Skip to main content

Theory and Modern Applications

Oscillatory behavior of nonlinear Hilfer fractional difference equations

Abstract

In this paper, we study the oscillation behavior for higher order nonlinear Hilfer fractional difference equations of the type

$$\begin{aligned}& \Delta _{a}^{\alpha ,\beta }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr) =\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr),\quad x\in \mathbb{N}_{a+n-\alpha }, \\& \Delta _{a}^{k-(n-\gamma )}y(x) \big|_{x=a+n-\gamma } = y_{k}, \quad k= 0,1,\ldots,n, \end{aligned}$$

where \(\lceil \alpha \rceil =n\), \(n\in \mathbb{N}_{0}\) and \(0\leq \beta \leq 1\). We introduce some sufficient conditions for all solutions and give an illustrative example for our results.

1 Introduction

In recent years, fractional differential equations and fractional difference equations have been attractive areas for researchers. This is because using in modeling real problems fractional order equations gives highly accurate results rather than integer order equations [1, 2]. Studying the behavior of solutions is very important for analyzing equations, so the existence and uniqueness, stability, and oscillation of the solutions are the areas where researchers have worked most, recently. Many studies have been done on the oscillation of fractional differential equations [311], functional differential equations [1215], and dynamic equations on time scales [16, 17]. However, few researchers addressed the oscillation of fractional difference equations [1828].

In [29], Haider et al. introduced a new definition of a fractional difference operator which is a generalization of Riemann–Liouville and Caputo type difference operator. This operator interpolates the Riemann–Liouville like fractional difference (\(\beta =0\)) and the Caputo like fractional difference (\(\beta =1\)). The type-parameter produces more types of stationary states and provides an extra degree of freedom on the initial condition. No one has studied, to the best of our knowledge, the oscillation of equations involving the Hilfer difference operator in the literature.

In [5], Grace et al. initiated the oscillation theory for fractional differential equations of the form

$$ D_{a}^{\alpha }y(x)+f_{1}(x,y)=\nu (x)+f_{2}(x,y),\qquad \lim_{t\to a^{+}}J_{a}^{1- \alpha }y(x)=b_{1}, $$

where \(D_{a}^{\alpha }\) is the Riemann–Liouville differential operator of order α, \(0<\alpha \leq 1\) and the functions \(f_{1}\), \(f_{2}\), ν are continuous. The results are also stated when the Riemann–Liouville differential operator is replaced by Caputo’s differential operator.

In [21], Marian et al. gave similar conclusions for the oscillation behavior of the nonlinear fractional difference equations of the form

$$ \begin{aligned} & \Delta ^{\alpha }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr)=\nu (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr), \quad x\in \mathbb{N}_{0}, \\ & \Delta ^{\alpha -1}y(x) \big| _{x=0}=x_{0}, \end{aligned} $$
(1)

where \(\Delta ^{\alpha }\) denotes the Riemann–Liouville like discrete fractional difference operator of order α, \(0<\alpha \leq 1\). In [22], Marian et al. obtained some new results for the initial value problem (1).

In [20], Kısalar et al. considered higher order fractional nonlinear difference equation of the form

$$ \begin{aligned} & \Delta ^{\alpha }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr)=\nu (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr), \quad x\in \mathbb{N}_{0},m-1< \alpha \leq m, \\ & \Delta ^{\alpha -1}y(x) \big| _{x=0}=x_{0}, \end{aligned} $$

where \(\Delta ^{\alpha }\) denotes the Riemann–Liouville like discrete fractional difference operator of order α and \(m\geq 1\).

This paper aims to state some oscillation criteria for a class of higher order nonlinear Hilfer fractional difference equations. Some sufficient conditions will be given for the oscillation of the solution of Hilfer fractional difference equations. The results also contain new conditions for the oscillation of the solutions of the Riemann–Liouville and Caputo difference equations.

2 Preliminaries

Definition 1

([30])

Suppose f is a real valued function defined on \(\mathbb{N}_{a}\) and \(\alpha >0\). Then the αth fractional sum of f is defined by

$$ \Delta ^{-\alpha }_{a}f(x):=\sum _{t=a}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr)f(t) $$
(2)

for \(x\in \mathbb{N}_{a+\alpha }\), where \(t^{\underline{\alpha }}\) is the generalized falling function and \(h_{\alpha }(t,\tau )= \frac{(t-\tau )^{\underline{\alpha }}}{\Gamma (\alpha +1)}\) is the αth fractional Taylor monomial.

Definition 2

([30])

Let f be a real valued function defined on \(\mathbb{N}_{a}\) and \(\lceil \alpha \rceil =n\). Then the αth Riemann–Liouville fractional difference of f, defined by

$$ \Delta _{a}^{\alpha }f(x):=\Delta ^{n} \Delta _{a}^{-(n-\alpha )}f(x), \quad x\in \mathbb{N}_{a+n-\alpha }. $$
(3)

Lemma 1

([30])

Let \(f:\mathbb{N}_{a}\to \mathbb{R}\), \(k\in \mathbb{N}_{0}\), \(m-1<\alpha <m\) and \(n-1<\beta \leq n\). Then

  1. 1

    \(\Delta _{a+n-\beta }^{-\alpha }\Delta _{a}^{\beta }f(x)= \Delta _{a}^{\beta -\alpha }f(x)-\sum_{i=0}^{n-1}h_{\alpha -n+i}(x,a+n- \alpha )\Delta _{a}^{i-(n-\beta )}f(a+n-\beta )\), for \(x\in \mathbb{N}_{a+n-\beta +\alpha }\).

  2. 2

    \(\Delta _{a+\alpha }^{\beta }\Delta _{a}^{-\alpha }f(x)=\Delta _{a}^{ \beta -\alpha }f(x)\), for \(x\in \mathbb{N}_{a+\alpha +n-\beta }\).

  3. 3

    \(\Delta _{a+\beta }^{-\alpha }\Delta _{a}^{-\beta }f(x)=\Delta _{a}^{-( \alpha +\beta )}=\Delta _{a+\alpha }^{-\beta }\Delta _{a}^{-\alpha }f(x)\), for \(x\in \mathbb{N}_{a+\alpha +\beta }\).

  4. 4

    \(\Delta ^{k}\Delta _{a}^{\alpha }f(x)=\Delta _{a}^{k+\alpha }f(x)\), for \(x\in \mathbb{N}_{a+m-\alpha }\).

Theorem 1

(Fractional sum power rule [30])

Let \(\mu \geq 0\) and \(\nu >0\). Then

$$ \Delta _{a+\mu }^{-\nu }(t-a)^{\underline{\mu }}= \frac{\Gamma (\mu +1)}{\Gamma (\mu +\nu +1)}(t-a)^{ \underline{\mu +\nu }} $$
(4)

for \(t\in \mathbb{N}_{a}+\mu +\nu \).

In [29], Haider et al. introduced a Hilfer like fractional difference operator.

Definition 3

Assume \(f:\mathbb{N}_{a}\to \mathbb{R}\). Then the fractional difference of order \(n-1<\alpha <n\) and type \(0\leq \beta \leq 1\) is defined by

$$ \Delta _{a}^{\alpha ,\beta }f(x)=\Delta _{a+(1-\beta )(n-\alpha )}^{- \beta (n-\alpha )}\Delta ^{n}\Delta _{a}^{-(1-\beta )(n-\alpha )}f(x) $$
(5)

for \(x\in \mathbb{N}_{a+n-\alpha }\).

Lemma 2

The Hilfer fractional difference can be written as follows:

$$ \Delta _{a}^{\alpha ,\beta }f(x)=\Delta _{a+n-\gamma }^{\alpha -\gamma } \Delta ^{n}\Delta _{a}^{-(n-\gamma )}f(x), $$

where \(\gamma =\alpha +\beta (n-\alpha )\).

Lemma 3

Let f be a real valued function defined on \(\mathbb{N}_{a}\), \(n-1<\alpha <n\) and \(0\leq \beta \leq 1\). Then

  1. (i)

    \(\Delta _{a+n-\alpha }^{-\alpha } [\Delta _{a}^{\alpha ,\beta }f(x) ]=\Delta _{a+(1-\beta )(n-\alpha )}^{-(\alpha +\beta {n}- \alpha \beta )}\Delta _{a}^{\alpha +\beta {n}-\alpha \beta }f(x)\),

  2. (ii)

    \(\Delta _{a+\alpha }^{\alpha ,\beta } [\Delta _{a}^{-\alpha }f(x) ]=\Delta _{a+(n-\beta {n}+\alpha \beta )}^{-\beta (n-\alpha )} \Delta _{a}^{\beta (n-\alpha )}f(x)\),

for \(x\in \mathbb{N}_{a+1}\).

Proof

(i) We have

$$\begin{aligned} \Delta _{a+n-\alpha }^{-\alpha } \bigl[\Delta _{a}^{\alpha ,\beta }f(x) \bigr] &= \Delta _{a+n-\alpha }^{-\alpha }\Delta _{a+(1-\beta )(n- \alpha )}^{-\beta (n-\alpha )} \Delta ^{n}\Delta _{a}^{-(1-\beta )(n- \alpha )}f(x) \\ &= \Delta _{a+(1-\beta )(n-\alpha )}^{-(\alpha +\beta (n-\alpha ))} \Delta _{a}^{n-(1-\beta )(n-\alpha )}f(x) \\ &= \Delta _{a+(1-\beta )(n-\alpha )}^{-(\alpha +\beta {n}-\alpha \beta )}\Delta _{a}^{\alpha +\beta {n}-\alpha \beta }f(x). \end{aligned}$$

(ii) We have

$$\begin{aligned} \Delta _{a+\alpha }^{\alpha ,\beta } \bigl[\Delta _{a}^{-\alpha }f(x) \bigr] &= \Delta _{a+\alpha +(1-\beta )(n-\alpha )}^{-\beta (n- \alpha )}\Delta ^{n}\Delta _{a+\alpha }^{-(1-\beta )(n-\alpha )} \Delta _{a}^{-\alpha }f(x) \\ &= \Delta _{a+\alpha +(1-\beta )(n-\alpha )}^{-\beta (n-\alpha )} \Delta ^{n} \Delta _{a}^{- ((1-\beta )(n-\alpha )+\alpha )}f(x) \\ &=\Delta _{a+(n-\beta {n}+\alpha \beta )}^{-\beta (n-\alpha )}\Delta _{a}^{ \beta (n-\alpha )}f(x).\hspace{165pt} \end{aligned}$$

 □

In this paper, we denote the oscillation criterion of the nonlinear Hilfer like fractional difference equation

$$\begin{aligned}& \Delta _{a}^{\alpha ,\beta }y(x)+f_{1} \bigl(x,y(x+\alpha ) \bigr) =\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr),\quad x\in \mathbb{N}_{a+n-\alpha }, \\& \Delta _{a}^{k-(n-\gamma )}y(x) \big| _{x=a+n-\gamma } = y_{k}, \quad k=0,1,\ldots,n, \end{aligned}$$
(6)

where \(n-1<\alpha \leq n\) (\(n\in \mathbb{N}_{0}\)) and \(0\leq \beta \leq 1\), ω and \(f_{k}:[0,+\infty )\times \mathbb{R}\to \mathbb{R}\), \(k=1,2\) are continuous.

Lemma 4

([31]; Young’s inequality)

  1. (i)

    Assume \(\chi ,\xi \geq 0\), \(u>1\) and \(\frac{1}{u}+\frac{1}{v}=1\). Then the following inequality holds if and only if \(\xi =\chi ^{u-1}\):

    $$ \chi \xi \leq \frac{1}{u}\chi ^{u}+ \frac{1}{v}\xi ^{v}. $$
    (7)
  2. (ii)

    Assume \(\chi \geq 0\), \(\xi >0\), \(0< u<1\) and \(\frac{1}{u}+\frac{1}{v}=1\). Then the following inequality holds if and only if \(\xi =\chi ^{u-1}\):

    $$ \chi \xi \geq \frac{1}{u}\chi ^{u}+ \frac{1}{v}\xi ^{v}. $$
    (8)

Lemma 5

The unique solution of the initial value problem (6) is

$$ \begin{aligned} y(x) &=\sum _{k=0}^{n-1}h_{\gamma -n+k}(x,a+n-\gamma )y_{k} \\ &\quad{} +\sum_{t=a+1-\alpha }^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl[\omega (t)+f_{2} \bigl(t,y(t+\alpha ) \bigr)-f_{1}(t,y(t+\alpha ) \bigr] \end{aligned} $$
(9)

for all \(x\in \mathbb{N}_{a+1}\).

Proof

Applying the \(\Delta _{a+1-\alpha }^{-\alpha }\) operator to both sides of (6), we get

$$ \Delta _{a+1-\alpha }^{-\alpha }\Delta _{a}^{\alpha ,\beta }y(x)= \Delta _{a+1-\alpha }^{-\alpha } \bigl[\omega (x)+f_{2} \bigl(x,y(x+\alpha ) \bigr)-f_{1} \bigl(x,y(x+ \alpha ) \bigr) \bigr]. $$
(10)

Using equation (i) in Lemma 3 for the left-hand side of (10), we have

$$\begin{aligned} \Delta _{a+1-\alpha }^{-\alpha }\Delta _{a}^{\alpha ,\beta }y(x) &= \Delta _{a+(1-\beta )(n-\alpha )}^{-(\alpha +\beta {n}-\alpha \beta )} \Delta _{a}^{\alpha +\beta {n}-\alpha \beta }y(x) \\ &= y(x)-\sum_{k=0}^{n-1}h_{\alpha +\beta (n-\alpha )-n+k} \bigl(x,a+n- \alpha -\beta (n-\alpha ) \bigr) \\ &\quad{} \times \Delta _{a}^{k-(n-\alpha -\beta (n- \alpha ))}y \bigl(a+n-\alpha -\beta (n-\alpha ) \bigr) \\ &= y(x)-\sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma )\Delta _{a}^{k-(n- \gamma )}y(a+n-\gamma ), \end{aligned}$$

where \(\gamma =\alpha +\beta (n-\alpha )\). Hence,

$$\begin{aligned} y(x) &= \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma )\Delta _{a}^{k-(n- \gamma )}y(a+n-\gamma ) \\ &\quad{} +\Delta _{a+1-\alpha }^{-\alpha } \bigl[\omega (x)+f_{2} \bigl(x,y(x+ \alpha ) \bigr)-f_{1} \bigl(x,y(x+ \alpha ) \bigr) \bigr] \\ &= \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma )y_{k} \\ &\quad{} +\sum_{t=a+1-\alpha }^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl[\omega (t)+f_{2} \bigl(t,y(t+\alpha ) \bigr)-f_{1}(t,y(t+\alpha ) \bigr]. \end{aligned}$$

This completes the proof. □

3 Main results

In this section, we will contemplate the following conditions:

$$ \frac{f_{k}(x,y)}{y}>0,\quad (k=1,2), y\neq 0, x\geq x_{0}, $$
(11)

and

$$ \bigl\vert f_{1}(x,y) \bigr\vert \geq \bigl\vert q_{1}(x) \bigr\vert \vert y \vert ^{\mu } \quad \text{and} \quad \bigl\vert f_{2}(x,y) \bigr\vert \leq \bigl\vert q_{2}(x) \bigr\vert \vert y \vert ^{ \nu },\quad y\neq 0, x\geq x_{0}, $$
(12)

where \(q_{k}:[x_{0},\infty )\to \mathbb{R}^{+}\), \(k=1,2\) are continuous functions and \(\mu ,\nu >0\) are real numbers. Also, we obtain another oscillation criterion using the following condition:

$$ \bigl\vert f_{1}(x,y) \bigr\vert \leq \bigl\vert q_{1}(x) \bigr\vert \vert y \vert ^{\mu } \quad \text{and} \quad \bigl\vert f_{2}(x,y) \bigr\vert \geq \bigl\vert q_{2}(x) \bigr\vert \vert y \vert ^{ \nu },\quad y\neq 0, x\geq x_{0}, $$
(13)

where \(q_{k}:[x_{0},\infty )\to \mathbb{R}^{+}\), \(k=1,2\), are continuous functions and \(\mu ,\nu >0\) are real numbers.

Theorem 2

Assume the conditions (11) and (12) hold for \(\mu >\nu \). If

$$ \liminf_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K{\mu ,\nu }(t) \bigr]=-\infty $$
(14)

and

$$ \limsup_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)-K{\mu ,\nu }(t) \bigr]=\infty , $$
(15)

where \(K_{\mu ,\nu }(t)=(\mu /\nu -1)[\nu q_{2}(t)/\mu ]^{\mu /(\mu -\nu )}q_{1}^{ \nu /(\nu -\mu )}(t)\), then every solution of (6) is oscillatory for every sufficiently large T.

Proof

Suppose \(y(x)\) is a non-oscillatory solution of Eq. (6). In this case, assume that \(T>a\) is sufficiently large such that \(y(x)>0\) for \(x\geq T\).

Let \(F(x)=\omega (x)+f_{2}(x,y(x+\alpha ))-f_{1}(x,y(x+\alpha ))\). Then we have

$$\begin{aligned} y(x) &=\sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma )y_{k}+\sum_{t=a+1- \alpha }^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr)F(t) \\ &\leq \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma ) \vert y_{k} \vert +\sum_{t=a+1- \alpha }^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl\vert F(t) \bigr\vert \\ &\quad{} +\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl[ \omega (t)+f_{2} \bigl(t,y(t+\alpha ) \bigr)-f_{1} \bigl(t,y(t+\alpha ) \bigr) \bigr] \\ &\leq \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma ) \vert y_{k} \vert +\sum_{t=a+1- \alpha }^{T-1}h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl\vert F(t) \bigr\vert \\ &\quad{} +\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl[ \omega (t)+q_{2}(t)y^{\nu }(t+ \alpha )-q_{1}(t)y^{\mu }(t+\alpha ) \bigr]. \end{aligned}$$
(16)

Define

$$ \Phi (x)= \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma ) \vert y_{k} \vert $$

and

$$ \Psi (x,T)= \sum_{t=a+1-\alpha }^{T-1}h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl\vert F(t) \bigr\vert ; $$

hence

$$ y(x)\leq \Phi (x)+\Psi (x,T)+\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+q_{2}(t)y^{\nu }(t+ \alpha )-q_{1}(t)y^{ \mu }(t+\alpha ) \bigr], $$
(17)

for \(x>T\). Let \(t\geq T\) and take \(\chi = \vert y \vert ^{\nu }\), \(\xi =\nu q_{2}(t)/(\mu q_{1}(t))\), \(u=\mu /\nu \) and \(v=\mu /(\mu -\nu )\). Then we have

$$ \begin{aligned} q_{2}(t) \bigl\vert y(t+ \alpha ) \bigr\vert ^{\nu }-q_{1}(t) \bigl\vert y(t+\alpha ) \bigr\vert ^{\mu } &=\frac{\mu q_{1}(t)}{\nu } \biggl[ \bigl\vert y(t+ \alpha ) \bigr\vert ^{\nu } \frac{\nu q_{2}(t)}{\mu q_{1}(t)}- \frac{ ( \vert y(t+\alpha ) \vert ^{\nu } )^{\mu /\nu }}{\mu /\nu } \biggr] \\ &= \frac{\mu q_{1}(t)}{\nu } \biggl[\chi \xi -\frac{1}{u}\chi ^{u} \biggr] \\ &\leq \frac{\mu q_{1}(t)}{\nu }\frac{1}{v}\xi ^{v}=K_{\mu ,\nu }(t). \end{aligned} $$
(18)

Using (18) in inequality (17) we obtain

$$ y(x)\leq \Phi (x)+\Psi (x,T)+\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr], \quad x>T. $$
(19)

Multiplying both sides of (19) with \(\Gamma (\gamma )x^{1-\gamma }\), we get

$$ \begin{aligned} 0&< \Gamma (\gamma )x^{1-\gamma }y(x) \leq \Gamma ( \gamma )x^{1-\gamma }\Phi (x)+\Gamma (\gamma )x^{1-\gamma } \Psi (x,T) \\ &\quad{} +\Gamma (\gamma )x^{1-\gamma }\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr] \end{aligned} $$
(20)

for \(t\geq T\). We consider two cases.

Case (i). Assume \(0<\alpha \leq 1\). Then \(n=1\) and \(0<\gamma \leq 1\). Also we have \(\Phi (x)= \vert y_{0} \vert h_{\gamma -1}(x,a+1-\gamma )\) for \(x\geq T\), and

$$\begin{aligned} \Gamma (\gamma )x^{1-\gamma }\Phi (x) &= \Gamma (\gamma )x^{1-\gamma } \vert y_{0} \vert h_{ \gamma -1}(x,a+1-\gamma ) \\ &= \vert y_{0} \vert x^{1-\gamma } \bigl(x-(a+1-\gamma ) \bigr)^{ \underline{\gamma -1}} \\ &= \vert y_{0} \vert x^{1-\gamma } \frac{\Gamma (x-(a+1-\gamma )+1 )}{\Gamma (x-(a+1-\gamma )-(\gamma -1)+1 )} \\ &= \vert y_{0} \vert x^{1-\gamma } \frac{\Gamma (x-a+\gamma )}{\Gamma (x-a+\gamma +(1-\gamma ) )} \end{aligned}$$

and

$$\begin{aligned} \Gamma (\gamma )x^{1-\gamma }\Psi (x,T) &=\Gamma (\gamma )x^{1-\gamma } \sum_{t=a+1-\alpha }^{T-1}h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl\vert F(t) \bigr\vert \\ &=\frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1}x^{1- \gamma } (x-t-1 )^{\underline{\alpha -1}} \bigl\vert F(t) \bigr\vert \\ &= \frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1}x^{1- \gamma } \frac{\Gamma (x-t)}{\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert \\ &=\frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1} \bigl(x^{1-\alpha } \bigr)^{1-\beta } \frac{\Gamma (x-t)}{\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert \\ &= \frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1} \frac{1}{ (x^{1-\alpha } )^{\beta }}x^{1-\alpha } \frac{\Gamma (x-t)}{\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert \end{aligned}$$

and using the asymptotic expansion formula

$$ \lim_{x\to \infty } \frac{\Gamma (x)x^{\varepsilon }}{\Gamma (x+\varepsilon )}=1, \quad \varepsilon >0, $$

we have

$$ \lim_{x\to \infty } \bigl[\Gamma (\gamma )x^{1-\gamma }\Phi (x)+ \Gamma (\gamma )x^{1-\gamma }\Psi (x,T) \bigr]=M< \infty , \quad x>T. $$
(21)

Taking the limit inferior of inequality (20) as \(x\to \infty \),

$$ \liminf_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr]>-M>-\infty $$

and we have a contradiction to (14).

Case (ii). Assume \(n-1<\alpha <n\), \(n\geq 2\). Then \(n-1<\gamma <n\) and \(\gamma >\alpha \) with \(\gamma =\alpha +\beta (n-\alpha )\);

$$ \begin{aligned} \Gamma (\gamma )x^{1-\gamma }\Phi (x) &=\Gamma ( \gamma )x^{1- \gamma }\sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma ) \vert y_{k} \vert \\ &= \Gamma (\gamma )\sum_{k=0}^{n-1}x^{1-\gamma } \frac{(x-a-n+\gamma )^{\underline{\gamma -n+k}}}{\Gamma (\gamma -n+k+1)} \vert y_{k} \vert \\ &=\Gamma (\gamma )\sum_{k=0}^{n-1} \frac{\Gamma (x-a-n+\gamma +1)}{x^{\gamma -1}\Gamma (x-a-k+1)\Gamma (\gamma -n+k+1)} \vert y_{k} \vert \\ &=\Gamma (\gamma )\sum_{k=0}^{n-1} \frac{\Gamma (x-a-n+\gamma +1)}{\Gamma (x-a-k+\gamma )}\times \frac{\Gamma (x-a-k+\gamma )}{x^{\gamma -1}\Gamma (x-a-k+1)} \\ &\quad{} \times \frac{1}{\Gamma (\gamma -n+k+1)} \vert y_{k} \vert \\ &=\Gamma (\gamma )\sum_{k=0}^{n-1} \frac{1}{ (x-a+\gamma -(k-1) )\cdots (x-a+\gamma -(n-1) )} \\ &\quad{} \times \frac{\Gamma (x-a-k+\gamma )}{x^{\gamma -1}\Gamma (x-a-k+1)}\times \frac{1}{\Gamma (\gamma -n+k+1)} \vert y_{k} \vert \end{aligned} $$

and

$$\begin{aligned} \Gamma (\gamma )x^{1-\gamma }\Psi (x,T) &=\Gamma (\gamma )x^{1-\gamma } \sum_{t=a+1-\alpha }^{T-1}h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl\vert F(t) \bigr\vert \\ &=\frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1}x^{1- \gamma } (x-t-1 )^{\underline{\alpha -1}} \bigl\vert F(t) \bigr\vert \\ &= \frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1} \frac{\Gamma (x-t)}{x^{\gamma -1}\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert \\ &=\frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1} \frac{\Gamma (x-t)}{x^{\alpha -1+\beta (n-\alpha )}\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert \\ &= \frac{\Gamma (\gamma )}{\Gamma (\alpha )}\sum_{t=a+1-\alpha }^{T-1} \frac{1}{x^{\beta (n-\alpha )}} \frac{\Gamma (x-t)}{x^{\alpha -1}\Gamma (x-t+1-\alpha )} \bigl\vert F(t) \bigr\vert . \end{aligned}$$

Then using the asymptotic expansion formula, we obtain

$$ \lim_{x\to \infty } \bigl[\Gamma (\gamma )x^{1-\gamma }\Phi (x)+ \Gamma (\gamma )x^{1-\gamma }\Psi (x,T) \bigr]=0, \quad x\geq T. $$

Hence, taking the limit inferior of inequality (20) as \(x\to \infty \), we get

$$ \liminf_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr]>0, $$

which is a contradiction to condition (14).

Thus we complete the proof of the theorem. □

Theorem 3

Suppose \(\alpha \geq 1\) and assume that (11) and (13) valid for \(\mu <\nu \). If

$$ \liminf_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)-K{\mu ,\nu }(t) \bigr]=-\infty $$
(22)

and

$$ \limsup_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K{\mu ,\nu }(t) \bigr]=\infty , $$
(23)

where \(K_{\mu ,\nu }(t)\) is defined as in Theorem 2, then for every sufficiently large T every bounded solution of (6) is oscillatory.

Proof

Assume \(y(x)\) is a non-oscillatory and bounded solution of (6). Then for \(M_{1},M_{2}\in \mathbb{R}\)

$$ M_{1}\leq y(x)\leq M_{2}, \quad x\geq a. $$
(24)

Suppose that \(y(x)>0\) for \(x\geq T>a\). Using inequality (8) and condition (13), we get

$$ q_{2}(t) \bigl\vert y(t+\alpha ) \bigr\vert ^{\nu }-q_{1}(t) \bigl\vert y(t+\alpha ) \bigr\vert ^{\mu }\geq K_{\mu , \nu }(t), \quad t\geq T, $$
(25)

similarly to Theorem 2. Define

$$ \Phi (x)= \sum_{k=0}^{n-1}h_{\gamma -n+k}(x,a+n- \gamma ) \vert y_{k} \vert $$

and

$$ \Psi (x,T)= \sum_{t=a+1-\alpha }^{T-1}h_{\alpha -1} \bigl(x,\sigma (t) \bigr) \bigl\vert F(t) \bigr\vert . $$

Then we obtain for \(x\geq T\)

$$ \begin{aligned} \Gamma (\gamma )x^{1-\gamma }y(x) & \geq \Gamma (\gamma )x^{1- \gamma }\Phi (x)+\Gamma (\gamma )x^{1-\gamma }\Psi (x,T) \\ & \quad{} +\Gamma (\gamma )x^{1-\gamma }\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr], \quad x>T, \end{aligned} $$
(26)

and also using (24)

$$ \begin{aligned} \Gamma (\gamma )x^{1-\gamma }M_{2} &\geq \Gamma (\gamma )x^{1- \gamma }\Phi (x)+\Gamma (\gamma )x^{1-\gamma } \Psi (x,T) \\ & \quad{} +\Gamma (\gamma )x^{1-\gamma }\sum_{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr], \quad x>T. \end{aligned} $$
(27)

We consider two cases for the proof.

Case (i) Assume \(\alpha =1\). Then \(\gamma =1\) and \(\Phi (x)=h_{\gamma -1}(x,a+1-\gamma ) \vert y_{0} \vert = \vert y_{0} \vert \), \(\Psi (x,T)=\sum_{t=a}^{T-1} \vert F(t) \vert \). Hence, we see from (27)

$$ \Biggl[M_{2} - \vert y_{0} \vert -\sum _{t=a}^{T-1} \bigl\vert F(t) \bigr\vert \Biggr]\geq \sum_{t=T}^{x- \alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr], \quad x>T, $$

and

$$ \limsup_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr]\leq \Biggl[M_{2} - \vert y_{0} \vert - \sum_{t=a}^{T-1} \bigl\vert F(t) \bigr\vert \Biggr]< \infty , $$

which is a contradiction to (23).

Case (ii) Assume \(\alpha >1\). Then \(\gamma >1\). As in the proof of Theorem 2, using the asymptotic expansion formula we have

$$ \lim_{x\to \infty } \bigl[\Gamma (\gamma )x^{1-\gamma }\Phi (x)+ \Gamma (\gamma )x^{1-\gamma }\Psi (x,T) \bigr]=0, \quad x\geq T. $$

Since \(\lim_{x\to \infty }x^{1-\gamma }=0\), from (27)

$$ \limsup_{x\to \infty }x^{1-\gamma }\sum _{t=T}^{x-\alpha }h_{\alpha -1} \bigl(x, \sigma (t) \bigr) \bigl[\omega (t)+K_{\mu ,\nu }(t) \bigr]\leq 0< \infty , $$

which is a contradiction to (23). □

Example 1

Consider the following initial value problem:

$$\begin{aligned}& \begin{aligned} \Delta ^{\frac{1}{3},\frac{1}{2}}y(x)+y^{2} \biggl(x+\frac{1}{3} \biggr)e^{x+\frac{1}{3}} &= \frac{3}{2\Gamma (\frac{2}{3} )} \biggl( \frac{6}{5}x^{ \underline{\frac{5}{3}}}-x^{\underline{\frac{2}{3}}} \biggr)+y^{ \frac{1}{5}} \biggl(x+\frac{1}{3} \biggr)e^{x+\frac{1}{3}} \\ &\quad{} + \biggl( \biggl(x+\frac{1}{3} \biggr)^{4}- \biggl(x+ \frac{1}{3} \biggr)^{\frac{2}{5}} \biggr)e^{x+\frac{1}{3}}, \end{aligned} \\& \Delta ^{-(1-\frac{2}{3})}y \biggl(\frac{1}{3} \biggr) =0, \end{aligned}$$
(28)

where \(\alpha =1/3\), \(\beta =1/2\) and \(\gamma =2/3\). \(y(x)=x^{2}\) is a non-oscillatory solution of (28). Here, \(\mu =2\), \(\nu =1/5\), \(q_{1}(x)=q_{2}(x)=e^{x+\frac{1}{3}}\) and \(\omega (x)=\frac{3}{2\Gamma (\frac{2}{3} )} ( \frac{6}{5}x^{\underline{\frac{5}{3}}}-x^{\underline{\frac{2}{3}}} ) + ( (x+\frac{1}{3} )^{4}- (x+ \frac{1}{3} )^{\frac{2}{5}} )e^{x+\frac{1}{3}}\). However, condition (14) is not fulfilled because of \(\omega (x)\geq 0\) and \(\liminf_{x\to \infty }x^{1-\gamma }\sum_{t=a+1-\alpha }^{x-\alpha }h_{ \alpha -1} (x, \sigma (t) ) [\omega (t)+K_{\mu ,\nu }(t) ]\geq 0\).

Availability of data and materials

Not applicable.

References

  1. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Failla, G., Zingales, M.: Advanced Materials Modelling via Fractional Calculus: Challenges and Perspectives. The Royal Society Publishing (2020)

    Google Scholar 

  3. Chen, D.X., Qu, P.X., Lan, Y.H.: Forced oscillation of certain fractional differential equations. Adv. Differ. Equ. 2013(1), 125 (2013)

    Article  MathSciNet  Google Scholar 

  4. Feng, Q., et al.: Oscillation for a class of fractional differential equation. J. Appl. Math. Phys. 7(07), 1429 (2019)

    Article  Google Scholar 

  5. Grace, S., Agarwal, R., Wong, P., Zafer, A.: On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 15(2), 222–231 (2012)

    Article  MathSciNet  Google Scholar 

  6. Han, Z., Zhao, Y., Sun, Y., Zhang, C.: Oscillation for a class of fractional differential equation. Discrete Dyn. Nat. Soc. 2013, 390282 (2013)

    Article  MathSciNet  Google Scholar 

  7. Yalçın Uzun, T., Büyükçavuşoğlu Erçolak, H., Yıldız, M.K.: Oscillation criteria for higher order fractional differential equations with mixed nonlinearities. Konuralp J. Math. 7, 203–207 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Bortolan, M., Chatzarakis, G., Kalaimani, T., Raja, T., Sadhasivam, V.: Oscillations in systems of impulsive nonlinear partial differential equations with distributed deviating arguments. Fasc. Math. 62, 13–33 (2019)

    MathSciNet  Google Scholar 

  9. Chatzarakis, G.E., Sadhasivam, V., Raja, T., Kalaimani, T.: Oscillation of certain nonlinear impulsive neutral partial differential equations with continuous distributed deviating arguments and a damping term. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 25, 329–345 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Chatzarakis, G.E., Sadhasivam, V., Raja, T.: On the oscillation of impulsive vector partial differential equations with distributed deviating arguments. Analysis 38(2), 101–114 (2018)

    Article  MathSciNet  Google Scholar 

  11. Chatzarakis, G.E., Logaarasi, K., Raja, T., Sadhasivam, V.: Interval oscillation criteria for conformable fractional differential equations with impulses. Appl. Math. E-Notes 19, 354–369 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 106293 (2020)

    Article  MathSciNet  Google Scholar 

  13. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

    Article  MathSciNet  Google Scholar 

  14. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 8237634 (2018)

    Article  Google Scholar 

  15. Chatzarakis, G.E., Grace, S.R., Jadlovská, I., Li, T., Tunç, E.: Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients. Complexity 2019, 5691758 (2019)

    Article  Google Scholar 

  16. Zhang, C., Li, T., Agarwal, R.P., Bohner, M.: Oscillation results for fourth-order nonlinear dynamic equations. Appl. Math. Lett. 25(12), 2058–2065 (2012)

    Article  MathSciNet  Google Scholar 

  17. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)

    Article  MathSciNet  Google Scholar 

  18. Abdalla, B., Alzabut, J., Abdeljawad, T.: On the oscillation of higher order fractional difference equations with mixed nonlinearities. Hacet. J. Math. Stat. 47(2), 207–217 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Chatzarakis, G., Gokulraj, P., Kalaimani, T., Sadhasivam, V.: Oscillatory solutions of nonlinear fractional difference equations. Int. J. Differ. Equ. 13(1), 19–31 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Kısalar, S., Yıldız, M.K., Aktoprak, E.: Oscillation of higher order fractional nonlinear difference equations. Int. J. Difference Equ. 10(2), 201–212 (2015)

    MathSciNet  Google Scholar 

  21. Marian, S.L., Sagayaraj, M.R., Selvam, A.G.M., Loganathan, M.P.: Oscillation of fractional nonlinear difference equations. Math. Æterna 2(9–10), 805–813 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Marian, S.L., Sagayaraj, M.R., Selvam, A.G.M., Loganathan, M.P.: Oscillatory behavior of forced fractional difference equations. Int. Electron. J. Pure Appl. Math. 8(1), 33–39 (2014)

    MathSciNet  Google Scholar 

  23. Selvam, A.G.M., Sagayaraj, M.R., Loganathan, M.P.: Oscillatory behavior of a class of fractional difference equations with damping. Int. J. Appl. Math. Res. 3(3), 220 (2014)

    Google Scholar 

  24. Yalçın Uzun, T., Öztürk, S., Öz, H.: Sönüm Terimli Caputo Kesirli Fark Denklemlerinin Salınımlılığı. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 21, 106–112 (2021)

    Google Scholar 

  25. Chatzarakis, G.E., Selvam, A.G.M., Dhineshbabu, R., Miliaras, G.N.: Oscillatory behavior of solutions of boundary value problems of partial fractional difference equations. Adv. Math. Sci. J. 9, 3603–3614 (2020)

    Article  Google Scholar 

  26. Chatzarakis, G.E., Selvam, G.M., Janagaraj, R., Miliaras, G.N.: Oscillation criteria for a class of nonlinear discrete fractional order equations with damping term. Math. Slovaca 70(5), 1165–1182 (2020)

    Article  MathSciNet  Google Scholar 

  27. Chatzarakis, G.E., Selvam, A.G.M., Janagaraj, R., Douka, M.: Oscillation theorems for certain forced nonlinear discrete fractional order equations. Commun. Math. Appl. 10(4), 763–772 (2019)

    Article  Google Scholar 

  28. Chatzarakis, G.E., Gokulraj, P., Kalaimani, T.: Oscillation tests for fractional difference equations. Tatra Mt. Math. Publ. 71(1), 53–64 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Haider, S.S., ur Rehman, M., Abdeljawad, T.: On Hilfer fractional difference operator. Adv. Differ. Equ. 2020(1), 122 (2020)

    Article  MathSciNet  Google Scholar 

  30. Goodrich, C., Peterson, A.C.: Discrete Fractional Calculus. Springer, Berlin (2015)

    Book  Google Scholar 

  31. Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge Press (1934)

    MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Tuğba Yalçın Uzun.

Ethics declarations

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalçın Uzun, T. Oscillatory behavior of nonlinear Hilfer fractional difference equations. Adv Differ Equ 2021, 178 (2021). https://doi.org/10.1186/s13662-021-03343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13662-021-03343-7

MSC

Keywords