nonlinear Gronwall–Bellman inequalities. In Sect. 4, we give two examples to illustrate the application of the obtained results in the qualitative research of differential equation solutions. In Sect. 5, we conclude our results.
2 Preliminaries
First, we explain some symbols will to be used: R denotes the set of real numbers and \(\textbf{R}_{+}=[0,\infty )\), and \(C(M,S)\) denotes the class of all continuous functions on the set M with range in the set S.
Here are some very useful lemmas.
Lemma 2.1
([11])
Assume \(a\geq 0\), \(p\geq{q}\geq 0\) and \(p\neq 0\), we have
We can get the following exceptional cases.
Let \(K = 1\), we have
Let \(K = 1\), \(p=1\), we have
Lemma 2.2
Let \(u, g , \sigma \in C(R_{+},R_{+})\), \(\sigma '(t)\geq 0 \) and \(\sigma (t)\leq t\), \(\sigma (t_{0})=t_{0}\), \(r \in (0,1]\), \(u_{0} >0\). If \(u(t)\) satisfies the inequality
then
Proof
We assume that
then
and \(u(t)\leq v(\sigma (t))\leq v(t)\), \(v(\sigma (t_{0}))= u_{0}\). Differentiating with respect to t of (9) and using (6), we get
then
Multiplying by \(\exp ( { - r\int _{{t_{0}}}^{\sigma (t)} {g(\xi )\,d\xi } } )\) on both sides of the above inequality, we can get
Next, integrating t from \(t_{0}\) to t for the above inequality, we get
Since \(v(\sigma (t_{0}))=u_{0}\), we can get the estimation
This completes the proof. □
3 Main result and proof
In this section, we establish and prove a new class of nonlinear Gronwall–Bellman type delay integral inequalities with power.
Theorem 3.1
We assume \(u,a,f,h\in C(R_{+},R_{+})\), and let \(\sigma (t) \in C[t_{0},\infty )\), \(\sigma '(t)\geq 0 \) and \(\sigma (t)\leq t\), \(\sigma (t_{0})= t_{0}\). \(q\geq \alpha >0\), \(q\geq \beta >0\), \(p \in (0,1]\) and \(q\geq p\). If u satisfies the inequality (1), then we can get
where
Proof
Using (6), we have
Plugging (11) into (1), we can get
Now, we define \(v(t)\) by
then \(v(t)\) is a nondecreasing function, using (12) and (13), we obtain
Using (5), from the above inequality we get
and
Plugging (14) and (15) into (13), we can obtain
where \(t\in [t_{0},T]\), \(T\in R_{+}\), and
Let
Then we can get \(y(t)\) is a nondecreasing and positive function, and \(v(t)\leq y(t)\), \(y(t_{0})=B(T)\). Differentiating \(y(t)\) with respect to t and using \(\sigma (t)\leq t\), we have
From the above inequality we get
Integrating both side of the above inequality from \(t_{0}\) to t, then we can obtain the estimation for \(y(t)\):
by \(v(t)\leq y(t)\) and \(u(t) \leq [a(t) + v(t)]^{\frac{1}{q}}\), we can obtain
Thus
Because of the arbitrariness of T, we can obtain
The proof is complete. □
Remark 1
If \(q=1\), Theorem 3.1 reduces to Theorem 2.1 in [9]. If \(q=p\), \(a(t)=x_{0}\), \(\sigma (t)=t\), \(p=\beta =1\), \(\alpha =q\), Theorem 3.1 reduces to Theorem 2.3 in [10]. If \(q=1\), \(a(t)=x_{0}\), \(\sigma (t)=t\), \(p=\beta =1\), \(\alpha =2-p\), \(\beta =q\), Theorem 3.1 reduces to Theorem 2.5 in [10]. If \(q=1\), \(a(t)=x_{0}\), \(\sigma (t)=t\), \(\alpha =p\), \(\beta =2p-1\), Theorem 3.1 reduces to Theorem 2.8 in [10].
Theorem 3.2
We assume \(u, g, h \in C(R_{+},R_{+})\), \(\sigma (t) \in [t_{0},\infty )\), \(\sigma '(t)\geq 0\), \(\sigma (t)\leq t\), \(\sigma (t_{0})= t_{0}\), \(r\in (0,1]\), \(p>1\), \(m>1\). If u satisfies the inequality (2), then
where
Proof
First, we denote
and \(J(t)\) is a nondecreasing and nonnegative continuous function, then
and \(u(t)\leq J(\sigma (t))\leq J(t)\), \(J(\sigma (t_{0}))=J(t_{0})=u_{0}\). Differentiating with respect to t of the above equation, we get
which means
where \(Y(t) = {J^{m}}(t) + \int _{t_{0}}^{t} {h(\lambda ){J^{m}}(\lambda )\,d\lambda } \), then \(Y(\sigma (t)) = {J^{m}}(\sigma (t)) + \int _{t_{0}}^{\sigma (t)} {h( \lambda ){J^{m}}(\lambda )\,d\lambda } \), hence \(Y(\sigma ({t_{0}})) = {J^{m}}(\sigma ({t_{0}})) = {J^{m}}(t_{0})={u_{0}}^{m}\), we can conclude that
Differentiating with respect to t of \(Y(\sigma (t))\), we get
then
from the above inequality, we can get
Denote
then \(\Gamma (\sigma (t)) = {Y^{\frac{{1 - r - mp}}{m}}}(\sigma (t))\), \(\frac{{d\Gamma (\sigma (t))}}{{dt}} = \frac{{1 - r - mp}}{m}{Y^{ \frac{{1 - m - r - mp}}{m}}}(\sigma (t))\sigma '(t) \frac{{dY(\sigma (t))}}{{d\sigma}}\), and \(\Gamma (\sigma ({t_{0}})) = {Y^{\frac{{1 - r - mp}}{m}}}(\sigma ({t_{0}})) = u_{0}^{1 - r - mp}\), from \(1-r-mp<0\) and (19), we have
Multiplying by \(\exp ( {\frac{{r + mp - 1}}{m}\int _{{t_{0}}}^{\sigma (t)} {h( \xi )\,d\xi } } )\) on both sides of the above inequality, we get
Integrating both sides of the above inequality from \(t_{0}\) to t, we can get
Since \(\Gamma (\sigma ({t_{0}})) = {Y^{\frac{{1 - r - mp}}{m}}}(\sigma ({t_{0}})) = {u_{0}^{1 - r - mp}}\), we get
which means
Let \(\Omega (t) ={u_{0}^{r + mp-1}} \exp ( {\frac{{r + mp - 1}}{m} \int _{{t_{0}}}^{t} {h(\xi )\,d\xi } } )\), using \(\Gamma (\sigma (t)) = {Y^{\frac{{1 - r - mp}}{m}}}(\sigma (t))\), we can get
where \(1+(1 - r - mp)\int _{{t_{0}}}^{\sigma (t)} {g(\xi )\Omega (\xi )\,d\xi } > 0\).
By the definition of \(\beta (t)\), plugging the above inequality into (18), we can get
Integrating both sides of the above inequality from t to \(t_{0}\), we get
Therefore, from Lemma 2.2 we can get
The proof is completed. □
Remark 2
If \(u_{0}=x_{0}\), \(\sigma (t)=t\), and \(r=m=1\), Theorem 3.2 reduces to Theorem 3.2 in [8].
In the following, we discuss the inequality (3). First we assume that the following conditions are satisfied;
- \((C_{1})\):
-
\(\varphi (u)\) is a positive continuous and strictly increasing function on \([0,\infty )\).
- \((C_{2})\):
-
\(h_{j}(u)\), (\(j=1,2,3,4\)) are positive, continuous and increasing functions on \([0,\infty )\), and \(\frac{{{h_{j + 1}}(t)}}{{{h_{j}}(t)}}\), (\(j=1,2,3\)) are nondecreasing functions. Moreover, let
$$\begin{aligned} {y_{j}}(t) = \frac{{{h_{j}}(t)}}{{{h_{1}}(t)}}, \quad j = 1,2,3,4, \end{aligned}$$(20)thus \({y_{j}}(t)\) are nondecreasing functions, \(y_{1}(t)=1\) and
$$\begin{aligned} \frac{{{y_{j + 1}}(t)}}{{{y_{j}}(t)}} = \frac{{{h_{j + 1}}(t)}}{{{h_{j}}(t)}}, \quad j = 1,2,3, \end{aligned}$$(21)then \(\frac{{{y_{j + 1}}(t)}}{{{y_{j}}(t)}}\) are nondecreasing, positive and continuous functions.
- \((C_{3})\):
-
We define the following functions:
$$\begin{aligned} {H_{j}}(u) = \int _{1}^{u} { \frac{{d\xi }}{{{h_{j}}(\varphi ^{ - 1}(\xi ))}}} , \quad j = 1,2,3,4. \end{aligned}$$(22)Then \(H_{j} \) are positive continuous and strictly increasing functions on \([0,\infty )\). We assume that \(H_{j}^{-1}\) define the inverse function of \(H_{j}\), which are also continuous nondecreasing functions.
- \((C_{4})\):
-
\(a(t) \) is a continuous function on \([t_{0},\infty )\), \(a(t)\geq 0\), \(a(t_{0})\neq 0\), and \({{g_{j}}(t,\xi )}\) (\(j=1,2,3\)) and \({f}(t,\xi )\) are continuous functions on \([t_{0},\infty )\times [t_{0},\infty )\).
- \((C_{5})\):
-
We assume that \({g}(t,\xi )\), \({f}(t,\xi )\) are nondecreasing and continuous functions on \([t_{0},\infty )\times [t_{0},\infty )\), and
$$\begin{aligned} {{ g}_{4}}(t,\xi ) = \int _{\xi}^{t} { {g}(t,\theta )} {f}(\theta , \xi )\,d\theta ,\quad t,\xi \in [t_{0},\infty ). \end{aligned}$$ - \((C_{6})\):
-
\(a(t)+\sum_{j = 1}^{4} {{g_{j}}(t,\xi ){h_{j}}(u(\xi )} ) > 0\).
Theorem 3.3
Suppose the conditions \((C_{1})\)–\((C_{6})\) are satisfied, u is a positive and continuous function on \(t\geq t_{0} \geq 0\), if u satisfies (3), we can get the following estimation for u:
where
Proof
Since \({g}(t,\xi )\), \({f}(t,\xi )\), \({h}_{4}(u(t))\) are nondecreasing and continuous functions, by \((C_{5})\), we can get
where the first equality is obtained by swapping the order of double integral, the second equality is obtained by \(\theta =\xi \), the third equality is a simplification of the above equation obtained by \((C_{5})\). Plugging (24) into (3), we can write (3) as
For any fixed \(T\in [t_{0},\infty ) \) and for \(t \in [t_{0},T ]\), from the above inequality, we have
We assume that
thus \(z_{1}(t)\) is a nondecreasing and nonnegative continuous function, and we have \(\varphi (u(t)) \leq z_{1}(t)\), \(u(t) \leq \varphi ^{ - 1}(z_{1}(t))\), \(z_{1}({t_{0}}) = a({t_{0}})\), \(z_{1}(t) \geq a(t)\). We can take the derivative with respect to t in (25), then
Multiplying both sides of the above inequality by \(\frac{1}{{{h_{1}}(\varphi ^{ - 1}(z_{1}(t)))}}\), meanwhile using (20), we have
integrating both sides of the above inequality from \(t_{0}\) to t, and using the definition of (22), we obtain
which means
We assume that
and
from (27) and (28), (26) can be written as
Then we assume that
thus \({z_{2}}(t)\) is a nondecreasing and continuous function, and \({\eta _{1}}(t) \leq {z_{2}}(t)\), \({z_{2}}({t_{0}}) = {A_{2}}({t_{0}})\), \(A_{2}(t)\leq z_{2}(t)\).
We define a function as
then, by (21) and (30), we can obtain
from (22), we have \(H_{j}(1)=0\), \(H_{j}^{-1}(0)=1\), \((H_{j}(t))'= \frac{1}{h_{j}(\varphi ^{-1}(t))}\). Taking the derivative with respect to t in (29), then multiplying both sides of it by \(\frac{1}{{{y_{2}}(\varphi ^{ - 1}(H_{1}^{ - 1}({z_{2}}(t))))}}\), by \(y_{1}(t)=1\), we have
Again, integrating both sides of (31) from \(t_{0}\) to t, and by the definition in (30) and (20), we can obtain
using \({z_{2}}({t_{0}}) = {A_{2}}({t_{0}})\), we have
From (31), the above inequality can be written as
Let
and
thus \(H_{1}^{ - 1}({z_{2}}(t)) = H_{2}^{ - 1}({\eta _{2}}(t))\), and by (31) and (32), the inequality (31) can be written as
Again, we assume that
we can see that \({z_{3}}(t)\) is a nondecreasing function on \([t_{0},t]\), and \({\eta _{2}}(t) \leq {z_{3}}(t)\), \({z_{3}}(t) \geq {A_{3}}(t)\), \({z_{3}}({t_{0}})={A_{3}}({t_{0}})\). Differentiating \({z_{3}}(t)\) with respect to t, we can obtain
multiplying by \(\frac{{{y_{2}}(\varphi ^{ - 1}(H_{2}^{ - 1}({z_{3}}(t))))}}{{{y_{3}}(\varphi ^{ - 1}(H_{2}^{ - 1}({z_{3}}(t))))}}\), then integrating both sides from \(t_{0}\) to t, and using \((C_{2})\), we can obtain
then
by \({z_{3}}({t_{0}})={A_{3}}({t_{0}})\), we can obtain
Using (31), we can obtain
Again, let
thus \(H_{2}^{ - 1}({z_{3}}(t)) = H_{3}^{ - 1}({\eta _{3}}(t))\), using (35) and (36), the inequality (34) can be written as
We assume that
then we see that \({z_{4}}(t)\) is a nondecreasing function on \([t_{0},t]\), and \({\eta _{3}}(t) \leq {z_{ {4}}}(t)\), \({z_{4}}(t) \geq {A_{4}}(t)\), \({z_{ {4}}}({t_{0}})={A_{4}}({t_{0}})\).
Differentiating (37) with respect to t, we can obtain
Now, multiplying both sides of it by \(\frac{{{y_{3}}(\varphi ^{ - 1}(H_{3}^{ - 1}({z_{ {4}}}(t))))}}{{{y_{4}}(\varphi ^{ - 1}(H_{3}^{ - 1}({z_{ {4}}}(t))))}}\), then integrating both sides of it from \(t_{0}\) to t, and using \((C_{2})\), we can obtain
thus
by \({z_{ {4}}}({t_{0}})={A_{4}}({t_{0}})\), we can obtain
Using the definition of (31), we can get
thus
Using (27), (31), (33), (35) and (38), we can obtain
then we have
where \({A_{5}}(t) = {H_{4}}(H_{3}^{ - 1}({A_{4}}(t))) + \int _{t_{0}}^{t} {{{g}_{4}}(T,\xi )\,d\xi } \), because of T being arbitrary, we can obtain
The proof is complete. □
Remark 3
If \(h_{3}\equiv 0 \), we can see that Theorem 3.3 reduces to Theorem 2.3 in [9]. If \(\varphi (u(t))=x^{p}(t)\), \(a(t)=x_{0}\), \(g_{1}(t,\xi )=f(s)\), \(h_{1}(u(t))=x^{p}(t)\), \(g_{2}(t,\xi )=h(s)\), \(h_{2}(u(t))=x^{q}(t)\), and \(g(t,\xi )=g_{3}(t,\xi )=0\), Theorem 3.3 reduces to Theorem 3.1 in [8]. If \(h_{1}(u(t))=\eta (u(s))w(u(s))\), \(h_{2}(u(t))=\eta (u(s))\), and \(g(t,\xi )=g_{3}(t,\xi )=0\), Theorem 3.3 reduces to Theorem 1 in [12].
4 Applications of the result
In this section, we apply the results of the previous section to study the boundedness of solutions of differential equations and integral equations.
-
1.
First, let us consider the Volterra type retarded integral equation
$$\begin{aligned} {\chi ^{4}}(t) =b(t)+ \int _{{t_{0}}}^{\sigma (t)} {g(\xi ){{ \biggl[ {{ \chi ^{2}}(\xi ) + \int _{{t_{0}}}^{\xi}{w(\lambda ){\chi ^{2}}( \lambda )\,d\lambda } } \biggr]}^{\frac{1}{3}}}\,d\xi } , \end{aligned}$$(39)which often occurs in physical and mechanical applications.
Example 4.1
We assume \(\chi (t), b(t), g(t), w(t)\in C(R_{+},R_{+})\), and let \(\sigma (t) \in C[t_{0},\infty )\), \(\sigma '(t)\geq 0 \) and \(\sigma (t)\leq t\), \(\sigma (t_{0})= t_{0}\). We can obtain the estimate for \(\chi (t)\) as follows:
where
Proof
By (39), we have
taking \(|\chi (t)| = u(t)\), (40) can be written as
Here, we can conclude that (41) satisfies the conditions of Theorem 3.1 with \(q = 4\), \(\alpha = \beta = 2\), \(p = \frac{1}{3}\), \(a(t) = |b (t)|\), \(h(t) = |w(t)|\), \(f(t) = |g(t)|\), using Theorem 3.1, our conclusion obviously holds. □
-
2.
Next, we consider the following integral equation:
$$\begin{aligned} {\chi}(t) ={\chi _{0}} + \int _{{t_{0}}}^{\sigma (t)} {f(\xi ){\chi ^{\frac{1}{5}}(\xi )} { \biggl[ {{\chi ^{3}}(\xi ) + \int _{{t_{0}}}^{\xi}{w( \lambda ){\chi ^{3}}(\lambda )\,d\lambda } } \biggr]}^{4}\,d\xi } . \end{aligned}$$(42)
Example 4.2
We assume \(\chi (t), f(t), w(t)\in C(R_{+},R_{+})\), \(\chi '(t)\geq 0\), \(\sigma (t) \in [t_{0},\infty )\), \(\sigma '(t)\geq 0\), \(\sigma (t)\leq t\), \(\sigma (t_{0})= t_{0}\), then we can get
where
Proof
Using (42), we have
let \(|\chi (t)|=u(t)\), the above inequality is written as
Here, we can conclude that (44) satisfies the conditions of Theorem 3.2 with \(m = m = 3\), \(p = 4\), \(r=\frac{1}{5}\), \(u_{0}=\chi _{0}\), \(h(t) = |w(t)|\), \(g(t) = |f(t)|\), using Theorem 3.2, our conclusion obviously holds. □
-
3.
We consider the following differential system:
$$\begin{aligned} \textstyle\begin{cases} s'(t) = G(t,s), & t \in [0,\infty ), \\ s(0) = a_{0} , \end{cases}\displaystyle \end{aligned}$$(45)where \(G(t,s)\) is a continuous function on \([0,\infty )\times (-\infty ,-e\sqrt{e}]\cup [e\sqrt{e},+\infty )\), \(a_{0}>0\). We assume that \(G(t,s)\) satisfies the following inequality:
$$\begin{aligned} \bigl\vert G(t,s) \bigr\vert \leq {t^{2}}\sqrt[5]{ \vert s \vert } + \frac{{ \vert s \vert }}{3} - \frac{{ \vert s \vert \ln \vert s \vert }}{2} + \frac{{e^{ \vert s \vert }}}{4}. \end{aligned}$$(46)
Example 4.3
Let \(G(t,s)\) satisfy the condition of inequality (46), all solutions of differential system (45) satisfy the following estimates:
Proof
Integrating the differential system (45) from 0 to t, we can get
by (46), we can obtain
taking \(|s(t)| = u(t)\), the above inequality can be written as
we can see that Eq. (49) satisfies (24) : \(a(t)=a_{0}\), \({{g}_{1}}(t,\xi ) = {t^{2}}\), \({{g}_{2}}(t,\xi ) = \frac{1}{3}\), \({{ g}_{3}}(t,\xi ) = - \frac{1}{2}\), \({{ g}_{4}}(t,\xi ) = \frac{1}{4}\), \({h_{1}}(u) = \sqrt[5]{|u|} \), \({h_{2}}(u) = |u|\), \({h_{3}}(u) = |u|\ln |u|\), \({h_{4}}(u) = {e^{|s|}}\), \(\frac{h_{2}(t)}{h_{1}(t)}= \frac{|u|}{\sqrt[5]{|u|}}=|u|^{\frac{4}{5}}\), \(\frac{h_{3}(t)}{h_{2}(t)}=\ln |u|\), \(\frac{h_{4}(t)}{h_{3}(t)}= \frac{{e^{|s|}}}{|u|\ln |u|}\), then we can see that \(\frac{{{h_{j + 1}}(t)}}{{{h_{j}}(t)}}\), (\(j = 1,2,3\)) is a nondecreasing function for \(u>0\). then we can obtain
Using Eq. (23) of Theorem 3.3, we have
then
which means that \(u(t)\) is bounded, for \(t\in [0,\infty )\). The proof is completed. □
5 Conclusion
In this paper, we first give a new lemma about the nonlinear Gronwall–Bellman delay integral inequality, then we establish some new delay Gronwall–Bellman integral inequalities with power. And the inequalities obtained in this paper are further generalizations of some results obtained by Li et al. [9]. The results of this paper contribute to the study of the qualitative properties of solutions of differential and integral equations. By the method of Theorem 3.3 in this paper, we can further generalize Eq. (3) to
then we can get similar results for the estimations on \(u(t)\).
Availability of data and materials
We declare that the data and material in the paper can be used publicly.
References
Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919)
Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10, 643–647 (1943)
Pachpatte, B.G.: On some generalizations of Bellman’s lemma. J. Math. Anal. Appl. 51(1), 141–150 (1975)
Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities, Theory and Applications. Academic Press, New York (1969)
EI-Owaidy, H., Ragab, A., Abdeldaim, A.: On some new integral inequalities of Gronwall–Bellman type. Appl. Math. Comput. 106, 289–303 (1999)
Lipovan, O.: A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 252, 389–401 (2000)
Agarwal, R.P., Deng, S.F., Zhang, W.N.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599–612 (2005)
Abdeldaim, A., Yakout, M.: On some new integral inequalities of Gronwall–Bellman–Pachpatte type. Appl. Math. Comput. 217, 7887–7899 (2011)
Li, Z.Z., Wang, W.S.: Some nonlinear Gronwall–Bellman type retarded integral inequalities with power and their applications. Appl. Math. Comput. 347, 839–852 (2019)
El-Owaidy, H., Ragab, A., Abuelela, W., El-Deeb, A.A.: On some new nonlinear integral inequalities of Gronwall–Bellman type. Kyungpook Math. J. 54, 555–575 (2014)
Jiang, F.C., Meng, F.W.: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479–486 (2007)
Ferreira, R.A.C., Torres, D.F.M.: Generalized retarded integral inequalities. Appl. Math. Lett. 22, 876–881 (2009)
Li, W.N., Han, M.A., Meng, F.W.: Some new delay integral inequalities and their applications. J. Comput. Appl. Math. 180, 191–200 (2005)
Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, London (1998)
Agarwal, R.P., Kim, Y.H., Sen, S.K.: New retarded integral inequalities with applications. J. Inequal. Appl. 2008, 908784 (2008)
Abdeldaim, A., EI-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations. Appl. Math. Comput. 256, 375–380 (2015)
Bainov, D.D., Simeonov, P.: Integral Inequalities and Applications. Kluwer Academic, Dordrecht (1992)
Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchys Equation and Jensens Inequality. University of Katowice, Katowice (1985)
Li, W.N., Han, M.A., Meng, F.W.: Some new delay integral inequalities and their applications. J. Comput. Appl. Math. 180, 191–200 (2005)
Li, Z.Z., Wang, W.S.: Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications. J. Inequal. Appl. 2017(287), 20 (2017)
Pachpatte, B.G.: Explicit bounds on certain integral inequalities. J. Math. Anal. Appl. 267, 48–61 (2002)
Feng, Q.H., Meng, F.W.: Some new Gronwall-type inequalities arising in the research of fractional differential equations. J. Inequal. Appl. 2013, 429 (2013)
Shao, J., Meng, F.W.: Gronwall–Bellman type inequalities and their applications to fractional differential equations. Abstr. Appl. Anal. 2013, Article ID 217641 (2013)
Medved, M.: Integral inequalities and global solutions of semilinear evolution equations. J. Math. Anal. Appl. 267, 643–650 (2002)
Xu, R., Meng, F.W.: Some new weakly singular integral inequalities and their applications to fractional differential equations. J. Inequal. Appl. 2016, 78 (2016)
Zhou, J., Shen, J., Zhang, W.N.: A powered Gronwall-type inequality and applications to stochastic differential equations. Discrete Contin. Dyn. Syst. 36(12), 7207–7234 (2016)
Acknowledgements
The authors would like to express their sincere thanks to the editor and anonymous reviewers for their helpful comments and suggestions.
Funding
This research is supported by National Science Foundation of China (11671227, 11971015) and the Natural Science Foundation of Shandong Province (ZR2019MA034).
Author information
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fang, B., Liu, Y. & Xu, R. A new class of nonlinear Gronwall–Bellman delay integral inequalities with power and its applications. Adv Differ Equ 2021, 243 (2021). https://doi.org/10.1186/s13662-021-03291-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03291-2