- Research
- Open Access
- Published:
Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces
Advances in Difference Equations volume 2021, Article number: 259 (2021)
Abstract
This paper is devoted to finding out some realization of the concept of b-metric like space. First, we attain a fixed point for two fuzzy mappings satisfying a suitable requirement of contractiveness. Subsequently, we apply such a result to graphic contractions. Also, we attain a unique solution for a system of integral equations, and lastly we give an application to ensure that there exists a common bounded solution of a suitable functional equation in dynamic programming.
1 Introduction and preliminaries
Fixed point theory plays a vital role in the field of functional analysis. Banach [1] proved a very useful outcome for contraction maps, called Banach contraction principle. Thanks to this achievement, many authors proved various interesting extensions of the principle (see [1–45]).
Hussain et al. [20] conceived the new idea of dislocated b-metric spaces and obtained fixed points in common for weak contractive mappings with application on integral inclusions. Afterwards, Chen et al. [15] discussed fixed point outcomes for generalized F-contraction in b-metric like spaces. After this Rasham et al. [27] obtained some multivalued fixed point achievements for pairs of F-contractive maps. Mehmood et al. [24] proved some upshot for a collection of multivalued F-contractive maps and applied this result to a system of nonlinear integral equations. We give the following definitions that we will use from now on.
Definition 1.1
([20])
Let A be a nonempty set, and let \(d_{b}:A\times A\rightarrow {}[ 0,+\infty )\) be a b-metric like or dislocated b-metric (or simply \(d_{b}\)-metric), that is, a function for which there is \(b\geq 1\) such that, for \(f,h,w\in A\), the following assumptions are fulfilled:
-
(i)
If \(d_{b}(f,h)=0\), then \(f=h\);
-
(ii)
\(d_{b}(f,h)=d_{b}(h,f)\);
-
(iii)
\(d_{b}(f,h)\leq b[d_{b}(f,w)+d_{b}(w,h)]\).
We call \((A,d_{b})\) a b-metric like space or, in short, \(d.b-m\). space.
Note that, if \(x=y\), then \(d_{b}(x,y)\) may not be 0. This is the dislocation that differentiates by the usual metric. An example of a dislocated b-metric space is in [20].
Definition 1.2
([20])
Let \((A,d_{b})\) be a \(d.b-m\). space.
-
(i)
A sequence \(\{f_{n}\}\) in \((A,d_{b})\) is said to be Cauchy sequence if, for any \(\varepsilon >0\), we find \(n_{0}\in N\) so that, for \(n,m\geq n_{0}\), then \(d_{b}(f_{m},f_{n})\) <ε, that is, \(\lim_{n,m\rightarrow +\infty }d_{b}(f_{n},f_{m})=0\).
-
(ii)
A sequence \(\{f_{n}\}\) \(d.b-m\) converges (briefly \(d_{b}\)-converges) to f if \(\lim_{n\rightarrow +\infty }d_{b}(f_{n},f)=0\). Such f is said to be \(d_{b}\)-limit of \(\{f_{n}\}\).
-
(iii)
\((A,d_{b})\) is said a complete \(d.b-m\). space if any Cauchy sequence in A converges to a point \(f\in A\) satisfying \(d_{b}(f,f)=0\).
Definition 1.3
([29])
Let C be a nonempty subset of a \(d.b-m\). space A, and let \(f\in A\). A point \(g_{0}\in C\) is said to be the point of best approximation for f in C if
We will say that C is a proximinal set if for any f in A there exists a point of best approximation in C.
Let \(\Psi _{b}\), where \(b\geq 1\), be the collection of all nondecreasing functions \(\psi _{b}:[0,+\infty )\rightarrow {}[ 0,+\infty )\) for which \(\sum_{k=1}^{+\infty }b^{k}\psi _{b}^{k}(t)<+\infty \) and \(b\psi _{b}(t)< t\), where \(\psi _{b}^{k}\) is the kth iterated of \(\psi _{b}\). Also \(b^{n+1}\psi _{b}^{n+1}(t)=b^{n}b\psi _{b}(\psi _{b}^{n}(t))< b^{n} \psi _{b}^{n}(t)\).
Let \(P(A)\) be the collection of all closed proximinal subsets of A.
Definition 1.4
([35])
The function \(H_{d_{b}}:P(A)\times P(A)\rightarrow R^{+}\), defined by
is known as Hausdorff b-metric like on \(P(A)\).
Definition 1.5
([30])
Let \(M,N:A\rightarrow P(A)\) be two closed-valued multifunctions and \(\beta :A\times A\rightarrow {}[ 0,+\infty )\) be a positive real function. We say that the pair \((M,N)\) is \(\beta _{\star }\)-admissible if, for all \(f,g\in A\),
where \(\beta _{\star }(Nf,Mg)=\inf \{ \beta (a,c):a\in Nf, c\in Mg\}\). When M coincides with N, we regain the definition of \(\alpha _{\ast }\)-admissible mapping donated in [9].
Definition 1.6
([29])
Let \((A,d_{b})\) be a \(d.b-m\). space. Let \(M:A\rightarrow P(A)\) be a multivalued mapping and \(\alpha :A\times A\rightarrow {}[ 0,+\infty )\). Let \(B\subseteq A\). Then we say that the M is semi \(\alpha _{\ast }\)-dominated on B whenever \(\alpha _{\ast }(r,Mr)\geq 1\) for all \(r\in B\), where \(\alpha _{\ast }(r,Mr)=\inf \{ \alpha (r,l):l\in Mr\}\). If \(B=A\), it is said that the M is \(\alpha _{\ast }\)-dominated. If \(M:A\rightarrow A\) is a self-mapping, then M is semi α-dominated on B, whenever \(\alpha (r,Mr)\geq 1\) for each \(r\in B\).
Definition 1.7
([39])
Let \((A,d)\) be a metric space. A mapping \(L:A\rightarrow A\) is called F-contraction if we can take \(\tau >0\) in a such way that, for all \(j,k\in A\), \(d(Lj,Lk)>0\) implies
where \(F:\mathbb{R} _{+}\rightarrow \mathbb{R} \) is a real function which fulfills the three conditions:
(F1) F is a real strictly increasing function;
(F2) For each sequence \(\{a_{n}\}_{n=1}^{\infty }\) of positive real numbers, \(\lim_{n\rightarrow +\infty }a_{n}=0\) if and only if
\(\lim_{n\rightarrow +\infty }F(a_{n})=-\infty \);
(F3) We can find \(q\in (0,1)\) for which \(\lim_{a\rightarrow 0^{+}}a^{q}F(a)=0\).
Lemma 1.8
([29])
Let \((A,d_{b})\) be a \(d.b-m\). space. Let \((P(A),H_{d_{b}})\) be a dislocated Hausdorff b-metric space on \(P(A)\). For \(G,B\in P(A)\) and for all \(g\in G\), let \(h_{g}\in B\) such that \(d_{b}(g,B)=d_{b}(g,h_{g})\). Then \(H_{d_{b}}(G,B)\geq d_{b}(g,h_{g})\) holds.
Example 1.9
([29])
Let \(A=\mathbb{R} \). We define the mapping \(\alpha :A\times A\rightarrow {}[ 0,+\infty )\) by
Define \(M,N:A\rightarrow P(A)\) by
Suppose \(r=1\) and \(q=0.5\). Since \(1>0.5\), then \(\alpha (1,0.5)\geq 1\). Now, \(\alpha _{\ast }(M1,N0.5)=\inf \{ \alpha (a,c):a\in M1,c\in N0.5\} =\frac{1}{2}\ngeq 1\), which means the couple \((M,N)\) is not \(\alpha _{\ast }\)-admissible. Also, \(\alpha _{\ast }(M1,M0.5)\ngeq 1\) and \(\alpha _{\ast }(N1,N0.5)\ngeq 1\). This signifies that M and N are not \(\alpha _{\ast }\)-admissible. Now, \(\alpha _{\ast }(r,Mr)=\) \(\inf \{ \alpha (r,c): c\in Mr\} \geq 1\) for all \(r\in A\). Accordingly, M is an \(\alpha _{\ast }\)-dominated mapping. Analogously, \(\alpha _{\ast }(q,Nq)=\) \(\inf \{ \alpha (q,b):b\in Nq\} \geq 1\). This means that M and N are \(\alpha _{\ast }\)-dominated but the couple \((M,N)\) is not \(\alpha _{\ast }\)-admissible.
2 Application to fuzzy maps
The notion of fuzzy set was introduced and its related information was discussed by Zadeh in [41]. In fixed point theory, Weiss [40] and Butnariu [14] presented the content of fuzzy maps and obtained many related results. Heilpern [17] established a fixed point theorem for fuzzy maps that can be considered an analogue of Nadler’s multivalued result [25] in metric spaces. Motivated by the Heilpern’s results, the fixed point theory for fuzzy contraction using the Hausdorff metric spaces has become more mature in different directions by various authors [32–34].
In the present paper we prove fixed point outcomes for F-contractions generalized in two directions: one is a more extended class of semi-dominated fuzzy maps (in place of admissible mappings) and the other is a wide class of mappings F in place of the mappings F used by Wardowski [39]. The existence of a fuzzy common fixed point for two fuzzy graphic contractions defined on a closed set is given.
Recently, Rasham et al. [29] achieved fixed point outcomes for two families of fuzzy A-dominated maps defined on a closed ball in a complete \(d.b-m\). space. Example and usages are given to illustrate the wideness of the results. In this paper, moreover, we achieve our results in a more general setting of \(d.b-m\). space.
Definition 2.1
([32])
A fuzzy set B is a function from A in \([0,1]\), \(F(A)\) is a family of all fuzzy sets in A. Whenever B is a fuzzy set and \(f\in A\), the value \(B(f)\) is said to be the grade of membership of f in B. The η-level set of fuzzy set B is denoted by \([B]_{\eta }\) and defined as follows:
Now we select, by the family \(F(A)\) of all fuzzy sets, a subfamily with stronger properties, i.e., the subfamily of the approximate quantities, denoted by \(W(A)\) and defined by the following.
Definition 2.2
([17])
A fuzzy subset B of A is an approximate quantity if its η-level set is a compact convex subset of A for each \(\eta \in [ 0,1 ] \) and \(\sup_{f\in A}B(f)=1\).
Definition 2.3
([17])
Let A be a set, and let Y be a metric linear space. We call a fuzzy map any map from A to \(W(Y)\).
Note that we can see a fuzzy mapping \(T:A\rightarrow W(Y)\) as a fuzzy subset of \(A\times Y\), \(T:A\times Y\rightarrow {}[ 0,1]\) in the sense that \(T(f,g)=T(f)(g)\).
Definition 2.4
([32])
A point \(f\in A\) is called a fuzzy fixed point of a fuzzy mapping \(T:A\rightarrow W(A)\) if there exists \(0<\eta \leq 1\) such that \(f\in {}[ Tf]_{\eta }\).
2.1 Main results
Let \((A,d_{b})\) be a \(d.b-m\). space, \(f_{0}\in A\), and \(M,N:A\rightarrow W(A)\) be fuzzy mappings on A. Moreover, let \(\eta ,\upsilon :A\rightarrow {}[ 0,1]\) be two real-valued functions. Let \(f_{1}\in [ Mf_{0} ] _{\eta (f_{0})}\) be an element such that \(d_{b}(f_{0}, [ Mf_{0} ] _{\eta (f_{0})})=d_{b}(f_{0},f_{1})\). Let \(f_{2}\in [ Nf_{1} ] _{\upsilon (f_{1})}\) be such that \(d_{b}(f_{1}, [ Nf_{1} ] _{\upsilon (f_{1})})=d_{b}(f_{1},f_{2})\). Let \(f_{3}\in [ Mf_{2} ] _{\eta (f_{2})}\) be such that \(d_{b}(f_{2}, [ Mf_{2} ] _{\eta (f_{2})})=d_{b}(f_{2},f_{3})\). Doing so, we obtain a sequence \(\{f_{n}\}\) in A which satisfies \(f_{2n+1}\in [ Mf_{2n} ] _{\eta (f_{2n})}\) and \(f_{2n+2}\in [ Nf_{2n+1} ] _{\upsilon (f_{2n+1})}\) for \(n=0,1,2,\ldots \) . Besides \(d_{b}(f_{2n}, [ Mf_{2n} ] _{\eta (f_{2n})})=d_{b}(f_{2n},f_{2n+1})\), \(d_{b}(f_{2n+1}, [ Nf_{2n+1} ] _{\upsilon (f_{2n+1})})=d_{b}(f_{2n+1}, f_{2n+2})\). We indicate the iterative sequence by \(\{NM(f_{n})\}\). We will say that \(\{NM(f_{n})\}\) is a sequence in A generated by \(f_{0}\). For \(f,g\in A\) and \(a>0\), we define \(D_{b}(f,g)\) as
Theorem 2.5
Let \((A,d_{b})\) be a complete \(d.b-m\). space. Let \(\alpha :A\times A\rightarrow {}[ 0,+\infty )\). Let \(r>0\), \(f_{0}\in \overline{B_{d_{b}}(f_{0},r)}\), F be a strictly increasing function, and \(M,N:A\rightarrow W(A)\) be two \(\alpha _{\ast }\)-dominated fuzzy mappings on \(\overline{B_{d_{b}}(f_{0},r)}\). Hypothesize that with \(\psi _{b}\in \Psi _{b}\) and \(\eta (f),\upsilon (g)\in (0,1]\) the following holds:
for each \(f,g\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\), \(\alpha (f,g)\geq 1\) and \(H_{d_{b}}( [ Mf ] _{\eta (f)}, [ Ng ] _{ \upsilon (g)})>0\). Furthermore, suppose that
for each \(n\in \mathbb{N} \cup \{0\}\) and \(b\geq 1\). Then \(\{NM(f_{n})\}\) is a sequence in \(\overline{B_{d_{b}}(f_{0},r)}\), \(\alpha (f_{n},f_{n+1})\geq 1\) for all \(n\in \mathbb{N} \cup \{0\}\) and \(\{NM(f_{n})\} \rightarrow f^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\). Again if inequality (2.1) holds for \(f^{\ast }\), \(\overline{B_{d_{b}}(f_{0},r)}\) is a closed set and either \(\alpha (f_{n},f^{\ast })\geq 1\) or \(\alpha (f^{\ast },f_{n})\geq 1\) for all \(n\in \mathbb{N} \cup \{0\}\), then M and N have a common fuzzy fixed point \(f^{\ast }\) in \(\overline{B_{d_{b}}(f_{0},r)}\).
Proof
Take the sequence \(\{NM(f_{n})\}\) generated by \(f_{0}\). Then, by (2.2),
This means that
For induction, suppose \(f_{2},\ldots ,f_{j}\in \overline{B_{d_{b}}(f_{0},r)}\) for some \(j\in \mathbb{N} \). Suppose first \(j=2m+1\), where \(m=1,2,\ldots ,\frac{j-1}{2}\). Since \(M,N:A\rightarrow W(A)\) are two \(\alpha _{\ast }\)-dominated fuzzy mappings on \(\overline{B_{d_{b}}(f_{0},r)}\), so \(\alpha _{\ast }(f_{2m},[Mf_{2m}]_{\eta (f_{2m})})\geq 1\) and \(\alpha _{\ast }(f_{2m+1},[Nf_{2m+1}]_{\upsilon (f_{2m+1})})\geq 1\). As \(\alpha _{\ast }(f_{2m},[Mf_{2m}]_{\eta (f_{2m})})\geq 1\), it follows \(\inf \{ \alpha (f_{2m},b):b\in {}[ Mf_{2m}]_{\eta (f_{2m})}\} \geq 1\). Also \(f_{2m+1}\in [ Mf_{2m}]_{\eta (f_{2m})}\), so \(\alpha (f_{2m},f_{2m+1})\geq 1\). Now, by means of Lemma 1.8, we obtain
If
then
By the strict increasing of F we obtain
This contradicts the assumption \(b\psi _{b}(t)< t\) whenever \(t>0\). So
Hence, we obtain
As \(\alpha _{\ast }(f_{2m-1},[Nf_{2m-1}]_{\upsilon (f_{2m-1})})\geq 1\) and \(f_{2m}\in {}[ Nf_{2m-1}]_{\upsilon (f_{2m-1})}\), so \(\alpha (f_{2m-1},f_{2m})\geq 1\). Now, by using Lemma 1.8, we have
Since F is a strictly increasing function, we have
If \(\max \{d_{b}(f_{2m},f_{2m-1}),d_{b}(f_{2m},f_{2m+1})\}=d_{b}(f_{2m},f_{2m+1})\), then
This contradicts the assumption \(b\psi _{b}(t)< t\) for positive t. Therefore, we get
So, the nondecreasing of \(\psi _{b}\) yields
This last inequality, together with (2.3), gives
Iterating this reasoning, we obtain
Instead, if \(j=2m\), where \(m=1,2,\ldots ,\frac{j}{2}\), by using (2.4) and similar procedure as above, we have
Now, by combining (2.5) and (2.6),
Now, making use of (2.4) and reasoning similarly to the odd case, we get
This means \(f_{j+1}\in \overline{B_{d_{b}}(f_{0},r)}\). Hence \(f_{n}\) belongs to \(\overline{B_{d_{b}}(f_{0},r)}\) for each \(n\in \mathbb{N} \), therefore the entire sequence \(\{NM(f_{n})\}\) is in \(\overline{B_{d_{b}}(f_{0},r)}\). As the mappings M, N are \(\alpha _{\ast }\)-dominated on \(\overline{B_{d_{b}}(f_{0},r)}\), this implies that \(\alpha _{\ast }(f_{2n},[Mf_{2n}]_{\eta (f_{2n})})\geq 1\) and \(\alpha _{\ast }(f_{2n+1},[Nf_{2n+1}]_{\upsilon (f_{2n+1})})\geq 1\). This implies \(\alpha (f_{n},f_{n+1})\geq 1\). Also inequality (2.7) can be written as
Thanks to the hypothesis \(\sum_{k=1}^{+\infty }b^{k}\psi _{b}^{k}(t)<+\infty \) for all t, if we take a natural number p, we have the convergence of the series \(\sum_{k=1}^{+\infty }b^{k}\psi _{b}^{k}(\psi _{b}^{p-1}(d_{b}(f_{0},f_{1})))\). Moreover, thanks to the assumption \(b\psi _{b}(t)< t\), because one has that, for any natural number n,
Fix \(\varepsilon >0\), from the convergence of the previous series, it follows that there is \(p(\varepsilon )\in \mathbb{N} \), for which
Take \(n,m\in \mathbb{N} \) with \(m>n>p(\varepsilon )\), then we have
So we get that \(\{NM(f_{n})\}\) is a Cauchy sequence in \((\overline{B_{d_{b}}(f_{0},r)},d_{b})\). From the completeness of the \(d.b-m\). space and from the closure of a closed ball, it follows that the sequence converges to a point in the closed ball, i.e., there is \(f^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\) such that \(\{NM(f_{n})\} \rightarrow f^{\ast }\), that is,
Now,
By assumption, \(\alpha (f_{n},f^{\ast })\geq 1\). For contradiction, suppose that \(d_{b}(f^{\ast },[Mf^{\ast }]_{\eta (f^{\ast })})>0\). Then there is a sufficiently big k for which \(d_{b}(f_{n},[Mf^{\ast }]_{\eta (f^{\ast })})>0\) for n greater than k. For such n, one has
For \(n\rightarrow +\infty \), thanks to (2.9) we have \(d_{b}(f^{\ast },[Mf^{\ast }]_{\eta (f^{\ast })})< b\psi _{b}(d_{b}(f^{ \ast },[Mf^{\ast }]_{\eta (f^{\ast })}))< d_{b}(f^{\ast }, [Mf^{\ast }]_{ \eta (f^{\ast })})\), which is a counter-sense. This means that our guess is not acceptable. Hence \(d_{b}(f^{\ast },[Mf^{\ast }]_{\eta (f^{\ast })})=0\) or \(f^{\ast }\in {}[ Mf^{\ast }]_{\eta (f^{\ast })}\). Analogously, from Lemma 1.8 and inequality (2.9), following the same reasoning, one obtains that \(f^{\ast }\in {}[ Nf^{\ast }]_{\upsilon (f^{\ast })}\). So M and N detain a fuzzy fixed point in common \(f^{\ast }\) in \(\overline{B_{d_{l}}(c_{0},r)}\). Now
This implies that \(d_{b}(f^{\ast },f^{\ast })=0\). □
The next theorem is an immediate corollary of the previous main result in the case of only a mapping defined on the entire space, not on a ball.
Theorem 2.6
Let \((A,d_{b})\) be a complete \(d.b-m\). space. Assume that \(M:A\rightarrow W(A)\) is a fuzzy mapping and F is a strictly increasing function. Suppose that, for suitable \(\psi _{b}\in \Psi _{b}\)and \(\eta (f),\upsilon (g)\in (0,1]\), the following holds:
for all \(f,g\in \{MM(f_{n})\}\). Then \(\{MM(f_{n})\} \rightarrow f^{\ast }\in A \) and M has a fuzzy fixed point \(f^{\ast }\) in A and \(d_{b}(f^{\ast },f^{\ast })=0\).
Definition 2.7
([5])
Let A be a nonempty set, ⪯ be a partial order on A and \(K\subseteq A\). We say that \(g\preceq P\) whenever, for all \(p\in P\), we have \(g\preceq p\). A mapping \(M:A\rightarrow W(A)\) is called prevalent on K if \(g\preceq Mg\) for each \(g\in K\subseteq A\). If \(K=A\), then \(M:A\rightarrow W(A)\) is called totally prevalent.
We have the following result for fuzzy prevalent mappings on \(\overline{B_{d_{b}}(f_{0},r)}\) in an ordered complete \(d.b-m\). space.
Theorem 2.8
Let \((A,\preceq ,d_{b})\) be an ordered complete \(d.b-m\). space. Let \(r>0\), \(f_{0}\in \overline{B_{d_{b}}(f_{0},r)}\), F be a strictly increasing function, and \(M,N:A\rightarrow W(A)\) be two fuzzy prevalent mappings on \(\overline{B_{d_{b}}(f_{0},r)}\). Suppose that, for some \(\psi _{b}\in \Psi _{b}\) and \(\eta (f),\upsilon (g)\in (0,1]\) the following holds:
for all \(f,g\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\), \(f\preceq g \) and \(H_{d_{b}}([Mf]_{\eta (f)},[Mg]_{\upsilon (g)})>0\). Furthermore, suppose that
for all natural numbers \(n=0,1,2,\ldots \) Then the sequence \(\{NM(f_{n})\}\) is in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(\{NM(f_{n})\} \rightarrow f^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\). Also, if (2.10) holds for \(f^{\ast }\) and either \(f_{n}\preceq f^{\ast }\) or \(f^{\ast }\preceq f_{n}\) for each \(n\in \mathbb{N} \cup \{0\}\), then the mappings M and N possess a common fuzzy fixed point \(f^{\ast }\) in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(d_{b}(f^{\ast },f^{\ast })=0\).
Proof
Let \(\alpha :A\times A\rightarrow {}[ 0,+\infty )\) be a mapping fixed by \(\alpha (f,g)=1\) for all \(f\in \overline{B_{d_{b}}(f_{0},r)}\), \(f\preceq g\), and \(\alpha (f,g)=0\) and \(g\in A\). From the fact that M and N are fuzzy prevalent mappings on \(\overline{B_{d_{b}}(f_{0},r)}\), it follows \(f\preceq {}[ Mf]_{\eta (f)}\) and \(f\preceq {}[ Nf]_{\upsilon (f)}\) for all \(f\in \overline{B_{d_{b}}(f_{0},r)}\). From this it follows that \(f\preceq s\) for all \(s\in {}[ Mf]_{\eta (f)}\) and \(f\preceq d\) for all \(d\in {}[ Nf]_{\upsilon (f)}\). So, \(\alpha (f,s)=1\) for all \(s\in {}[ Mf]_{\eta (f)}\) and \(\alpha (f,c)=1\) for all \(c\in {}[ Nf]_{\upsilon (f)}\). Therefore \(\inf \{ \alpha (f,g):g\in {}[ Mf]_{\eta (f)}\}=1\) and \(\inf \{ \alpha (f,g):g\in {}[ Nf]_{\upsilon (f)}\}=1\). So, \(\alpha _{\ast }(f,[Mf]_{\eta (f)})=1\), \(\alpha _{\ast }(f,[Nf]_{\upsilon (f)})=1\) for all \(f\in \overline{B_{d_{b}}(f_{0},r)}\). So, \(M,N:A\rightarrow W(A)\) are the \(\alpha _{\ast }\)-dominated mappings on \(\overline{B_{d_{b}}(f_{0},r)}\). Recall that inequality (2.10) can be rewritten as
for f, g in \(\overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\), \(\alpha (f,g)\geq 1\). Also, inequality (2.11) holds. So, by Theorem 2.5, we deduce that the sequence \(\{NM(f_{n})\}\) is in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(\{NM(f_{n})\} \rightarrow f^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\). Now, \(f_{n},f^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\) and both \(f_{n}\preceq f^{\ast }\) and \(f^{\ast }\preceq f_{n}\) imply that either \(\alpha (f_{n},f^{\ast })\geq 1\) or \(\alpha (f^{\ast },f_{n})\geq 1\). So, the assumptions of Theorem 2.5 are fulfilled, and so M and N have a common fuzzy fixed point \(f^{\ast }\) in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(d_{b}(f^{\ast },f^{\ast })=0\). □
An immediate corollary of the above result in the case of a fuzzy prevalent mapping defined on the entire space is the following.
Theorem 2.9
Let \((A,\preceq ,d_{b})\) be an ordered complete \(d.b-m\). space. Let \(M:A\rightarrow W(A)\) be a fuzzy prevalent mapping on A and F be a strictly increasing function. Assume that, for some \(\psi _{b}\in \Psi _{b}\) and \(\eta (f),\upsilon (g)\in (0,1]\), the following holds:
for each \(f,g\in \{MM(f_{n})\}\) with \(f\preceq g\). Then \(\{MM(f_{n})\}\rightarrow f^{\ast }\in A\). Moreover, if inequality (2.12) holds for \(f^{\ast }\) and either \(f_{n}\preceq f^{\ast }\) or \(f^{\ast }\preceq f_{n}\) for all \(n\in \mathbb{N} \cup \{0\}\), then M has a fuzzy fixed point \(f^{\ast }\) and \(d_{b}(f^{\ast },f^{\ast })=0\).
Example 2.10
Take \(A=[0,+\infty )\) and take \(d_{b}:A\times A\rightarrow A\) defined by
with constant \(b=2\). Now, for \(f,h\in A\), \(\gamma ,\beta \in {}[ 0,1]\), define \(M,N:A\rightarrow W(A)\) by
and
Now, we consider
Let \(f_{0}=\frac{1}{2}\), \(r=36\). Then \(\overline{B_{d_{b}}(f_{0},r)}= [ 0,\frac{11}{2} ] \). Now, we have \(d_{b}(f_{0},[Mf_{0}]_{\frac{\gamma }{2}})=d_{b}(\frac{1}{2},[M\frac{1}{2}]_{\frac{\gamma }{2}})=d_{b}( \frac{1}{2},\frac{1}{8})=\frac{25}{64}\). So we obtain a sequence \(\{NM(f_{n})\}= \{ \frac{1}{2},\frac{1}{8},\frac{1}{24}, \frac{1}{96},\ldots \} \) in A generated by \(f_{0}\). Let \(\psi (k)=\frac{9k}{10}\) and \(a=\frac{1}{2}\). Define
Now, for \(f,h\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\) with \(\alpha (f,h)\geq 1\), we have
in such a way that, for any \(\tau \in (0,\frac{12}{95}]\) and for the strict increasing of the logarithm function \(F(t)=\ln (t)\), we obtain
Now take \(5,6\in A\), then \(\alpha (5,6)\geq 1\). But we have
So assumption (2.1) is not satisfied on A. Moreover, for each \(n\in \mathbb{N} \cup \{0\}\),
This means that the mappings M and N satisfy all the hypotheses of Theorem 2.5 for f, \(h\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\) with \(\alpha (f,g)\geq 1\). So, M and N possess a common fuzzy fixed point.
3 A realization of Theorem 2.5 for graphic contractions
Here we present an application of Theorem 2.5 in graph theory. Jachymski [22] proved an analogous result in the special occurrence of contraction maps defined on a metric space with a graph. Hussain et al. [19] gave fixed point results for graphic contraction with a realization to integral equations. For the sake of completeness, recall here that a graph G is a connected graph when there exists a path that connects any two different vertices (see for details [12]).
Definition 3.1
Let A be a nonempty set and \(G=(V(G),E(G))\) be a graph such that \(V(G)=A\), \(H\subseteq A\). A mapping \(M:A\rightarrow W(A)\) is said to be fuzzy graph dominated on H when, for each f belonging to H and for each g belonging to Mf, it results that \((f,g)\) is an edge belonging to \(E(G)\).
Theorem 3.2
Let \((A,d_{b})\) be a complete \(d.b-m\). space endowed with a graph G. Following the notations of Theorem 2.5, let r be a positive real number, \(f_{0}\in \overline{B_{d_{b}}(f_{0},r)}\) and \(M,N:A\rightarrow W(A)\). Suppose that, for some \(\psi _{b}\in \Psi _{b}\) and \(\eta (f),\upsilon (g)\in (0,1]\), the following three conditions are satisfied:
-
(i)
M and N are fuzzy graphs dominated on \(\overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\).
-
(ii)
There are \(\tau >0\) and a strictly increasing mapping F that satisfy the contractivity condition
$$ \tau +F\bigl(H_{d_{b}}\bigl([Mf]_{\eta (f)},[Ng]_{\upsilon (g)} \bigr)\bigr)\leq F\bigl(\psi _{b}\bigl(D_{b}(f,g)\bigr) \bigr), $$(3.1)whenever \(f,g\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\), \((f_{,}g)\in E(G)\) and \(H_{d_{b}}([Mf]_{\eta (f)},[Ng]_{\upsilon (g)})>0\).
-
(iii)
\(\sum_{i=0}^{+\infty }b^{i+1}\{ \psi _{b}^{i}(d_{b}(f_{0},f_{1}))\} \leq r\).
Then \(\{NM(f_{n})\}\) is a sequence in \(\overline{B_{d_{b}}(f_{0},r)}\), \((f_{n},f_{n+1})\in E(G)\) and \(\{NM(f_{n})\} \rightarrow m^{\ast }\). Furthermore, suppose that inequality (3.1) is satisfied for \(m^{\ast }\) and \((f_{n},m^{\ast })\in E(G)\) or \((m^{\ast },f_{n})\in E(G)\) for all \(n\in \mathbb{N} \cup \{0\}\). Then both the mappings M and N have a fuzzy fixed point in common \(m^{\ast }\) in \(\overline{B_{d_{b}}(f_{0},r)}\).
Proof
Define \(\alpha :A\times A\rightarrow {}[ 0,+\infty )\) by
Now, assumption (ii) ensures that M and N are graphs dominated on \(\overline{B_{d_{b}}(f_{0},r)}\), then for \(f\in \overline{B_{d_{b}}(f_{0},r)} \), \((f,h)\in E(G)\) for all \(h\in {}[ Mf]_{\eta (f)}\) and \((f,h)\in E(G)\) for all \(h\in {}[ Nf]_{\upsilon (f)}\). So, \(\alpha (f,h)=1\) for all \(h\in {}[ Mf]_{\eta (f)}\) and \(\alpha (f,h)=1\) for all \(h\in {}[ Nf]_{\upsilon (f)}\). This means that \(\inf \{ \alpha (f,h):h\in {}[ Mf]_{\eta (f)}\}=1\) and \(\inf \{ \alpha (f,h):h\in {}[ Nf]_{\upsilon (f)}\}=1\). Hence \(\alpha _{\ast }(f,[Mf]_{\eta (f)})=1\), \(\alpha _{\ast }(f,[Nf]_{\upsilon (f)})=1\) for all \(f\in \overline{B_{d_{b}}(f_{0},r)}\). So, \(M,N:A\rightarrow W(A)\) are semi \(\alpha _{\ast }\)-dominated fuzzy mappings on \(\overline{B_{d_{b}}(f_{0},r)}\). Also, we can rewrite inequality (3.1) as follows:
whenever \(f,h\in \overline{B_{d_{b}}(f_{0},r)}\cap \{NM(f_{n})\}\), \(\alpha (f,h)\geq 1\) and \(H_{d_{b}}([Mf]_{\eta (f)},[Nh]_{\upsilon (h)})>0\). Furthermore, assumption (iii) permits Theorem 2.5 to guarantee that \(\{NM(f_{n})\}\) is a sequence in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(\{NM(f_{n})\} \rightarrow m^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\). Lastly, \(f_{n},m^{\ast }\in \overline{B_{d_{b}}(f_{0},r)}\) and either \((f_{n},m^{\ast })\in E(G)\) or \((m^{\ast },f_{n})\in E(G)\) implies that either \(\alpha (f_{n},m^{\ast })\geq 1\) or \(\alpha (m^{\ast },f_{n})\geq 1\). Thus, all requirements of Theorem 2.5 are satisfied. Hence, by Theorem 2.5, M and N have a common fuzzy fixed point \(m^{\ast }\) in \(\overline{B_{d_{b}}(f_{0},r)}\) and \(d_{b}(m^{\ast },m^{\ast })=0\). □
4 A realization to integral equations
Theorem 4.1
Let \((A,d_{b})\) be a complete \(d.b-m\). space with constant \(b\geq 1\). Let \(u\in A\) and \(M,N:A\rightarrow A\). Assume that there are \(\tau >0\) and a strictly increasing mapping F for which, for a suitable function \(\psi _{b}\in \Psi _{b}\), the following contractiveness condition holds:
whenever \(f,g\in \{NM(f_{n})\}\) and \(d_{b}(Mf,Ng)>0\). Then \(\{NM(f_{n})\} \rightarrow q\in A\). Further, if the contractiveness condition is fulfilled for q, then the mappings M and N have a unique common fixed point q in A.
Proof
The proof of existence is very suchlike to that of Theorem 2.5, and so we omit it. It remains only to prove the uniqueness. For this, let p be another common fixed point of M and N. For contradiction, hypothesize \(d_{b}(Mq,Np)>0\). So it follows
This implies that
which is not true. So \(d_{b}(Mq,Np)=0\). Hence \(q=p\).
Now, we give a realization of this last theorem to a Volterra integral system.
for all \(p\in {}[ 0,1]\). We find the solution of (4.2) and (4.3). Let \(A=\hat{C}([0,1],\mathbb{R} _{+})\) be the set of all nonnegative real-valued continuous functions provided with the complete \(d.b-m\). defined below. First, for \(m\in \hat{C}([0,1],\mathbb{R} _{+})\), define a supremum norm as follows: \(\Vert m\Vert _{\tau }=\sup_{p\in {}[ 0,1]}\{m(p)f^{- \tau p}\}\), where \(\tau ,f>0\) is taken arbitrarily. Then define
for all \(m,n\in \hat{C}([0,1],\mathbb{R} _{+})\), with these settings \((\hat{C}([0,1],\mathbb{R} _{+}),d_{\tau })\) becomes a complete \(d.b-m\). space. □
Now we are ready to prove the theorem to find the solution of integral equations.
Theorem 4.2
Hypothesize that conditions (i) and (ii) are satisfied:
(i) \(K_{1},K_{2}:[0,1]\times {}[ 0,1]\times \hat{C}([0,1],\mathbb{R} _{+})\rightarrow \mathbb{R} \);
(ii) Define \(M,N:\hat{C}([0,1],\mathbb{R} _{+})\rightarrow \hat{C}([0,1],\mathbb{R} _{+})\) by
Take \(\tau >0\) in such a way that
for all \(p,t\in {}[ 0,1]\) and \(m,n\in \hat{C}([0,1],\mathbb{R} )\), where
Then integral equations \(( 4.2 ) \) and \(( 4.3 ) \) have a unique solution.
Proof
By definition (ii)
This implies
that is,
So, all the requirements of Theorem 4.1 are fulfilled for \(F(n)=\frac{-1}{\sqrt{n}};n\) >0 and \(d_{\tau }(m,n)=\Vert m+n\Vert _{\tau }^{2}\). Hence equations \(( 4.2 ) \) and \(( 4.3 ) \) have a unique common solution. □
5 Application to functional equations
Here, we derive an application for the solution of a functional equation arising in dynamic programming. Consider U and V to be two Banach spaces, \(Z\subseteq U\), \(H\subseteq V\), and
For further results on dynamic programming, we refer to [7, 10, 11, 26]. We can assume that Z and H represent the states and decisions spaces, respectively. The problem related to dynamic programming is brought back to solve the following functional equations:
for \(\gamma \in Z\). We ensure the existence and uniqueness of a common and bounded solution of Eqs. (5.1) and (5.2). Suppose that \(B(Z)\) is the set of all bounded real-valued functions on Z. Consider
for all \(h,k\in B(Z)\). In such a way, \((B(Z),d_{b})\) becomes a dislocated b-metric space. Assume that
(C1): M, N, g, and u are bounded.
(C2): For \(\gamma \in Z\), \(h\in B(Z)\), \(S,T:B(Z)\rightarrow B(Z)\), take
Moreover, assume also that there exist τ, \(f>0\) such that, for every \((\gamma ,\alpha )\in Z\times H\), \(h,k\in B(Z)\), \(t\in Z\),
where
Theorem 5.1
Assume that conditions (C1), (C2) and (5.6) hold. Then Eqs. (5.1) and (5.2) have a common and bounded solution in \(B(Z)\).
Proof
Take any \(\lambda >0\). From (5.4) and (5.5), there exist \(h_{1},h_{2}\in B(Z)\) and \(\alpha _{1},\alpha _{2}\in H\) such that
Again using the definition of supremum, we have
Then, from inequalities (5.6), (5.7), and (5.10), we have
Since \(\lambda >0\) is arbitrary, we get
This further implies that
Therefore, all the requirements of Theorem 4.1 hold for \(F(g)=\ln g\); g >0 and \(d_{\tau }(h,k)=\Vert h-k\Vert _{\tau }^{2}\). Thus, we obtain a common fixed point \(h^{\ast }\in B(W)\) of M and T, that is, \(h^{\ast }(\gamma )\) is a common solution of Eqs. (5.1) and (5.2). □
6 Conclusion
In this work we have discussed the notion of b-metric like space, and we have given several applications. We attained fixed point achievements for general rational type F-contraction for a pair of semi \(\alpha _{\ast }\)-dominated fuzzy mappings. The notion of fuzzy graph dominated mappings on a closed set has been introduced. Applications of two different types of Volterra type nonlinear integral inclusions and dynamic process are presented. Our results generalized and extended many recent fixed point results of Rasham et al. [24, 27, 28], Wardowski’s result [39], Ameer et al. [7], and many classical results in the current literature (see [15, 21, 23, 31, 32]).
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
References
Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fundam. Math. 3, 133–181 (1922)
Abbas, M., Ali, B., Romaguera, S.: Fixed and periodic points of generalized contractions in metric spaces. Fixed Point Theory Appl. 2013, Article ID 243 (2013)
Abbas, M., Ali, B., Mohisin, B.B., Dedovic, N., Nazir, T., Radenovic, R.: Solutions and Ulam-Hyers stability of differential inclusions involving Suzuki type multivalued mappings on b-metric spaces. Vojnotehnicki glasnik/Military Technical Courier 68(3), 238–487 (2020)
Acar, Ö., Durmaz, G., Minak, G.: Generalized multivalued F-contractions on complete metric spaces. Bull. Iranian Math. Soc. 40, 1469–1478 (2014)
Alofi, A.S.M., Al-Mazrooei, A.E., Leyew, B.T., Abbas, M.: Common fixed points of α-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space. J. Nonlinear Sci. Appl. 10(7), 3456–3476 (2017)
Ameer, E., Arshad, M.: Two new generalization for F-contraction on closed ball and fixed point theorem with application. J. Math. Ext. 11, 1–24 (2017)
Ameer, E., Aydi, H., Arshad, M., Alsamir, H.: Hybrid multivalued type contraction mappings in αĶ-complete partial b-metric spaces and applications. Symmetry 11, Article ID 86 (2019)
Arshad, M., Khan, S.U., Ahmad, J.: Fixed point results for F-contractions involving some new rational expressions. J. Fixed Point Theory Appl. 11(1), 79–97 (2016)
Asl, J.H., Rezapour, S., Shahzad, N.: On fixed points of \(\alpha -\psi \) contractive multifunctions. Fixed Point Theory Appl. 2012, Article ID 212 (2012)
Bellman, R., Lee, E.S.: Functional equations in dynamic programming. Aequ. Math. 17, 1–18 (1978)
Bhakta, T.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math. Anal. Appl. 98, 348–362 (1984)
Bojor, F.: Fixed point theorems for Reich type contraction on metric spaces with a graph. Nonlinear Anal. 75, 3895–3901 (2012)
Boriceanu, M.: Fixed point theory for multivalued generalized contraction on a set with two b-metrics. Stud. Univ. Babeş–Bolyai, Math. 3, 1–14 (2009)
Butnariu, D.: Fixed point for fuzzy mapping. Fuzzy Sets Syst. 7, 191–207 (1982)
Chen, C., Wen, L., Dong, J., Gu, Y.: Fixed point theorems for generalized F-contractions in b-metric-like spaces. J. Nonlinear Sci. Appl. 9, 2161–2174 (2016)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)
Heilpern, S.: Fuzzy mappings and fixed point theorem. J. Math. Anal. Appl. 83(2), 566–569 (1981)
Hussain, N., Ahmad, J., Azam, A.: On Suzuki-Wardowski type fixed point theorems. J. Nonlinear Sci. Appl. 8, 1095–1111 (2015)
Hussain, N., Al-Mezel, S., Salimi, P.: Fixed points for ψ-graphic contractions with application to integral equations. Abstr. Appl. Anal. 2013, Article ID 575869 (2013)
Hussain, N., Roshan, J.R., Paravench, V., Abbas, M.: Common fixed point results for weak contractive mappings in ordered dislocated b-metric space with applications. J. Inequal. Appl. 2013, Article ID 486 (2013)
Hussain, A., Arshad, M., Nazim, M.: Connection of Ciric type F-contraction involving fixed point on closed ball. Ghazi Univ. J. Sci. 30(1), 283–291 (2017)
Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136, 1359–1373 (2008)
Khan, S.U., Arshad, M., Hussain, A., Nazam, M.: Two new types of fixed point theorems for F-contraction. J. Adv. Stud. Topol. 7(4), 251–260 (2016)
Mahmood, Q., Shoaib, A., Rasham, T., Arshad, M.: Fixed point results for the family of multivalued F-contractive mappings on closed ball in complete dislocated b-metric spaces. Mathematics 7, Article ID 56 (2019)
Nadler, S.B.: Multivalued contraction mappings. Pac. J. Math. 30, 475–488 (1969)
Pathak, H.K., Cho, Y.J., Kang, S.M., Lee, B.S.: Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming. Matematiche 50, 15–33 (1995)
Rasham, T., Shoaib, A., Hussain, N., Alamri, B.A.S., Arshad, M.: Multivalued fixed point results in dislocated b-metric spaces with application to the system of nonlinear integral equations. Symmetry 11, Article ID 40 (2019)
Rasham, T., Shoaib, A., Hussain, N., Arshad, M., Khan, S.U.: Common fixed point results for new Ciric-type rational multivalued F-contraction with an application. J. Fixed Point Theory Appl. 20, Article ID 45 (2018)
Rasham, T., Mahmood, Q., Shahzad, A., Shoaib, A., Azam, A.: Some fixed point results for two families of fuzzy A-dominated contractive mappings on closed ball. J. Intell. Fuzzy Syst. 36, 3413–3422 (2019)
Senapati, T., Dey, L.K.: Common fixed point theorems for multivalued \(\beta _{\ast }\)-ψ-contractive mappings. Thai J. Math. 15(3), 747–759 (2017)
Sgroi, M., Vetro, C.: Multi-valued F-contractions and the solution of certain functional and integral equations. Filomat 27(7), 1259–1268 (2013)
Shahzad, A., Shoaib, A., Khammahawong, K., Kumam, P.: New Ciric type rational fuzzy F-contraction for common fixed points. In: SCI, ECONVN (2019), vol. 809, pp. 215–229. Springer, Switzerland (2019)
Shahzad, A., Shoaib, A., Mahmood, Q.: Fixed point theorems for fuzzy mappings in b-metric space. Ital. J. Pure Appl. Math. 38, 419–427 (2017)
Shoaib, A., Kumam, P., Shahzad, A., Phiangsungnoen, S., Mahmood, Q.: Fixed point results for fuzzy mappings in a b-metric space. Fixed Point Theory Appl. 2018, Article ID 2 (2018)
Shoaib, A., Hussain, A., Arshad, M., Azam, A.: Fixed point results for \(\alpha _{\ast }\)-ψ-Ciric type multivalued mappings on an intersection of a closed ball and a sequence with graph. J. Math. Anal. 7(3), 41–50 (2016)
Tiammee, J., Suantai, S.: Coincidence point theorems for graph-preserving multi-valued mappings. Fixed Point Theory Appl. 2014, Article ID 70 (2014)
Todorèevic, V.: Subharmonic behavior and quasiconformal mappings. Anal. Math. Phys. 9(3), 1211–1225 (2019)
Vujacovic, J., Radenovic, S.: On some F-contraction of Piri-Kumam-Dung-type mappings in metric space. Vojnotehnicki glasnik/Military Technical Courier 68(4) (2020) 18 pages
Wardowski, D.: Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, Article ID 94 (2012)
Weiss, M.D.: Fixed points and induced fuzzy topologies for fuzzy sets. J. Math. Anal. Appl. 50, 142–150 (1975)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Afshari, H., Karapinar, E.: A discussion on the existence of positive solutions of the boundary valued problems via ψ-Hilfer fractional derivative on b-metric spaces. Adv. Differ. Equ. 2020, 616 (2020). https://doi.org/10.1186/s13662-020-03076-z
Afshari, H., Atapour, M., Karapinar, E.: A discussion on a generalized Geraghty multi-valued mappings and applications. Adv. Differ. Equ. 2020, 356 (2020). https://doi.org/10.1186/s13662-020-02819-2
Afshari, H.: Solution of fractional differential equations in quasi-b-metric and b-metric-like spaces. Adv. Differ. Equ. 2018, 285 (2018). https://doi.org/10.1186/s13662-019-2227-9
Afshari, H., Alsulami, H.H., Karapinar, E.: On the extended multivalued Geraghty type contractions. J. Nonlinear Sci. Appl. 9, 4695–4706 (2016). https://doi.org/10.22436/jnsa.009.06.108
Acknowledgements
The second author contributed to the paper under the auspices of GNAMPA, CNR, Italy.
Funding
The authors declare that there is no funding available for this paper.
Author information
Authors and Affiliations
Contributions
Each author equally contributed to this paper, read and approved the final manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rasham, T., Marino, G., Shahzad, A. et al. Fixed point results for a pair of fuzzy mappings and related applications in b-metric like spaces. Adv Differ Equ 2021, 259 (2021). https://doi.org/10.1186/s13662-021-03418-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-021-03418-5
MSC
- 46S40
- 47H10
- 47H30
- 39Bxx
Keywords
- Fixed point
- Semi \(\alpha _{\ast }\)-dominated fuzzy mappings
- Graphic contractions
- Integral equations
- Functional equations